Search results for: c5 competitive balance index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6208

Search results for: c5 competitive balance index

1438 The Effect of Endurance Training and Ginseng Consumption on VEGF and PDGF Plasma in Untrained Females

Authors: Barari Alireza, Seyed Hossein Alavi, Ghasemi Mohamad

Abstract:

Objectives: VEGF and PDGF play central role in the processes of angiogenesis and vascular changes in most body tissues. The aim of the present study to determine effect of endurance training with ginseng on VEGF and PDGF levels is untrained female. Methods: Statistic society of this study was untraining male students of Azad University of Sari Branch in year of 2012-2013. Forty young untrained female (age 21.3 ± 0.90 year, height162.08±8.07cm , body weight 65.45± 7.6 kg and body mass index [BMI] 23.23 ± 2.64 kg/m2) were randomly divided into four groups: control(C), endurance(E), ginseng (G), endurance and ginseng (EG). Participants in training groups performed endurance training for 6 weeks and three sessions per week with 60-80% HRmax. Subjects perform endurance training and consumed ginseng for six weeks. Blood samples from the subjects before and after the test was performed. One wey ANOVA were used to test for differences between group and pair T-test were used for differences within groups. In all cases, P<0.05 was considered to be statistically significant. Results: A higher and significant Vo2 max was found in E and EG groups, while no change in other groups. BMI and Fat% were significantly decreased in EG group. No significant difference was found between and within groups in VEGF level. A higher and significant PDGF was only in endurance group, while there was significant reduction observed in G and EG groups. One-way ANOVA for PDGF showed significant difference between groups. Conclusion: The finding of the current study indicated that ginseng likely could through reducing of angiogenesis factors Such as VEGF and PDGF and reduced activity of tumor necrosis factor and inhibited inflammatory process.

Keywords: endurance, ginseng, VEGF, PDGF, untrained female

Procedia PDF Downloads 379
1437 Early-Onset Asthma and Early Smoking Increase Risk of Bipolar Disorder in Adolescents and Young Adults

Authors: Meng-Huan Wu, Wei-Er Wang, Tsu-Nai Wang, Wei-Jian Hsu, Vincent Chin-Hung Chen

Abstract:

Objective: Studies have reported a strong link between asthma and bipolar disorder. We conducted a 17-year community-based large cohort study to examine the relationship between asthma, early smoking initiation, and bipolar disorder during adolescence and early adulthood. Methods: A total of 162,766 participants aged 11–16 years were categorized into asthma and non-asthma groups at baseline and compared within the observation period. Covariates during late childhood or adolescence included parental education, cigarette smoking by family members of participants, and participant’s gender, age, alcohol consumption, smoking, and exercise habits. Data for urbanicity, prednisone use, allergic comorbidity, and Charlson comorbidity index were acquired from the National Health Insurance Research Database. The Cox proportional-hazards model was used to evaluate the association between asthma and bipolar disorder. Results: Our findings revealed that asthma increased the risk of bipolar disorder after adjustment for key confounders in the Cox proportional hazard regression model (adjusted HR: 1.31, 95% CI: 1.12-1.53). Hospitalizations or visits to the emergency department for asthma exhibited a dose–response effect on bipolar disorder (adjusted HR: 1.59, 95% CI: 1.22-2.06). Patients with asthma with onset before 20 years of age who smoked during late childhood or adolescence had the greatest risk for bipolar disorder (adjusted HR: 3.10, 95% CI: 1.29-7.44). Conclusions: Patients newly diagnosed with asthma had a 1.3 times higher risk of developing bipolar disorder. Smoking during late childhood or adolescence increases the risk of developing bipolar disorder in patients with asthma.

Keywords: adolescence, asthma, smoking, bipolar disorder, early adulthood

Procedia PDF Downloads 330
1436 The Role of Nickel on the High-Temperature Corrosion of Modell Alloys (Stainless Steels) before and after Breakaway Corrosion at 600°C: A Microstructural Investigation

Authors: Imran Hanif, Amanda Persdotter, Sedigheh Bigdeli, Jesper Liske, Torbjorn Jonsson

Abstract:

Renewable fuels such as biomass/waste for power production is an attractive alternative to fossil fuels in order to achieve a CO₂ -neutral power generation. However, the combustion results in the release of corrosive species. This puts high demands on the corrosion resistance of the alloys used in the boiler. Stainless steels containing nickel and/or nickel containing coatings are regarded as suitable corrosion resistance material especially in the superheater regions. However, the corrosive environment in the boiler caused by the presence of water vapour and reactive alkali very rapidly breaks down the primary protection, i.e., the Cr-rich oxide scale formed on stainless steels. The lifetime of the components, therefore, relies on the properties of the oxide scale formed after breakaway, i.e., the secondary protection. The aim of the current study is to investigate the role of varying nickel content (0–82%) on the high-temperature corrosion of model alloys with 18% Cr (Fe in balance) in the laboratory mimicking industrial conditions at 600°C. The influence of nickel is investigated on both the primary protection and especially the secondary protection, i.e., the scale formed after breakaway, during the oxidation/corrosion process in the dry O₂ (primary protection) and more aggressive environment such as H₂O, K₂CO₃ and KCl (secondary protection). All investigated alloys experience a very rapid loss of the primary protection, i.e., the Cr-rich (Cr, Fe)₂O₃, and the formation of secondary protection in the aggressive environments. The microstructural investigation showed that secondary protection of all alloys has a very similar microstructure in all more aggressive environments consisting of an outward growing iron oxide and inward growing spinel-oxide (Fe, Cr, Ni)₃O₄. The oxidation kinetics revealed that it is possible to influence the protectiveness of the scale formed after breakaway (secondary protection) through the amount of nickel in the alloy. The difference in oxidation kinetics of the secondary protection is linked to the microstructure and chemical composition of the complex spinel-oxide. The detailed microstructural investigations were carried out using the extensive analytical techniques such as electron back scattered diffraction (EBSD), energy dispersive X-rays spectroscopy (EDS) via the scanning and transmission electron microscopy techniques and results are compared with the thermodynamic calculations using the Thermo-Calc software.

Keywords: breakaway corrosion, EBSD, high-temperature oxidation, SEM, TEM

Procedia PDF Downloads 135
1435 Study of Durability of Porous Polymer Materials, Glass-Fiber-Reinforced Polyurethane Foam (R-PUF) in MarkIII Containment Membrane System

Authors: Florent Cerdan, Anne-Gaëlle Denay, Annette Roy, Jean-Claude Grandidier, Éric Laine

Abstract:

The insulation of MarkIII membrane of the Liquid Natural Gas Carriers (LNGC) consists of a load- bearing system made of panels in reinforced polyurethane foam (R-PUF). During the shipping, the cargo containment shall be potentially subject to risk events which can be water leakage through the wall ballast tank. The aim of these present works is to further develop understanding of water transfer mechanisms and water effect on properties of R-PUF. This multi-scale approach contributes to improve the durability. Macroscale / Mesoscale Firstly, the use of the gravimetric technique has allowed to define, at room temperature, the water transfer mechanisms and kinetic diffusion, in the R-PUF. The solubility follows a first kinetic fast growing connected to the water absorption by the micro-porosity, and then evolves linearly slowly, this second stage is connected to molecular diffusion and dissolution of water in the dense membranes polyurethane. Secondly, in the purpose of improving the understanding of the transfer mechanism, the study of the evolution of the buoyant force has been established. It allowed to identify the effect of the balance of total and partial pressure of mixture gas contained in pores surface. Mesoscale / Microscale The differential scanning calorimetry (DSC) and Dynamical Mechanical Analysis (DMA), have been used to investigate the hydration of the hard and soft segments of the polyurethane matrix. The purpose was to identify the sensitivity of these two phases. It been shown that the glass transition temperatures shifts towards the low temperatures when the solubility of the water increases. These observations permit to conclude to a plasticization of the polymer matrix. Microscale The Fourier Transform Infrared (FTIR) study has been used to investigate the characterization of functional groups on the edge, the center and mid-way of the sample according the duration of submersion. More water there is in the material, more the water fix themselves on the urethanes groups and more specifically on amide groups. The pic of C=O urethane shifts at lower frequencies quickly before 24 hours of submersion then grows slowly. The intensity of the pic decreases more flatly after that.

Keywords: porous materials, water sorption, glass transition temperature, DSC, DMA, FTIR, transfer mechanisms

Procedia PDF Downloads 517
1434 A Preliminary Outcome of the Effect of an Accumulating 10,000 Daily Steps on Blood Pressure and Diabetes in Overweight Thai Participants

Authors: Kornanong Yuenyongchaiwat, Duangnate Pepatsitipong, Panthip Sangprasert

Abstract:

High blood pressure and diabetes have been suggested as being non-communicable disease (NCDs), and there is one of the components of the definition of metabolic syndrome. Therefore, the purpose of this study was to evaluate the effect of a 12-week pedometer based community walking intervention on change in resting blood pressure and blood glucose in participants with overweight in the community setting. Method: Participants were recruited both males and females who had a sedentary lifestyle aged 35-59 years (mean aged 49.67 years). A longitudinal quasi-experimental study was designed with 35 overweight participants who had body mass index ≥ 25 kg/m2. These volunteers were assigned to the 12-week pedometer-based walking program (an accumulated at least 10,000 steps a day). Blood pressure and blood glucose were measured initially before and after 12-week intervention. Results: Systolic blood pressure and heart rate were significantly lower in 30 individuals who had accumulated 10,000 steps d-1 in the intervention group at 12 week follow-up (-13.74 mmHg and 5.3 bpm, respectively). In addition, reduction in blood glucose (-14.89 mmol) in the intervention participants was statistically significant (p < .001). A regression analysis indicated that reductions in systolic blood pressure were significantly related to the increase in steps per day. Conclusion: The accumulation of least 10,000 steps d-1 resulted in decreased resting systolic blood pressure and blood glucose in overweight participants. This has also shown that an increase in physical activity in overweight participants with sedentary lifestyle by accumulating at least 10,000 steps a day can reduce the risk of cardiovascular disease (e.g., hypertension and diabetes).

Keywords: blood glucose, blood pressure, diabetes, hypertension, physical activity, walking

Procedia PDF Downloads 276
1433 Opto-Electronic Properties and Structural Phase Transition of Filled-Tetrahedral NaZnAs

Authors: R. Khenata, T. Djied, R. Ahmed, H. Baltache, S. Bin-Omran, A. Bouhemadou

Abstract:

We predict structural, phase transition as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound in this study. Calculations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme developed within the structure of density functional theory (DFT). Exchange-correlation energy/potential (EXC/VXC) functional is treated using Perdew-Burke and Ernzerhof (PBE) parameterization for generalized gradient approximation (GGA). In addition to Trans-Blaha (TB) modified Becke-Johnson (mBJ) potential is incorporated to get better precision for optoelectronic properties. Geometry optimization is carried out to obtain the reliable results of the total energy as well as other structural parameters for each phase of NaZnAs compound. Order of the structural transitions as a function of pressure is found as: Cu2Sb type → β → α phase in our study. Our calculated electronic energy band structures for all structural phases at the level of PBE-GGA as well as mBJ potential point out; NaZnAs compound is a direct (Γ–Γ) band gap semiconductor material. However, as compared to PBE-GGA, mBJ potential approximation reproduces higher values of fundamental band gap. Regarding the optical properties, calculations of real and imaginary parts of the dielectric function, refractive index, reflectivity coefficient, absorption coefficient and energy loss-function spectra are performed over a photon energy ranging from 0.0 to 30.0 eV by polarizing incident radiation in parallel to both [100] and [001] crystalline directions.

Keywords: NaZnAs, FP-LAPW+lo, structural properties, phase transition, electronic band-structure, optical properties

Procedia PDF Downloads 426
1432 Analysis of Spatiotemporal Efficiency and Fairness of Railway Passenger Transport Network Based on Space Syntax: Taking Yangtze River Delta as an Example

Authors: Lin Dong, Fei Shi

Abstract:

Based on the railway network and the principles of space syntax, the study attempts to reconstruct the spatial relationship of the passenger network connections from space and time perspective. According to the travel time data of main stations in the Yangtze River Delta urban agglomeration obtained by the Internet, the topological drawing of railway network under different time sections is constructed. With the comprehensive index composed of connection and integration, the accessibility and network operation efficiency of the railway network in different time periods is calculated, while the fairness of the network is analyzed by the fairness indicators constructed with the integration and location entropy from the perspective of horizontal and vertical fairness respectively. From the analysis of the efficiency and fairness of the railway passenger transport network, the study finds: (1) There is a strong regularity in regional system accessibility change; (2) The problems of efficiency and fairness are different in different time periods; (3) The improvement of efficiency will lead to the decline of horizontal fairness to a certain extent, while from the perspective of vertical fairness, the supply-demand situation has changed smoothly with time; (4) The network connection efficiency of Shanghai, Jiangsu and Zhejiang regions is higher than that of the western regions such as Anqing and Chizhou; (5) The marginalization of Nantong, Yancheng, Yangzhou, Taizhou is obvious. The study explores the application of spatial syntactic theory in regional traffic analysis, in order to provide a reference for the development of urban agglomeration transportation network.

Keywords: spatial syntax, the Yangtze River Delta, railway passenger time, efficiency and fairness

Procedia PDF Downloads 133
1431 Use and Effects of Kanban Board from the Aspects of Brothers Furniture Limited

Authors: Kazi Rizvan, Yamin Rekhu

Abstract:

Due to high competitiveness in industries throughout the world, every industry is trying hard to utilize all their resources to keep their productivity as high as possible. Many tools have been being used to ensure smoother flow of an operation, to balance tasks, to maintain proper schedules for tasks, to maintain proper sequence for tasks, to reduce unproductive time. All of these tools are used to augment productivity within an industry. Kanban board is one of them and of the many important tools of lean production system. Kanban Board is a visual depiction of the status of tasks. Kanban board shows the actual status of the tasks. It conveys the progress and issues of tasks as well. Using Kanban Board, tasks can be distributed among workers and operation targets can be visually represented to them. In this paper, an example of Kanban board from the aspects of Brothers Furniture Limited was taken and how the Kanban board system was implemented, how the board was designed and how it was made easily perceivable for the less literate or illiterate workers. The Kanban board was designed for the packing section of Brothers Furniture Limited. It was implemented for the purpose of representing the tasks flow to the workers and to mitigate the time that was wasted while the workers remained wondering about what task they should start after they finish one. Kanban board subsumed seven columns and there was a column for comments where if any problem occurred during working on the tasks. Kanban board was helpful for the workers as the board showed the urgency of the tasks. It was also helpful for the store section as they could understand which products and how much of them could be delivered to store at any certain time. Kanban board had all the information centralized which is why the work-flow got paced up and idle time was minimized. Regardless of many workers being illiterate or less literate, Kanban board was still explicable for the workers as the Kanban cards were colored. Since the significance of colors can be conveniently interpretable to them, colored cards helped a great deal in that matter. Hence, the illiterate or less literate workers didn’t have to spend time wondering about the significance of the cards. Even when the workers weren’t told the significance of the colored cards, they could grow a feeling about their meaning as colors can trigger anyone’s mind to perceive the situation. As a result, the board elucidated the workers about what board required them to do, when to do and what to do next. Kanban board alleviated excessive time between tasks by setting day-plan for targeted tasks and it also reduced time during tasks as the workers were acknowledged of forthcoming tasks for a day. Being very specific to the tasks, Kanban board helped the workers become more focused on their tasks helped them do their job with more perfection. As a result, The Kanban board helped achieve a 8.75% increase in productivity than the productivity before the Kanban board was implemented.

Keywords: color, Kanban Board, Lean Tool, literacy, packing, productivity

Procedia PDF Downloads 227
1430 Variants of Fat Mass Obesity Associated rs 9939609 Associated with Obesity and Eating Behavior in Adolescent of Minangkabau Ethnic

Authors: Susmiati, Ingrid S. Surono, Jamsari, Nur Indrawati Lipoeto

Abstract:

There are two contradicting opinions on the relationship between fat mass obesity associated (FTO) rs 9939609 variants and obesity on various ethnics and races. The first opinion agrees that there is an association between the two variables, yet another one disagree. Minangkabau ethnic had a different dietary pattern with other ethnics in Indonesia. They had higher fat and low fiber intakes compared to the other ethnics groups. There is little research in genetic factors that influence eating behavior (food preference or food selection). The objective of this study was to investigate the association between FTO rs 9939609 variants with obesity and eating behavior in adolescent girls of Minangkabau Ethnic. The research design was case control study. A total of 275 adolescent girls aged 12-15 years old (130 obese and 145 normal) were randomly chosen from four districts at West Sumatera (Padang, Padang Pariaman, Padang Panjang and Tanah Datar). Genetic variants of FTO rs 9939609 were analyzed with Tetra-primer Amplification Refractory Mutation System-Polimerase Chain Reaction (AMRS PCR), eating behavior were gathered using eating habits questionnaire, and Body Mass Index (BMI) was calculated according to BMI Z-score (WHO). The result showed that genetic variants of FTO rs 9939609 (TT, TA and AA genotype) had associated with obesity (p = 0,013), whereas subject with An Allele was significantly associated with obesity (odds ratio 1,62 [95% confidential interval, 1,00-2,60]). Subjects with An Allele carrier reported a higher consumption of fried food (p < 0.05) as compared to TT genotypes carriers. There is no association between genetic variants and meal frequency, fruit and fiber intakes p > 0.05. The genetic variants of FTO rs 9939609 are associated with obesity and eating behavior in adolescent of Minangkabau Ethics.

Keywords: FTO rs9939609, obesity, eating behavior, adolescents

Procedia PDF Downloads 167
1429 Intensity-Enhanced Super-Resolution Amplitude Apodization Effect on the Non-Spherical Near-Field Particle-Lenses

Authors: Liyang Yue, Bing Yan, James N. Monks, Rakesh Dhama, Zengbo Wang, Oleg V. Minin, Igor V. Minin

Abstract:

A particle can function as a refractive lens to focus a plane wave, generating a narrow, high intensive, weak-diverging beam within a sub-wavelength volume, known as the ‘photonic jet’. Refractive index contrast (particle to background media) and scaling effect of the dielectric particle (relative-to-wavelength size) play key roles in photonic jet formation, rather than the shape of particle-lens. Waist (full width of half maximum, FWHM) of a photonic jet could be beyond the diffraction limit and smaller than the Airy disk, which defines the minimum distance between two objects to be imaged as two instead of one. Many important applications for imaging and sensing have been afforded based upon the super-resolution characteristic of the photonic jet. It is known that apodization method, in the form of an amplitude pupil-mask centrally situated on a particle-lens, can further reduce the waist of a photonic nanojet, however, usually lower its intensity at the focus due to blocking of the incident light. In this paper, the anomalously intensity-enhanced apodization effect was discovered in the near-field via numerical simulation. It was also experimentally verified by a scale model using a copper-masked Teflon cuboid solid immersion lens (SIL) with 22 mm side length under radiation of a plane wave with 8 mm wavelength. Peak intensity enhancement and the lateral resolution of the produced photonic jet increased by about 36.0 % and 36.4 % in this approach, respectively. This phenomenon may possess the scale effect and would be valid in multiple frequency bands.

Keywords: apodization, particle-lens, scattering, near-field optics

Procedia PDF Downloads 181
1428 The Debate over Dutch Universities: An Analysis of Stakeholder Perspectives

Authors: B. Bernabela, P. Bles, A. Bloecker, D. DeRock, M. van Es, M. Gerritse, T. de Jongh, W. Lansing, M. Martinot, J. van de Wetering

Abstract:

A heated debate has been taking place concerning research and teaching at Dutch universities for the last few years. The ministry of science and education has published reports on its strategy to improve university curricula and position the Netherlands as a globally competitive knowledge economy. These reports have provoked an uproar of responses from think tanks, concerned academics, and the media. At the center of the debate is disagreement over who should determine the Dutch university curricula and how these curricula should look. Many stakeholders in the higher education system have voiced their opinion, and some have not been heard. The result is that the diversity of visions is ignored or taken for granted in the official reports. Recognizing this gap in stakeholder analysis, the aim of this paper is to bring attention to the wide range of perspectives on who should be responsible for designing higher education curricula. Based on a previous analysis by the Rathenau Institute, we distinguish five different groups of stakeholders: government, business sector, university faculty and administration, students, and the societal sector. We conducted semi-structured, in-depth interviews with representatives from each stakeholder group, and distributed quantitative questionnaires to people in the societal sector (i.e. people not directly affiliated with universities or graduates). Preliminary data suggests that the stakeholders have different target points concerning the university curricula. Representatives from the governmental sector tend to place special emphasis on the link between research and education, while representatives from the business sector rather focus on greater opportunities for students to obtain practical experience in the job market. Responses from students reflect a belief that they should be able to influence the curriculum in order to compete with other students on the international job market. On the other hand, university faculty expresses concern that focusing on the labor market puts undue pressure on students and compromises the quality of education. Interestingly, the opinions of members of ‘society’ seem to be relatively unchanged by political and economic shifts. Following a comprehensive analysis of the data, we believe that our results will make a significant contribution to the debate on university education in the Netherlands. These results should be regarded as a foundation for further research concerning the direction of Dutch higher education, for only if we take into account the different opinions and views of the various stakeholders can we decide which steps to take. Moreover, the Dutch experience offers lessons to other countries as well. As the internationalization of higher education is occurring faster than ever before, universities throughout Europe and globally are experiencing many of the same pressures.

Keywords: Dutch University curriculum, higher education, participants’ opinions, stakeholder perspectives

Procedia PDF Downloads 340
1427 Influence of Controlled Retting on the Quality of the Hemp Fibres Harvested at the Seed Maturity by Using a Designed Lab-Scale Pilot Unit

Authors: Brahim Mazian, Anne Bergeret, Jean-Charles Benezet, Sandrine Bayle, Luc Malhautier

Abstract:

Hemp fibers are increasingly used as reinforcements in polymer matrix composites due to their competitive performance (low density, mechanical properties and biodegradability) compared to conventional fibres such as glass fibers. However, the huge variation of their biochemical, physical and mechanical properties limits the use of these natural fibres in structural applications when high consistency and homogeneity are required. In the hemp industry, traditional processes termed field retting are commonly used to facilitate the extraction and separation of stem fibers. This retting treatment consists to spread out the stems on the ground for a duration ranging from a few days to several weeks. Microorganisms (fungi and bacteria) grow on the stem surface and produce enzymes that degrade pectinolytic substances in the middle lamellae surrounding the fibers. This operation depends on the weather conditions and is currently carried out very empirically in the fields so that a large variability in the hemp fibers quality (mechanical properties, color, morphology, chemical composition…) is resulting. Nonetheless, if controlled, retting might be favorable for good properties of hemp fibers and then of hemp fibers reinforced composites. Therefore, the present study aims to investigate the influence of controlled retting within a designed environmental chamber (lab-scale pilot unit) on the quality of the hemp fibres harvested at the seed maturity growth stage. Various assessments were applied directly on fibers: color observations, morphological (optical microscope), surface (ESEM), biochemical (gravimetry) analysis, spectrocolorimetric measurements (pectins content), thermogravimetric analysis (TGA) and tensile testing. The results reveal that controlled retting leads to a rapid change of color from yellow to dark grey due to development of microbial communities (fungi and bacteria) at the stem surface. An increase of thermal stability of fibres due to the removal of non-cellulosic components along retting is also observed. A separation of bast fibers to elementary fibers occurred with an evolution of chemical composition (degradation of pectins) and a rapid decrease in tensile properties (380MPa to 170MPa after 3 weeks) due to accelerated retting process. The influence of controlled retting on the biocomposite material (PP / hemp fibers) properties is under investigation.

Keywords: controlled retting, hemp fibre, mechanical properties, thermal stability

Procedia PDF Downloads 150
1426 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses

Authors: Laura Rodriguez Amaya

Abstract:

Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.

Keywords: engineering education, geospatial technology, geovisualization, STEM

Procedia PDF Downloads 246
1425 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change

Authors: Moustafa Osman Mohammed

Abstract:

Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.

Keywords: sustainability, environmental impact assessment, environemtal management, construction ecology

Procedia PDF Downloads 384
1424 Interpretation of Heritage Revitalization

Authors: Jarot Mahendra

Abstract:

The primary objective of this paper is to provide a view in the interpretation of the revitalization of heritage buildings. This objective is achieved by analyzing the concept of interpretation that is oriented in the perspective of law, urban spatial planning, and stakeholder perspective, and then develops the theoretical framework of interpretation in the cultural resources management through issues of identity, heritage as a process, and authenticity in heritage. The revitalization of heritage buildings with the interpretation of these three issues is that interpretation can be used as a communication process to express the meaning and relation of heritage to the community so as to avoid the conflict that will arise and develop as a result of different perspectives of stakeholders. Using case studies in Indonesia, this study focuses on the revitalization of heritage sites in the National Gallery of Indonesia (GNI). GNI is a cultural institution that uses several historical buildings that have been designated as heritage and have not been designated as a heritage according to the regulations applicable in Indonesia, in carrying out its function as the center of Indonesian art development and art museums. The revitalization of heritage buildings is taken as a step to meet space needs in running the current GNI function. In the revitalization master plan, there are physical interventions on the building of heritage and the removal of some historic buildings which will then be built new buildings at that location. The research matrix was used to map out the main elements of the study (the concept of GNI revitalization, heritage as identity, heritage as a process, and authenticity in the heritage). Expert interviews and document studies are the main tools used in collecting data. Qualitative data is then analyzed through content analysis and template analysis. This study identifies the significance of historic buildings (heritage buildings and buildings not defined as heritage) as an important value of history, architecture, education, and culture. The significance becomes the basis for revisiting the revitalization master plan which is then reviewed according to applicable regulations and the spatial layout of Jakarta. The interpretation that is built is (1) GNI is one of the elements of the embodiment of the National Cultural Center in the context of the region, where there are National Monument, National Museum and National Library in the same area, so the heritage not only gives identity to the past culture but the culture of current community; (2) The heritage should be seen as a dynamic cultural process towards the cultural change of community, where heritage must develop along with the urban development, so that the heritage buildings can remain alive and side by side with modern buildings but still observe the principles of preservation of heritage; (3) The authenticity of heritage should be able to balance the cultural heritage conservation approach with urban development, where authenticity can serve as a 'Value Transmitter' so that authenticity can be used to evaluate, preserve and manage heritage buildings by considering tangible and intangible aspects.

Keywords: authenticity, culture process, identity, interpretation, revitalization

Procedia PDF Downloads 144
1423 Socio-Economic Child’S Wellbeing Impasse in South Africa: Towards a Theory-Based Solution Model

Authors: Paulin Mbecke

Abstract:

Research Issue: Under economic constraints, socio-economic conditions of households worsen discounting child’s wellbeing to the bottom of many governments and households’ priority lists. In such situation, many governments fail to rebalance priorities in providing services such as education, housing and social security which are the prerequisites for the wellbeing of children. Consequently, many households struggle to respond to basic needs especially those of children. Although economic conditions play a crucial role in creating prosperity or poverty in households and therefore the wellbeing or misery for children; they are not the sole cause. Research Insights: The review of the South African Index of Multiple Deprivation and the South African Child Gauge establish the extent to which economic conditions impact on the wellbeing or misery of children. The analysis of social, cultural, environmental and structural theories demonstrates that non-economic factors contribute equally to the wellbeing or misery of children, yet, they are disregarded. In addition, the assessment of a child abuse database proves a weak correlation between economic factors (prosperity or poverty) and child’s wellbeing or misery. Theoretical Implications: Through critical social research theory and modelling, the paper proposes a Theory-Based Model that combines different factors to facilitate the understanding of child’s wellbeing or misery. Policy Implications: The proposed model assists in broad policy and decision making and reviews processes in promoting child’s wellbeing and in preventing, intervening and managing child’s misery with regard to education, housing, and social security.

Keywords: children, child’s misery, child’s wellbeing, household’s despair, household’s prosperity

Procedia PDF Downloads 276
1422 Interlinkages and Impacts of the Indian Ocean on the Nile River

Authors: Zeleke Ayalew Alemu

Abstract:

Indian Ocean and the Nile River play significant roles in shaping the hydrological and ecological systems of the regions they traverse. This study explores the interlinkages and impacts of the Indian Ocean on the Nile River, highlighting key factors such as water flow, nutrient distribution, climate patterns, and biodiversity. The Indian Ocean serves as a major source of moisture for the Nile River, contributing to its annual flood cycle and sustaining the river's ecosystem. The Indian Ocean's monsoon winds influence the amount of rainfall received in East Africa, which directly impacts the Nile's water levels. These monsoonal patterns create a vital connection between the Indian Ocean and the Nile, affecting agricultural productivity, freshwater availability, and overall river health. The Indian Ocean also influences the nutrient levels in the Nile River. Coastal upwelling driven by oceanic currents brings nutrient-rich waters from the depths of the ocean to the surface. These nutrients are transported by ocean currents towards the Red Sea and subsequently enter the Nile. This influx of nutrients supports the growth of plankton, which forms the basis of the river's food web and sustains various aquatic species. Additionally, the Indian Ocean's climate patterns, such as El Niño and Indian Ocean Dipole events, exert influence on the Nile River basin. El Niño, for example, can result in drought conditions, reduced precipitation, and altered river flows, impacting agricultural activities and water resource management along the Nile. The Indian Ocean Dipole events can influence the rainfall distribution in East Africa, further impacting the Nile's water levels and ecosystem dynamics. The Indian Ocean's biodiversity is interconnected with the Nile River's ecological system. Many species that inhabit the Indian Ocean, such as migratory birds and marine mammals, migrate along the Nile River basin, utilizing its resources for feeding and breeding purposes. The health of the Indian Ocean's ecosystem thus indirectly affects the biodiversity and ecological balance of the Nile River. Indian Ocean plays a crucial role in shaping the dynamics of the Nile River. Its influence on water flow, nutrient distribution, climate patterns, and biodiversity highlights the complex interdependencies between these two important water bodies. Understanding the interconnectedness and impacts of the Indian Ocean on the Nile is essential for effective water resource management and conservation efforts in the region.

Keywords: water, management, environment, planning

Procedia PDF Downloads 89
1421 Evaluation of Modified Asphalt Mixture with Hospital Spun-Bond Waste for Enhanced Crack Resistance

Authors: Ziba Talaeizadeh, Taghi Ebadi

Abstract:

Hospitals and medical centers generate a wide array of infectious waste on a daily basis, leading to pressing environmental concerns associated with proper disposal. Disposable plastic items and spun-bond clothing, commonly made from polypropylene, pose a significant risk of disease transmission, necessitating specialized waste management strategies. Incorporating these materials into bituminous asphalt production offers a potential solution, as it can modify asphalt mixtures and reduce susceptibility to cracking. This study aims to assess the crack resistance of asphalt mixtures modified with hospital spun-bond waste. Asphalt mixtures were prepared using the Marshall method, with spun-bond waste added in varying proportions (5% to 20%). The Semi-Circular Bending (SCB) test was conducted to evaluate asphalt fracture behavior under Mode I loading at controlled speeds of 5, 20, and 50 millimeters per minute and an average temperature of 25°C. Parameters such as fracture energy (FE) and Crack Resistance Index (CRI) were quantified. The results indicate that the addition of 10% to 15% spun-bond polypropylene polymer enhances the performance of the modified mixture, resulting in an 18% increase in fracture energy and an 11% reduction in cracking stiffness compared to the control sample. Further investigations involving factors like compaction level, bitumen type, and aggregate grading are recommended to address medical waste management and mitigate asphalt pavement cracking issues.

Keywords: asphalt cracking, hospital waste, semi-circular bending test, spun-bond

Procedia PDF Downloads 55
1420 Brand Resonance Strategy For Long-term Market Survival: Does The Brand Resonance Matter For Smes? An Investigation In Smes Digital Branding (Facebook, Twitter, Instagram And Blog) Activities And Strong Brand Development

Authors: Noor Hasmini Abd Ghani

Abstract:

Brand resonance is among of new focused strategy that getting more attention in nowadays by larger companies for their long-term market survival. The brand resonance emphasizing of two main characteristics that are intensity and activity able to generate psychology bond and enduring relationship between a brand and consumer. This strong attachment relationship has represented brand resonance with the concept of consumer brand relationship (CBR) that exhibit competitive advantage for long-term market survival. The main consideration toward this brand resonance approach is not only in the context of larger companies but also can be adapted in Small and Medium Enterprises (SMEs) as well. The SMEs have been recognized as vital pillar to the world economy in both developed and emergence countries are undeniable due to their economic growth contributions, such as opportunity for employment, wealth creation, and poverty reduction. In particular, the facts that SMEs in Malaysia are pivotal to the well-being of the Malaysian economy and society are clearly justified, where the SMEs competent in provided jobs to 66% of the workforce and contributed 40% to the GDP. As regards to it several sectors, the SMEs service category that covers the Food & Beverage (F&B) sector is one of the high-potential industries in Malaysia. For that reasons, SMEs strong brand or brand equity is vital to be developed for their long-term market survival. However, there’s still less appropriate strategies in develop their brand equity. The difficulties have never been so evident until Covid-19 swept across the globe from 2020. Since the pandemic began, more than 150,000 SMEs in Malaysia have shut down, leaving more than 1.2 million people jobless. Otherwise, as the SMEs are the pillar of any economy for the countries in the world, and with negative effect of COVID-19 toward their economic growth, thus, their protection has become important more than ever. Therefore, focusing on strategy that able to develop SMEs strong brand is compulsory. Hence, this is where the strategy of brand resonance is introduced in this study. Mainly, this study aims to investigate the impact of CBR as a predictor and mediator in the context of social media marketing (SMM) activities toward SMEs e-brand equity (or strong brand) building. The study employed the quantitative research design concerning on electronic survey method with the valid response rate of 300 respondents. Interestingly, the result revealed the importance role of CBR either as predictor or mediator in the context of SMEs SMM as well as brand equity development. Further, the study provided several theoretical and practical implications that can benefit the SMEs in enhancing their strategic marketing decision.

Keywords: SME brand equity, SME social media marketing, SME consumer brand relationship, SME brand resonance

Procedia PDF Downloads 55
1419 Evidence of Paternal Protein Provisioning During Male Pregnancy in the Seahorse, Hippocampus Abdominalis

Authors: Zoe M. G. Skalkos, Sam N. Dowland, James U. Van Dyke, Camilla. M. Whittington

Abstract:

Syngnathid fishes (seahorses, pipefishes, and seadragons) are unique because embryos develop on or in the male in a specialised brooding structure. Many seahorse species are endangered or vulnerable, while others are popular in the ornamental fish trade. Seahorses are capable of nutrient provisioning (patrotrophy) of lipids during pregnancy via their fully enclosed brood pouch. Protein is vital for gene regulation and tissue growth during embryogenesis. We tested the hypothesis that protein is paternally transported to developing embryos during pregnancy in the Australian Pot-bellied seahorse, Hippocampus abdominalis. We compared the dry masses and nitrogen content in recently fertilised H. abdominalis embryos and newborns. We calculated an updated patrotrophy index, 1.34, but without a significant difference in dry mass between the two developmental stages. There was, however, a significant increase in total protein content from recently fertilised embryos to neonates. This suggests paternal protein transport is essential for H. abdominalis embryogenesis because protein yolk reserves are depleted by embryonic metabolism, and supplementation is required. This study is the first to provide evidence for paternal protein transport during pregnancy in seahorses. It furthers our understanding of the paternal influence on embryonic development in male pregnancy and how a protein-deficient diet during pregnancy may limit the allocation of resources to embryos, reducing offspring fitness. This research contributes to a deeper understanding of the fundamental reproductive biology of seahorses, which can help improve conservation and farming production outcomes.

Keywords: brood pouch, embryonic provisioning, nitrogen, parentotrophy, paternal investment, reproduction

Procedia PDF Downloads 96
1418 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 56
1417 Management of Nutritional Strategies in Controlling of Autism in Children

Authors: Maryam Ghavam Sadri, Kimia Moiniafshari

Abstract:

Objectives: The prevalence of Autism in the world has taken on a growing trend. Autism is a neuro-developmental disorder that is identified at the age of three. Studies have been shown that nutritional management can control nutritional deficiencies in Autism. This review study aimed to assess the role of nutritional management strategies for Autism in children has been made. Methods: This review study was accomplished by using the keywords related to the topic, 68 articles were found (2000-2015) and finally 15 articles with criteria such as including dietary pattern, nutritional deficiencies and Autism controlling were selected. Results: The studies showed that intake of vitamins D, E, and calcium because of restricted diet (casein and gluten free) in autistic children is less than typically developing children (TYP) (p value ≤ 0.001) and as a result of restrictions on the consumption of fresh fruits and vegetables, vitamin C and magnesium intake is less than TYP children (p value ≤ 0.001). Autistic children also get omega-3 less than TYP children. Studies have shown that food sources rich in omega-3 can improve behavioral indicators, especially in reducing hyperactivity (95% CI = -2.2 - 5.2). Zinc deficiency in these children leads to a high serum level of mercury, lead and cadmium. As a result of the repetitive dietary pattern, Sodium intake in autistic children is more than TYP children (p value < 0.001).Because of low food variety in autistic children, healthy eating index (HEI) is less than TYP children (p value = 0.008).Food selectivity in Autism due to repetitive and restricted dietary pattern and nutritional deficiencies. Conclusion: Because of restricted (casein and gluten free) and repetitive dietary pattern, the intake of some micronutrients are denied in autistic children. The nutritional strategy programs appear to help controlling of Autism.

Keywords: autism, food selectivity, nutrient intake, nutritional strategies

Procedia PDF Downloads 422
1416 Shortening Distances: The Link between Logistics and International Trade

Authors: Felipe Bedoya Maya, Agustina Calatayud, Vileydy Gonzalez Mejia

Abstract:

Encompassing inventory, warehousing, and transportation management, logistics is a crucial predictor of firm performance. This has been extensively proven by extant literature in business and operations management. Logistics is also a fundamental determinant of a country's ability to access international markets. Available studies in international and transport economics have shown that limited transport infrastructure and underperforming transport services can severely affect international competitiveness. However, the evidence lacks the overall impact of logistics performance-encompassing all inventory, warehousing, and transport components- on global trade. In order to fill this knowledge gap, the paper uses a gravitational trade model with 155 countries from all geographical regions between 2007 and 2018. Data on logistics performance is obtained from the World Bank's Logistics Performance Index (LPI). First, the relationship between logistics performance and a country’s total trade is estimated, followed by a breakdown by the economic sector. Then, the analysis is disaggregated according to the level of technological intensity of traded goods. Finally, after evaluating the intensive margin of trade, the relevance of logistics infrastructure and services for the extensive trade margin is assessed. Results suggest that: (i) improvements in both logistics infrastructure and services are associated with export growth; (ii) manufactured goods can significantly benefit from these improvements, especially when both exporting and importing countries increase their logistics performance; (iii) the quality of logistics infrastructure and services becomes more important as traded goods are technology-intensive; and (iv) improving the exporting country's logistics performance is essential in the intensive margin of trade while enhancing the importing country's logistics performance is more relevant in the extensive margin.

Keywords: gravity models, infrastructure, international trade, logistics

Procedia PDF Downloads 198
1415 Do the Health Benefits of Oil-Led Economic Development Outweigh the Potential Health Harms from Environmental Pollution in Nigeria?

Authors: Marian Emmanuel Okon

Abstract:

Introduction: The Niger Delta region of Nigeria has a vast reserve of oil and gas, which has globally positioned the nation as the sixth largest exporter of crude oil. Production rapidly rose following oil discovery. In most oil producing nations of the world, the wealth generated from oil production and export has propelled economic advancement, enabling the development of industries and other relevant infrastructures. Therefore, it can be assumed that majority of the oil resource such as Nigeria’s, has the potential to improve the health of the population via job creation and derived revenues. However, the health benefits of this economic development might be offset by the environmental consequences of oil exploitation and production. Objective: This research aims to evaluate the balance between the health benefits of oil-led economic development and harmful environmental consequences of crude oil exploitation in Nigeria. Study Design: A pathway has been designed to guide data search and this study. The model created will assess the relationship between oil-led economic development and population health development via job creation, improvement of education, development of infrastructure and other forms of development as well as through harmful environmental consequences from oil activities. Data/Emerging Findings: Diverse potentially suitable datasets which are at different geographical scales have been identified, obtained or applied for and the dataset from the World Bank has been the most thoroughly explored. This large dataset contains information that would enable the longitudinal assessment of both the health benefits and harms from oil exploitation in Nigeria as well as identify the disparities that exist between the communities, states and regions. However, these data do not extend far back enough in time to capture the start of crude oil production. Thus, it is possible that the maximum economic benefits and health harms could be missed. To deal with this shortcoming, the potential for a comparative study with countries like United Kingdom, Morocco and Cote D’ivoire has also been taken into consideration, so as to evaluate the differences between these countries as well as identify the areas of improvement in Nigeria’s environmental and health policies. Notwithstanding, these data have shown some differences in each country’s economic, environmental and health state over time as well as a corresponding summary statistics. Conclusion: In theory, the beneficial effects of oil exploitation to the health of the population may be substantial as large swaths of the ‘wider determinants’ of population heath are influenced by the wealth of a nation. However, if uncontrolled, the consequences from environmental pollution and degradation may outweigh these benefits. Thus, there is a need to address this, in order to improve environmental and population health in Nigeria.

Keywords: environmental pollution, health benefits, oil-led economic development, petroleum exploitation

Procedia PDF Downloads 330
1414 The Impact of Infectious Disease on Densely Populated Urban Area: In Terms of COVID-19

Authors: Samira Ghasempourkazemi

Abstract:

In terms of the COVID-19 pandemic, lots of mutations in the urban system, which have systemic impacts, have clearly appeared. COVID-19 not only had a direct impact on health but also caused significant losses to other departments, including the economy, education, tourism, environment and the construction industry. Therefore, the pandemic caused a disruption in the whole urban system. Particularly, today’s large urban areas are not designed in order to be compatible during a pandemic. Hence, cities are more vulnerable to infectious disease threats according to the population density, built environment and socioeconomic aspects. Considering the direct relationship between population and rate of infection, higher rates are given to those individuals located in areas with high-density populations. Population density can be a factor that seems to have a strong impact on the spread of infectious diseases. Thus, the preliminary hypothesis can be related to a densely populated areas which become hotspots for the rapid spread of the pandemic due to high levels of interaction. In addition, some other indicators can be effective in this condition, such as age range, education and socio-economy. To figure out the measure of infectious disease risk in densely populated areas in Istanbul is an objective of this study. Besides, this study intends to figure out Vulnerability Index in the case of COVID-19. In order to achieve the proper result, the considered method can be Analytic Hierarchy Process (AHP) by involving the mentioned variables. In the end, the study represents the COVID Vulnerability of densely populated areas in a metro city and the gaps that need to be identified and plugged for the pandemic-resilience city of tomorrow.

Keywords: infectious disease, COVID-19, urban system, densely populated area

Procedia PDF Downloads 78
1413 Increasing Solubility and Bioavailability of Fluvastatin through Transdermal Nanoemulsion Gel Delivery System for the Treatment of Osteoporosis

Authors: Ramandeep Kaur, Makula Ajitha

Abstract:

Fluvastatin has been reported for increasing bone mineral density in osteoporosis since last decade. Systemically administered drug undergoes extensive hepatic first-pass metabolism, thus very small amount of drug reaches the bone tissue which is highly insignificant. The present study aims to deliver fluvastatin in the form of nanoemulsion (NE) gel directly to the bone tissue through transdermal route thereby bypassing hepatic first pass metabolism. The NE formulation consisted of isopropyl myristate as oil, tween 80 as surfactant, transcutol as co-surfactant and water as the aqueous phase. Pseudoternary phase diagrams were constructed using aqueous titration method and NE’s obtained were subjected to thermodynamic-kinetic stability studies. The stable NE formulations were evaluated for their droplet size, zeta potential, and transmission electron microscopy (TEM). The nano-sized formulations were incorporated into 0.5% carbopol 934 gel matrix. Ex-vivo permeation behaviour of selected formulations through rat skin was investigated and compared with the conventional formulations (suspension and emulsion). Further, in-vivo pharmacokinetic study was carried using male Wistar rats. The optimized NE formulations mean droplet size was 11.66±3.2 nm with polydispersity index of 0.117. Permeation flux of NE gel formulations was found significantly higher than the conventional formulations i.e. suspension and emulsion. In vivo pharmacokinetic study showed significant increase in bioavailability (1.25 fold) of fluvastatin than oral formulation. Thus, it can be concluded that NE gel was successfully developed for transdermal delivery of fluvastatin for the treatment of osteoporosis.

Keywords: fluvastatin, nanoemulsion gel, osteoporosis, transdermal

Procedia PDF Downloads 184
1412 Integration of the Electro-Activation Technology for Soy Meal Valorization

Authors: Natela Gerliani, Mohammed Aider

Abstract:

Nowadays, the interest of using sustainable technologies for protein extraction from underutilized oilseeds is growing. Currently, a major disposal problem for the oil industry is by-products of plant food processing such as soybean meal. That is why valorization of soybean meal is important for the oil industry since it contains high-quality proteins and other valuable components. Generally, soybean meal is used in livestock and poultry feed but is rarely used in human feed. Though chemical composition of this meal compensate nutritional deficiency and can be used to balance protein in human food. Regarding the efficiency of soybean meal valorization, extraction is a key process for obtaining enriched protein ingredient, which can be incorporated into the food matrix. However, most of the food components such as proteins extracted from oilseeds by-products imply the utilization of organic and inorganic chemicals (e.g. acids, bases, TCA-acetone) having a significant environmental impact. In a context of sustainable production, the use of an electro-activation technology seems to be a good alternative. Indeed, the electro-activation technology requires only water, food grade salt and electricity as main materials. Moreover, this innovative technology helps to avoid special equipment and trainings for workers safety as well as transport and storage of hazardous materials. Electro-activation is a technology based on applied electrochemistry for the generation of acidic and alkaline solutions on the basis of the oxidation-reduction reactions that occur at the vicinity electrode/solution interfaces. It is an eco-friendly process that can be used to replace the conventional acidic and alkaline extraction. In this research, the electro-activation technology for protein extraction from soybean meal was carried out in the electro-activation reactor. This reactor consists of three compartments separated by cation and anion exchange membranes that allow creating non-contacting acidic and basic solutions. Different current intensities (150 mA, 300 mA and 450 mA) and treatment durations (10 min, 30 min and 50 min) were tested. The results showed that the extracts obtained by the electro-activation method have good quality in comparison to conventional extracts. For instance, extractability obtained with electro-activation method was 55% whereas with the conventional method it was only 36%. Moreover, a maximum protein quantity of 48 % in the extract was obtained with the electro-activation technology comparing to the maximum amount of protein obtained by conventional extraction of 41 %. Hence, the environmentally sustainable electro-activation technology seems to be a promising type of protein extraction that can replace conventional extraction technology.

Keywords: by-products, eco-friendly technology, electro-activation, soybean meal

Procedia PDF Downloads 221
1411 Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub Saharan City of Accra

Authors: Eric Mensah

Abstract:

The effects of rapid urbanisation of tropical sub-Saharan developing cities on local and global climate are of great concern due to the negative impacts of Urban Heat Island (UHI) effects. The importance of urban parks, vegetative cover and forest reserves in these tropical cities have been undervalued with a rapid degradation and loss of these vegetative covers to urban developments which continue to cause an increase in daily mean temperatures and changes to local climatic conditions. Using Landsat data of the same months and period intervals, the spatial variations of land cover changes, temperature, and vegetation were examined to determine how vegetation improves local temperature and the effects of urbanisation on daily mean temperatures over the past 12 years. The remote sensing techniques of maximum likelihood supervised classification, land surface temperature retrieval technique, and normalised differential vegetation index techniques were used to analyse and create the land use land cover (LULC), land surface temperature (LST), and vegetation and non-vegetation cover maps respectively. Results from the study showed an increase in daily mean temperature by 0.80 °C as a result of rapid increase in urban area by 46.13 sq. km and loss of vegetative cover by 46.24 sq. km between 2005 and 2017. The LST map also shows the existence of UHI within the urban areas of Accra, the potential mitigating effects offered by the existence of forest and vegetative cover as demonstrated by the existence of cool islands around the Achimota ecological forest and University of Ghana botanical gardens areas.

Keywords: land surface temperature, climate, remote sensing, urbanisation

Procedia PDF Downloads 316
1410 Development of a Web-Based Application for Intelligent Fertilizer Management in Rice Cultivation

Authors: Hao-Wei Fu, Chung-Feng Kao

Abstract:

In the era of rapid technological advancement, information technology (IT) has become integral to modern life, exerting significant influence across diverse sectors and serving as a catalyst for development in various industries. Within agriculture, the integration of IT offers substantial benefits, notably enhancing operational efficiency. Real-time monitoring systems, for instance, have been widely embraced in agriculture, effectively improving crop management practices. This study specifically addresses the management of rice panicle fertilizer, presenting the development of a web application tailored to handle data associated with rice panicle fertilizer management. Leveraging the normalized difference red edge index, this application optimizes the quantity of rice panicle fertilizer used, providing recommendations to agricultural stakeholders and service providers in the agricultural information sector. The overarching objective is to minimize costs while maximizing yields. Furthermore, a robust database system has been established to store and manage relevant data for future reference in rice cultivation management. Additionally, the study utilizes the Representational State Transfer software architectural style to construct an application programming interface (API), facilitating data creation, retrieval, updating, and deletion for users via the HyperText Transfer Protocol methods. Future plans involve integrating this API with third-party services to incorporate it into larger frameworks, thus catering to the diverse requirements of various third-party services.

Keywords: application programming interface, HyperText Transfer Protocol, nitrogen fertilizer intelligent management, web-based application

Procedia PDF Downloads 53
1409 4-Allylpyrocatechol Loaded Polymeric Micelles for Solubility Enhancing and Effects on Streptococcus mutans Biofilms

Authors: Siriporn Okonogi, Pimpak Phumat, Sakornrat Khongkhunthian

Abstract:

Piper betle has been extensively reported for various pharmacological effects including antimicrobial activity. 4-Allylpyrocatechol (AC) is a principle active compound found in P. betle. However, AC has a problem of solubility in water. The aims of the present study were to prepare AC loaded polymeric micelles for enhancing its water solubility and to evaluate its anti-biofilm activity against oral phathogenic bacteria. AC was loaded in polymeric micelles (PM) of Pluronic F127 by using thin film hydration method to obtain AC loaded PM (PMAC). The results revealed that AC in the form of PMAC possessed high water solubility. PMAC particles were characterized using a transmission electron microscope and photon correlation spectroscopy. Determination of entrapment efficiency (EE) and loading capacity (LC) of PMAC was done by using high-performance liquid chromatography. The highest EE (86.33 ± 14.27 %) and LC (19.25 ± 3.18 %) of PMAC were found when the weight ratio of polymer to AC was 4 to 1. At this ratio, the particles showed spherical in shape with the size of 38.83 ± 1.36 nm and polydispersity index of 0.28 ± 0.10. Zeta potential of the particles is negative with the value of 16.43 ± 0.55 mV. Crystal violet assay and confocal microscopy were applied to evaluate the effects of PMAC on Streptococcus mutans biofilms using chlorhexidine (CHX) as a positive control. PMAC contained 1.5 mg/mL AC could potentially inhibit (102.01 ± 9.18%) and significantly eradicate (85.05 ± 2.03 %) these biofilms (p < 0.05). Comparison with CHX, PMAC showed slightly similar biofilm inhibition but significantly stronger biofilm eradication (p < 0.05) than CHX. It is concluded that PMAC can enhance water solubility and anti-biofilm activity of AC.

Keywords: pluronic, polymeric micelles, solubility, 4-allylpyrocathecol, Streptococcus mutans, anti-biofilm

Procedia PDF Downloads 134