Search results for: time-frequency feature extraction
2805 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.Keywords: emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi method
Procedia PDF Downloads 2882804 Recovery of Rare Earths and Scandium from in situ Leaching Solutions
Authors: Maxim S. Botalov, Svetlana М. Titova, Denis V. Smyshlyaev, Grigory M. Bunkov, Evgeny V. Kirillov, Sergey V. Kirillov, Maxim A. Mashkovtsev, Vladimir N. Rychkov
Abstract:
In uranium production, in-situ leaching (ISL) with its relatively low cost has become an important technology. As the orebody containing uranium most often contains a considerable value of other metals, particularly rare earth metals it has rendered feasible to recover the REM from the barren ISL solutions, from which the major uranium content has been removed. Ural Federal University (UrFU, Ekaterinburg, Russia) have performed joint research on the development of industrial technologies for the extraction of REM and Scandium compounds from Uranium ISL solutions. Leaching experiments at UrFU have been supported with multicomponent solution model. The experimental work combines solvent extraction with advanced ion exchange methodology in a pilot facility capable of treating 500 kg/hr of solids. The pilot allows for the recovery of a 99% concentrate of scandium oxide and collective concentrate with over 50 % REM content, with further recovery of heavy and light REM concentrates (99%).Keywords: extraction, ion exchange, rare earth elements, scandium
Procedia PDF Downloads 2332803 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes
Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse
Abstract:
Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools. Procedia PDF Downloads 122802 Cellulose Extraction from Pomelo Peel: Synthesis of Carboxymethyl Cellulose
Authors: Jitlada Chumee, Drenpen Seeburin
Abstract:
The cellulose was extracted from pomelo peel and an etherification reaction used for converting cellulose to carboxymethyl cellulose (CMC). The pomelo peel was refluxed with 0.5 M HCl and 1 M NaOH solution at 90°C for 1 h and 2 h, respectively. The cellulose was bleached with calcium hypochlorite and used as precursor. The precursor was soaked in mixed solution between isopropyl alcohol and 40%w/v NaOH for 12 h. After that, chloroacetic acid was added and reacted at 55°C for 6 h. The optimum condition was 5 g of cellulose: 0.25 mole of NaOH : 0.07 mole of ClCH2COOH with 78.00% of yield. Moreover, the product had 0.54 of degree of substitution (DS).Keywords: pomelo peel, carboxymethyl cellulose, bioplastic, extraction
Procedia PDF Downloads 3182801 An Object-Based Image Resizing Approach
Authors: Chin-Chen Chang, I-Ta Lee, Tsung-Ta Ke, Wen-Kai Tai
Abstract:
Common methods for resizing image size include scaling and cropping. However, these two approaches have some quality problems for reduced images. In this paper, we propose an image resizing algorithm by separating the main objects and the background. First, we extract two feature maps, namely, an enhanced visual saliency map and an improved gradient map from an input image. After that, we integrate these two feature maps to an importance map. Finally, we generate the target image using the importance map. The proposed approach can obtain desired results for a wide range of images.Keywords: energy map, visual saliency, gradient map, seam carving
Procedia PDF Downloads 4762800 Determination of the Volatile Organic Compounds, Antioxidant and Antimicrobial Properties of Microwave-Assisted Green Extracted Ficus Carica Linn Leaves
Authors: Pelin Yilmaz, Gizemnur Yildiz Uysal, Elcin Demirhan, Belma Ozbek
Abstract:
The edible fig plant, Ficus carica Linn, belongs to the Moraceae family, and the leaves are mainly considered agricultural waste after harvesting. It has been demonstrated in the literature that fig leaves contain appealing properties such as high vitamins, fiber, amino acids, organic acids, and phenolic or flavonoid content. The extraction of these valuable products has gained importance. Microwave-assisted extraction (MAE) is a method using microwave energy to heat the solvents, thereby transferring the bioactive compounds from the sample to the solvent. The main advantage of the MAE is the rapid extraction of bioactive compounds. In the present study, the MAE was applied to extract the bioactive compounds from Ficus carica L. leaves, and the effect of microwave power (180-900 W), extraction time (60-180 s), and solvent to sample amount (mL/g) (10-30) on the antioxidant property of the leaves. Then, the volatile organic component profile was determined at the specified extraction point. Additionally, antimicrobial studies were carried out to determine the minimum inhibitory concentration of the microwave-extracted leaves. As a result, according to the data obtained from the experimental studies, the highest antimicrobial properties were obtained under the process parameters such as 540 W, 180 s, and 20 mL/g concentration. The volatile organic compound profile showed that isobergapten, which belongs to the furanocoumarins family exhibiting anticancer, antioxidant, and antimicrobial activity besides promoting bone health, was the main compound. Acknowledgments: This work has been supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FBA-2021-4409. The authors would like to acknowledge the financial support from Tubitak 1515 - Frontier R&D Laboratory Support Programme.Keywords: Ficus carica Linn leaves, volatile organic component, GC-MS, microwave extraction, isobergapten, antimicrobial
Procedia PDF Downloads 822799 Phenolic Compounds and Antimicrobial Properties of Pomegranate (Punica granatum) Peel Extracts
Authors: P. Rahnemoon, M. Sarabi Jamab, M. Javanmard Dakheli, A. Bostan
Abstract:
In recent years, tendency to use of natural antimicrobial agents in food industry has increased. Pomegranate peels containing phenolic compounds and anti-microbial agents, are counted as valuable source for extraction of these compounds. In this study, the extraction of pomegranate peel extract was carried out at different ethanol/water ratios (40:60, 60:40, and 80:20), temperatures (25, 40, and 55 ˚C), and time durations (20, 24, and 28 h). The extraction yield, phenolic compounds, flavonoids, and anthocyanins were measured. Antimicrobial activity of pomegranate peel extracts were determined against some food-borne microorganisms such as Salmonella enteritidis, Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Aspergillus niger, and Saccharomyces cerevisiae by agar diffusion and MIC methods. Results showed that at ethanol/water ratio 60:40, 25 ˚C and 24 h maximum amount of phenolic compounds (349.518 mg gallic acid/g dried extract), flavonoids (250.124 mg rutin/g dried extract), anthocyanins (252.047 mg cyanidin3glucoside/100 g dried extract), and the strongest antimicrobial activity were obtained. All extracts’ antimicrobial activities were demonstrated against every tested microorganisms. Staphylococcus aureus showed the highest sensitivity among the tested microorganisms.Keywords: antimicrobial agents, phenolic compounds, pomegranate peel, solvent extraction
Procedia PDF Downloads 2592798 Back Extraction and Isolation of Alkaloids from Ionic Liquid-Based Extracts
Authors: Rozalina Keremedchieva, Ivan Svinyarov, Milen G. Bogdanov
Abstract:
In continuation of a research project on the application of ionic liquids (ILs) as an alternative to the conventional organic solvents used in the recovery of value added chemicals of industrial interest1-3 we developed a procedure for back extraction and isolation in pure form of the biologically active alkaloid glaucine from IL-based aqueous solutions. One of the approaches applied was the formation of two-phase systems (IL-ATPS) by the addition of kosmotropic salts to the plant extract. The ability of the salts (Na2CO3, MgSO4, (NH4)2SO4, NaH2PO4) to induce the formation of two-phase systems and the influence of pH value on the partition coefficients of glaucine was comprehensively studied. As a result, it was found that the target alkaloid is preferably partitioned into the IL-rich phase regardless of the pH value of the medium and thus shows the inapplicability of the approach used for the isolation of the target compound from the ionic liquid. However, the results obtained can be used as a platform for the development of an analytical method for the quantitative determination of low concentrations of glaucine in biological samples. We further examined the ability of a series of organic solvents such as diethyl ether, Tert-butylmethyl ether, ethyl acetate, butyl acetate, toluene, chloroform, dichloromethane to recover glaucine form raw IL-based aqueous extracts. Optimal conditions for quantitative extraction of glaucine into chloroform were found from which, after removal of the solvent and subsequent recrystallization from ethanol, the target compound was isolated in a high purity as a hydrobromide salt – The form in which it entrance as an active ingredient in various medicines.Keywords: natural products, ionic liquids, solid-liquid extraction, liquid-liquid extraction
Procedia PDF Downloads 4772797 Extraction of Compound Words in Malay Sentences Using Linguistic and Statistical Approaches
Authors: Zamri Abu Bakar Zamri, Normaly Kamal Ismail Normaly, Mohd Izani Mohamed Rawi Izani
Abstract:
Malay noun compound are phrases that consist of two or more nouns. The key characteristic behind noun compounds lies on its frequent occurrences within the text. Therefore, extracting these noun compounds is essential for several domains of research such as Information Retrieval, Sentiment Analysis and Question Answering. Many research efforts have been proposed in terms of extracting Malay noun compounds using linguistic and statistical approaches. Most of the existing methods have concentrated on the extraction of bi-gram noun+noun compound. However, extracting noun+verb, noun+adjective and noun+prepositional is challenging due to the difficulty of selecting an appropriate method with effective results. Thus, there is still room for improvement in terms of enhancing the effectiveness of compound word extraction. Therefore, this study proposed a combination of linguistic approach and statistical measures in order to enhance the extraction of compound words. Several preprocessing steps are involved including normalization, tokenization, and stemming. The linguistic approach that has been used in this study is Part-of-Speech (POS) tagging. In addition, a new linguistic pattern for named entities has been utilized using a list of Malays named entities in order to enhance the linguistic approach in terms of noun compound recognition. The proposed statistical measures consists of NC-value, NTC-value and NLC value.Keywords: Compound Word, Noun Compound, Linguistic Approach, Statistical Approach
Procedia PDF Downloads 3512796 GC and GCxGC-MS Composition of Volatile Compounds from Cuminum cyminum and Carum carvi by Using Techniques Assisted by Microwaves
Authors: F. Benkaci-Ali, R. Mékaoui, G. Scholl, G. Eppe
Abstract:
The new methods as accelerated steam distillation assisted by microwave (ASDAM) is a combination of microwave heating and steam distillation, performed at atmospheric pressure at very short extraction time. Isolation and concentration of volatile compounds are performed by a single stage. (ASDAM) has been compared with (ASDAM) with cryogrinding of seeds (CG) and a conventional technique, hydrodistillation assisted by microwave (HDAM), hydro-distillation (HD) for the extraction of essential oil from aromatic herb as caraway and cumin seeds. The essential oils extracted by (ASDAM) for 1 min were quantitatively (yield) and qualitatively (aromatic profile) no similar to those obtained by ASDAM-CG (1 min) and HD (for 3 h). The accelerated microwave extraction with cryogrinding inhibits numerous enzymatic reactions as hydrolysis of oils. Microwave radiations constitute the adequate mean for the extraction operations from the yields and high content in major component majority point view, and allow to minimise considerably the energy consumption, but especially heating time too, which is one of essential parameters of artifacts formation. The ASDAM and ASDAM-CG are green techniques and yields an essential oil with higher amounts of more valuable oxygenated compounds comparable to the biosynthesis compounds, and allows substantial savings of costs, in terms of time, energy and plant material.Keywords: microwave, steam distillation, caraway, cumin, cryogrinding, GC-MS, GCxGC-MS
Procedia PDF Downloads 2582795 Examining How Youth Use Mobile Devices for Health Information: Preliminary Findings of a Survey Study with High School Students in Croatia
Authors: Sung Un Kim, Ivana Martinović, Snježana Stanarević Katavić
Abstract:
As more and more youth use mobile devices, such as tablets and smartphones, for information seeking in their everyday lives, the purpose of this study is to understand the behaviors of youth seeking health information on mobile devices. The specific objective of this study is to examine 1) for what health issues youth use mobile devices, 2) for what reasons youth use mobile devices to obtain health information, 3) in what ways youth use mobile devices for health information, and 4) the features of health applications that youth find useful. The researchers devised a questionnaire for this study. Four hundred eight students from two high schools, located in Osijek, Croatia, participated by answering the questionnaire (281 girls and 127 boys). The collected data were analyzed using descriptive statistics and content analysis. The results show that among all participants, about 85 percent (n = 344) reported having used mobile devices for health information. The most frequent health topic for which they had been using mobile devices is physical activity (n = 273), followed by eating issues and nutrition (n = 224), mental health (n = 160), sexual health (n = 157), alcohol, drugs, and tobacco (n = 125), safety (n = 96) and particular diseases (n = 62). They use mobile devices to obtain health information due to the ease of use (n = 342), the ease of sharing health information (n = 281), portability (n = 215), timeliness (n = 162), and the ease of tracking/recording/monitoring health status (n = 147). Of those who have used mobile devices for health information, three-quarters (n = 261) use mobile devices to search health information, while 32.8% (n =113) use applications and 31.7% (n =109) browse information. Those who have used applications for health information (n = 113) consider the alert feature (n=107) as the most useful, followed by the tracking/recording/monitoring feature (n =92), the customized information feature (n = 86), the video feature (n = 58), and the sharing feature (n =39). It is notable that although health applications have been actively developed and studied, a majority of the participants search for or browse information on mobile devices, instead of using applications. The researchers will discuss reasons that some of them did not use mobile devices to obtain health information, students’ concerns about using health applications, and features that they wish to have in health applications.Keywords: Croatia, health information, information seeking behaviors, mobile devices, youth
Procedia PDF Downloads 4052794 Research and Application of Multi-Scale Three Dimensional Plant Modeling
Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao
Abstract:
Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition
Procedia PDF Downloads 2782793 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data
Authors: Elyta Widyaningrum
Abstract:
The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.Keywords: automation, GIS environment, LiDAR processing, map quality
Procedia PDF Downloads 3692792 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 442791 Using Autoencoder as Feature Extractor for Malware Detection
Authors: Umm-E-Hani, Faiza Babar, Hanif Durad
Abstract:
Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.Keywords: malware, auto encoders, automated feature engineering, classification
Procedia PDF Downloads 722790 Clean Coal Using Coal Bed Methane: A Pollution Control Mechanism
Authors: Arish Iqbal, Santosh Kumar Singh
Abstract:
Energy from coal is one of the major source of energy throughout the world but taking into consideration its effect on environment 'Clean Coal Technologies' (CCT) came into existence. In this paper we have we studied why CCT’s are essential and what are the different types of CCT’s. Also, the coal and CCT scenario in India is introduced. Coal Bed Methane one of major CCT area is studied in detail. Different types of coal bed methane and its methods of extraction are discussed. The different problem areas during the extraction of CBM are identified and discussed. How CBM can be used as a fuel for future is also discussed.Keywords: CBM (coal bed methane), CCS (carbon capture and storage), CCT (clean coal technology), CMM (coal mining methane)
Procedia PDF Downloads 2432789 A Hydrometallurgical Route for the Recovery of Molybdenum from Spent Mo-Co Catalyst
Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra
Abstract:
Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum has increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. The present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3.0 mol/L HCl, and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2.0 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe- Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by countercurrent simulation studies. According to McCabe- Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two-stage counter current at A/O= 1:1 with the negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO₃ in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO₃ was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO₃ correspond to molybdite Syn-MoO₃ structure. FE-SEM depicts the rod-like morphology of synthesized MoO₃. EDX analysis of MoO₃ shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO₃ can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as a catalyst.Keywords: cyphos Il 102, extraction, spent mo-co catalyst, recovery
Procedia PDF Downloads 1732788 Spectral Analysis Applied to Variables of Oil Wells Profiling
Authors: Suzana Leitão Russo, Mayara Laysa de Oliveira Silva, José Augusto Andrade Filho, Vitor Hugo Simon
Abstract:
Currently, seismic methods and prospecting methods are commonly applied in the oil industry and, according to the information reported every day; oil is a source of non-renewable energy. It is easier to understand why the ownership of areas of oil extraction is coveted by many nations. It is necessary to think about ways that will enable the maximization of oil production. The technique of spectral analysis can be used to analyze the behavior of the variables already defined in oil well the profile. The main objective is to verify the series dependence of variables, and to model the variables using the frequency domain to observe the model residuals.Keywords: oil, well, spectral analysis, oil extraction
Procedia PDF Downloads 5352787 Formation of an Artificial Cultural and Language Environment When Teaching a Foreign Language in the Material of Original Films
Authors: Konysbek Aksaule
Abstract:
The purpose of this work is to explore new and effective ways of teaching English to students who are studying a foreign language since the timeliness of the problem disclosed in this article is due to the high level of English proficiency that potential specialists must have due to high competition in the context of global globalization. The article presents an analysis of the feasibility and effectiveness of using an authentic feature film in teaching English to students. The methodological basis of the study includes an assessment of the level of students' proficiency in a foreign language, the stage of evaluating the film, and the method of selecting the film for certain categories of students. The study also contains a list of practical tasks that can be applied in the process of viewing and perception of an original feature film in a foreign language, and which are aimed at developing language skills such as speaking and listening. The results of this study proved that teaching English to students through watching an original film is one of the most effective methods because it improves speech perception, speech reproduction ability, and also expands the vocabulary of students and makes their speech fluent. In addition, learning English through watching foreign films has a huge impact on the cultural views and knowledge of students about the country of the language being studied and the world in general. Thus, this study demonstrates the high potential of using authentic feature film in English lessons for pedagogical science and methods of teaching English in general.Keywords: university, education, students, foreign language, feature film
Procedia PDF Downloads 1492786 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 502785 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3182784 A Hydrometallurgical Route for the Recovery of Molybdenum from Mo-Co Spent Catalyst
Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra
Abstract:
Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum have increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. Present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3 mol/L HCl and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe-Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by counter current simulation studies. According to McCabe-Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two stage counter current at A/O= 1:1 with negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO3 in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO3 was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO3correspond to molybdite Syn-MoO3 structure. FE-SEM depicts the rod like morphology of synthesized MoO3. EDX analysis of MoO3 shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO3 can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as catalyst.Keywords: cyphos IL 102, extraction, Mo-Co spent catalyst, recovery
Procedia PDF Downloads 2692783 Post-Operative Pain Management in Ehlers-Danlos Hypermobile-Type Syndrome Following Wisdom Teeth Extraction: A Case Report and Literature Review
Authors: Aikaterini Amanatidou
Abstract:
We describe the case of a 20-year-old female patient diagnosed with Ehlers-Danlos Syndrome (EDS) who was scheduled to undergo a wisdom teeth extraction in outpatient surgery. EDS is a hereditary connective tissue disorder characterized by joint hypermobility, skin hyper-extensibility, and vascular and soft tissue fragility. There are six subtypes of Ehlers-Danlos, and in our case, the patient had EDS hyper-mobility (HT) type disorder. One important clinical feature of this syndrome is chronic pain, which is often poorly understood and treated. Our patient had a long history of articular and lumbar pain when she was diagnosed. She was prescribed analgesic treatment for acute and neuropathic pain and had multiple sessions of psychotherapy and physiotherapy to ease the pain. Unfortunately, her extensive medical history was underrated by our anesthetic team, and no further measures were taken for the operation. Despite an uneventful intra-operative phase, the patient experienced several episodes of hyperalgesia during the immediate post-operative care. Management of pain was challenging for the anesthetic team: initial opioid treatment had only a temporary effect and a paradoxical reaction after a while. Final pain relief was eventually obtained with psycho-physiologic treatment, high doses of ketamine, and patient-controlled analgesia infusion of morphine-ketamine-dehydrobenzperidol. We suspected an episode of Opioid-Induced hyperalgesia. This case report supports the hypothesis that anti-hyperalgesics such as ketamine as well as lidocaine, and dexmedetomidine should be considered intra-operatively to avoid opioid-induced hyperalgesia and may be an alternative solution to manage complex chronic pain like others in neuropathic pain syndromes.Keywords: Ehlers-Danlos, post-operative management, hyperalgesia, opioid-induced hyperalgesia, rare disease
Procedia PDF Downloads 952782 Epileptic Seizure Prediction Focusing on Relative Change in Consecutive Segments of EEG Signal
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.Keywords: EEG, epilepsy, phase correlation, seizure
Procedia PDF Downloads 3092781 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security
Authors: D. Pugazhenthi, B. Sree Vidya
Abstract:
Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification
Procedia PDF Downloads 2602780 Impact on the Yield of Flavonoid and Total Phenolic Content from Pomegranate Fruit by Different Extraction Methods
Authors: Udeshika Yapa Bandara, Chamindri Witharana, Preethi Soysa
Abstract:
Pomegranate fruits are used in cancer treatment in Ayurveda, Sri Lanka. Due to prevailing therapeutic effects of phytochemicals, this study was focus on anti-cancer properties of the constituents in the parts of Pomegranate fruit. Furthermore, the method of extraction, plays a crucial step of the phytochemical analysis. Therefore, this study was focus on different extraction methods. Five techniques were involved for the peel and the pericarp to evaluate the most effective extraction method; Boiling with electric burner (BL), Sonication (SN), Microwaving (MC), Heating in a 50°C water bath (WB) and Sonication followed by Microwaving (SN-MC). The presence of polyphenolic and flavonoid contents were evaluated to recognize the best extraction method for polyphenols. The total phenolic content was measured spectrophotometrically by Folin-Ciocalteu method and expressed as Gallic Acid Equivalents (w/w% GAE). Total flavonoid content was also determined spectrophotometrically with Aluminium chloride colourimetric assay and expressed as Quercetin Equivalents (w/w % QE). Pomegranate juice was taken as fermented juice (with Saccharomyces bayanus) and fresh juice. Powdered seeds were refluxed, filtered and freeze-dried. 2g of freeze-dried powder of each component was dissolved in 100ml of De-ionized water for extraction. For the comparison of antioxidant activity and total phenol content, the polyphenols were removed by the Polyvinylpolypyrrolidone (PVVP) column and fermented and fresh juice were tested for the 1, 1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity, before and after the removal of polyphenols. For the peel samples of Pomegranate fruit, total phenol and flavonoid contents were high in Sonication (SN). In pericarp, total phenol and flavonoid contents were highly exhibited in method of Sonication (SN). A significant difference was observed (P< 0.05) in total phenol and flavonoid contents, between five extraction methods for both peel and pericarp samples. Fermented juice had a greatest polyphenolic and flavonoid contents comparative to fresh juice. After removing polyphenols of fermented juice and fresh juice using Polyvinyl polypyrrolidone (PVVP) column, low antioxidant activity was resulted for DPPH antioxidant activity assay. Seeds had a very low total phenol and flavonoid contents according to the results. Although, Pomegranate peel is the main waste component of the fruit, it has an excellent polyphenolic and flavonoid contents compared to other parts of the fruit, devoid of the method of extraction. Polyphenols play a major role for antioxidant activity.Keywords: antioxidant activity, flavonoids, polyphenols, pomegranate
Procedia PDF Downloads 1612779 Small Text Extraction from Documents and Chart Images
Authors: Rominkumar Busa, Shahira K. C., Lijiya A.
Abstract:
Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.Keywords: small text extraction, OCR, scene text recognition, CRNN
Procedia PDF Downloads 1262778 Active Features Determination: A Unified Framework
Authors: Meenal Badki
Abstract:
We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.Keywords: feature determination, classification, active learning, sample-efficiency
Procedia PDF Downloads 772777 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 2942776 Frequent Itemset Mining Using Rough-Sets
Authors: Usman Qamar, Younus Javed
Abstract:
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining
Procedia PDF Downloads 437