Search results for: shrinkage regression
2962 A Study on Application of Elastic Theory for Computing Flexural Stresses in Preflex Beam
Authors: Nasiri Ahmadullah, Shimozato Tetsuhiro, Masayuki Tai
Abstract:
This paper presents the step-by-step procedure for using Elastic Theory to calculate the internal stresses in composite bridge girders prestressed by the Preflexing Technology, called Prebeam in Japan and Preflex beam worldwide. Elastic Theory approaches preflex beams the same way as it does the conventional composite girders. Since preflex beam undergoes different stages of construction, calculations are made using different sectional and material properties. Stresses are calculated in every stage using the properties of the specific section. Stress accumulation gives the available stress in a section of interest. Concrete presence in the section implies prestress loss due to creep and shrinkage, however; more work is required to be done in this field. In addition to the graphical presentation of this application, this paper further discusses important notes of graphical comparison between the results of an experimental-only research carried out on a preflex beam, with the results of simulation based on the elastic theory approach, for an identical beam using Finite Element Modeling (FEM) by the author.Keywords: composite girder, Elastic Theory, preflex beam, prestressing
Procedia PDF Downloads 2792961 Time-Dependent Behaviour of Reinforced Concrete Beams under Sustained and Repeated Loading
Authors: Sultan Daud, John P. Forth, Nikolaos Nikitas
Abstract:
The current study aims to highlight the loading characteristics impact on the time evolution (focusing particularly on long term effects) of the deformation of realized reinforced concrete beams. Namely the tension stiffening code provisions (i.e. within Eurocode 2) are reviewed with a clear intention to reassess their operational value and predicting capacity. In what follows the experimental programme adopted along with some preliminary findings and numerical modelling attempts are presented. For a range of long slender reinforced concrete simply supported beams (4200 mm) constant static sustained and repeated cyclic loadings were applied mapping the time evolution of deformation. All experiments were carried out at the Heavy Structures Lab of the University of Leeds. During tests the mid-span deflection, creep coefficient and shrinkage strains were monitored for duration of 90 days. The obtained results are set against the values predicted by Eurocode 2 and the tools within an FE commercial package (i.e. Midas FEA) to yield that existing knowledge and practise is at times over-conservative.Keywords: Eurocode2, midas fea, repeated, sustained loading.
Procedia PDF Downloads 3472960 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 5242959 Impact of Improved Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia
Authors: Wondmnew Derebe
Abstract:
Increased adoption of modern beehives improves the livelihood of smallholder farmers whose income largely depends on mixed crop-livestock farming. Improved beehives have been disseminated to farmers in many parts of Ethiopia. However, its impact on income is less investigated. Thus, this study estimates how adopting improved beehives impacts rural households' income. Survey data were collected from 350 randomly selected households' and analyzed using an endogenous switching regression model. The result revealed that the adoption of improved beehives is associated with a higher annual income. On average, improved beehive adopters earned about 6,077 (ETB) more money than their counterparts. However, the impact of adoption would have been larger for actual non-adopters, as reflected in the negative transitional heterogeneity effect of 1792 (ETB). The result also indicated that the decision to adopt or not to adopt improved beehives was subjected to individual self-selection. Improved beehive adoption can increase farmers' income and can be used as an alternative poverty reduction strategy.Keywords: impact, adoption, endogenous switching regression, income, improved
Procedia PDF Downloads 742958 Aging Time Effect of 58s Microstructure
Authors: Nattawipa Pakasri
Abstract:
58S (60SiO2-36CaO-4P2O5), three-dimensionally ordered macroporous bioactive glasses (3DOM-BGs) were synthesized by the sol-gel method using dual templating methods. non-ionic surfactant Brij56 used as templates component produced mesoporous and the spherical PMMA colloidal crystals as one template component yielded either three-dimensionally ordered microporous products or shaped bioactive glass nanoparticles. The bioactive glass with aging step for 12 h at room temperature, no structure transformation occurred and the 3DOM structure was produced (Figure a) due to no shrinkage process between the aging step. After 48 h time of o 3DOM structure remained and, nanocube with ∼120 nm edge lengths and nanosphere particle with ∼50 nm was obtained (Figure c, d). PMMA packing templates have octahedral and tetrahedral holes to make 2 final shapes of 3DOM-BGs which is rounded and cubic, respectively. The ageing time change from 12h, 24h and 48h affected to the thickness of interconnecting macropores network. The wall thickness was gradually decrease after increase aging time.Keywords: three-dimensionally ordered macroporous bioactive glasses, sol-gel method, PMMA, bioactive glass
Procedia PDF Downloads 1152957 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm
Authors: Ming Su, Ziqiang Mu
Abstract:
This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern
Procedia PDF Downloads 1092956 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data
Authors: Arjun G. Koppad
Abstract:
The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.Keywords: forest, biomass, LULC, back scatter, SAR, regression
Procedia PDF Downloads 262955 A Supply Chain Traceability Improvement Using RFID
Authors: Yaser Miaji, Mohammad Sabbagh
Abstract:
Radio Frequency Identification (RFID) is a technology which shares a similar concept with bar code. With RFID, the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. Supply chain management is aimed to keep going long-term performance of individual companies and the overall supply chain by maximizing customer satisfaction with minimum costs. One of the major issues in the supply chain management is product loss or shrinkage. In order to overcome this problem, this system which uses Radio Frequency Identification (RFID) technology will be able to RFID track and identify where losses are occurring and enable effective traceability. RFID brings a new dimension to supply chain management by providing a more efficient way of being able to identify and track items at the various stages throughout the supply chain. This system has been developed and tested to prove that RFID technology can be used to improve traceability in supply chain at low cost. Due to its simplicity in interface program and database management system using Visual Basic and MS Excel or MS Access the system can be more affordable and implemented even by small and medium scale industries.Keywords: supply chain, RFID, tractability, radio frequency identification
Procedia PDF Downloads 4882954 Perceived Stigma, Perception of Burden and Psychological Distress among Parents of Intellectually Disable Children: Role of Perceived Social Support
Authors: Saima Shafiq, Najma Iqbal Malik
Abstract:
This study was aimed to explore the relationship of perceived stigma, perception of burden and psychological distress among parents of intellectually disabled children. The study also aimed to explore the moderating role of perceived social support on all the variables of the study. The sample of the study comprised of (N = 250) parents of intellectually disabled children. The present study utilized the co-relational research design. It consists of two phases. Phase-I consisted of two steps which contained the translation of two scales that were used in the present study and tried out on the sample of parents (N = 70). The Affiliated Stigma Scale and Care Giver Burden Inventory were translated into Urdu for the present study. Phase-1 revealed that translated scaled entailed satisfactory psychometric properties. Phase -II of the study was carried out in order to test the hypothesis. Correlation, linear regression analysis, and t-test were computed for hypothesis testing. Hierarchical regression analysis was applied to study the moderating effect of perceived social support. Findings revealed that there was a positive relationship between perceived stigma and psychological distress, perception of burden and psychological distress. Linear regression analysis showed that perceived stigma and perception of burden were positive predictors of psychological distress. The study did not show the moderating role of perceived social support among variables of the present study. The major limitation of the study is the sample size and the major implication is awareness regarding problems of parents of intellectually disabled children.Keywords: perceived stigma, perception of burden, psychological distress, perceived social support
Procedia PDF Downloads 2132953 Competitors’ Influence Analysis of a Retailer by Using Customer Value and Huff’s Gravity Model
Authors: Yepeng Cheng, Yasuhiko Morimoto
Abstract:
Customer relationship analysis is vital for retail stores, especially for supermarkets. The point of sale (POS) systems make it possible to record the daily purchasing behaviors of customers as an identification point of sale (ID-POS) database, which can be used to analyze customer behaviors of a supermarket. The customer value is an indicator based on ID-POS database for detecting the customer loyalty of a store. In general, there are many supermarkets in a city, and other nearby competitor supermarkets significantly affect the customer value of customers of a supermarket. However, it is impossible to get detailed ID-POS databases of competitor supermarkets. This study firstly focused on the customer value and distance between a customer's home and supermarkets in a city, and then constructed the models based on logistic regression analysis to analyze correlations between distance and purchasing behaviors only from a POS database of a supermarket chain. During the modeling process, there are three primary problems existed, including the incomparable problem of customer values, the multicollinearity problem among customer value and distance data, and the number of valid partial regression coefficients. The improved customer value, Huff’s gravity model, and inverse attractiveness frequency are considered to solve these problems. This paper presents three types of models based on these three methods for loyal customer classification and competitors’ influence analysis. In numerical experiments, all types of models are useful for loyal customer classification. The type of model, including all three methods, is the most superior one for evaluating the influence of the other nearby supermarkets on customers' purchasing of a supermarket chain from the viewpoint of valid partial regression coefficients and accuracy.Keywords: customer value, Huff's Gravity Model, POS, Retailer
Procedia PDF Downloads 1232952 A Study on the Conspicuous Consumption, Involvement and Physical and Mental Health of Pet Owners
Authors: Chi-Yueh Hsu, Hsuan-Liang Hsu, Hsiu-Hui Chiang
Abstract:
This study is to explore the relationship between the conspicuous consumption, leisure involvement and physical and mental health, and to understand the prediction of conspicuous consumption and leisure involvement to physical and mental health. The data was collected and analysed by purposive sampling, and the research objects were the dog walkers in Taiwan area. A total of 300 questionnaires were issued and after shaving the invalid questionnaire, a total of 246 valid samples were collected, and the effective rate was 82%.. The data were analyzed by correlation analysis and multiple stepwise regression analysis. The results showed that there was a significant correlation between conspicuous consumption and leisure involvement, and the conspicuous consumption and leisure involvement of dog walkers have a significant impact on physical and mental health, especially in self-expression, attractiveness and centrality of leisure involvement have a significant impact on physical and mental health.Keywords: walking dog, attractiveness, self-expression, multiple stepwise regression analysis
Procedia PDF Downloads 2612951 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages
Authors: Ya-Li Tsai
Abstract:
Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization
Procedia PDF Downloads 822950 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1322949 Assessment of Pastoralist-Crop Farmers Conflict and Food Security of Farming Households in Kwara State, Nigeria
Authors: S. A. Salau, I. F. Ayanda, I. Afe, M. O. Adesina, N. B. Nofiu
Abstract:
Food insecurity is still a critical challenge among rural and urban households in Nigeria. The country’s food insecurity situation became more pronounced due to frequent conflict between pastoralist and crop farmers. Thus, this study assesses pastoralist-crop farmers’ conflict and food security of farming households in Kwara state, Nigeria. The specific objectives are to measure the food security status of the respondents, quantify pastoralist- crop farmers’ conflict, determine the effect of pastoralist- crop farmers conflict on food security and describe the effective coping strategies adopted by the respondents to reduce the effect of food insecurity. A combination of purposive and simple random sampling techniques will be used to select 250 farming households for the study. The analytical tools include descriptive statistics, Likert-scale, logistic regression, and food security index. Using the food security index approach, the percentage of households that were food secure and insecure will be known. Pastoralist- crop farmers’ conflict will be measured empirically by quantifying loses due to the conflict. The logistic regression will indicate if pastoralist- crop farmers’ conflict is a critical determinant of food security among farming households in the study area. The coping strategies employed by the respondents in cushioning the effects of food insecurity will also be revealed. Empirical studies on the effect of pastoralist- crop farmers’ conflict on food security are rare in the literature. This study will quantify conflict and reveal the direction as well as the extent of the relationship between conflict and food security. It could contribute to the identification and formulation of strategies for the minimization of conflict among pastoralist and crop farmers in an attempt to reduce food insecurity. Moreover, this study could serve as valuable reference material for future researches and open up new areas for further researches.Keywords: agriculture, conflict, coping strategies, food security, logistic regression
Procedia PDF Downloads 1912948 Impact of Interest and Foreign Exchange Rates Liberalization on Investment Decision in Nigeria
Authors: Kemi Olalekan Oduntan
Abstract:
This paper was carried out in order to empirical, and descriptively analysis how interest rate and foreign exchange rate liberalization influence investment decision in Nigeria. The study spanned through the period of 1985 – 2014, secondary data were restricted to relevant variables such as investment (Proxy by Gross Fixed Capital Formation) saving rate, interest rate and foreign exchange rate. Theories and empirical literature from various scholars were reviews in the paper. Ordinary Least Square regression method was used for the analysis of data collection. The result of the regression was critically interpreted and discussed. It was discovered for empirical finding that tax investment decision in Nigeria is highly at sensitive rate. Hence, all the alternative hypotheses were accepted while the respective null hypotheses were rejected as a result of interest rate and foreign exchange has significant effect on investment in Nigeria. Therefore, impact of interest rate and foreign exchange rate on the state of investment in the economy cannot be over emphasized.Keywords: interest rate, foreign exchange liberalization, investment decision, economic growth
Procedia PDF Downloads 3642947 Economic Loss due to Ganoderma Disease in Oil Palm
Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho
Abstract:
Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.Keywords: ganoderma, oil palm, regression model, yield loss, economic loss
Procedia PDF Downloads 3892946 Locus of Control, Metacognitive Knowledge, Metacognitive Regulation, and Student Performance in an Introductory Economics Course
Authors: Ahmad A. Kader
Abstract:
In the principles of Microeconomics course taught during the Fall Semester 2019, 158out of 179 students participated in the completion of two questionnaires and a survey describing their demographic and academic profiles. The two questionnaires include the 29 items of the Rotter Locus of Control Scale and the 52 items of the Schraw andDennisonMetacognitive Awareness Scale. The 52 items consist of 17 items describing knowledge of cognition and 37 items describing the regulation of cognition. The paper is intended to show the combined influence of locus of control, metacognitive knowledge, and metacognitive regulation on student performance. The survey covers variables that have been tested and recognized in economic education literature, which include GPA, gender, age, course level, race, student classification, whether the course was required or elective, employments, whether a high school economic course was taken, and attendance. Regression results show that of the economic education variables, GPA, classification, whether the course was required or elective, and attendance are the only significant variables in their influence on student grade. Of the educational psychology variables, the regression results show that the locus of control variable has a negative and significant effect, while the metacognitive knowledge variable has a positive and significant effect on student grade. Also, the adjusted R square value increased markedly with the addition of the locus of control, metacognitive knowledge, and metacognitive regulation variables to the regression equation. The t test results also show that students who are internally oriented and are high on the metacognitive knowledge scale significantly outperform students who are externally oriented and are low on the metacognitive knowledge scale. The implication of these results for educators is discussed in the paper.Keywords: locus of control, metacognitive knowledge, metacognitive regulation, student performance, economic education
Procedia PDF Downloads 1202945 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty
Authors: D. S. Gomes, A. T. Silva
Abstract:
Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation
Procedia PDF Downloads 2912944 Profitability Analysis of Investment in Oil Palm Value Chain in Osun State, Nigeria
Authors: Moyosooore A. Babalola, Ayodeji S. Ogunleye
Abstract:
The main focus of the study was to determine the profitability of investment in the Oil Palm value chain of Osun State, Nigeria in 2015. The specific objectives were to describe the socio-economic characteristics of Oil Palm investors (producers, processors and marketers), to determine the profitability of the investment to investors in the Oil Palm value chain, and to determine the factors affecting the profitability of the investment of the oil palm investors in Osun state. A sample of 100 respondents was selected in this cross-sectional survey. Multiple stage sampling procedure was used for data collection of producers and processors while purposive sampling was used for marketers. Data collected was analyzed using the following analytical tools: descriptive statistics, budgetary analysis and regression analysis. The results of the gross margin showed that the producers and processors were more profitable than the marketers in the oil palm value chain with their benefit-cost ratios as 1.93, 1.82 and 1.11 respectively. The multiple regression analysis showed that education and years of experience were significant among marketers and producers while age and years of experience had significant influence on the gross margin of processors. Based on these findings, improvement on the level of education of oil palm investors is recommended in order to address the relatively low access to post-primary education among the oil palm investors in Osun State. In addition to this, it is important that training be made available to oil palm investors. This will improve the quality of their years of experience, ensuring that it has a positive influence on their gross margin. Low access to credit among processors and producer could be corrected by making extension services available to them. Marketers would also greatly benefit from subsidized prices on oil palm products to increase their gross margin, as the huge percentage of their total cost comes from acquiring palm oil.Keywords: oil palm, profitability analysis, regression analysis, value chain
Procedia PDF Downloads 3622943 Prediction of Compressive Strength Using Artificial Neural Network
Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal
Abstract:
Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression
Procedia PDF Downloads 4282942 Regression for Doubly Inflated Multivariate Poisson Distributions
Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta
Abstract:
Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios
Procedia PDF Downloads 1562941 Modeling of the Effect of Explosives, Geological and Geotechnical Parameters on the Stability of Rock Masses Case of Marrakech: Agadir Highway, Morocco
Authors: Taoufik Benchelha, Toufik Remmal, Rachid El Hamdouni, Hamou Mansouri, Houssein Ejjaouani, Halima Jounaid, Said Benchelha
Abstract:
During the earthworks for the construction of Marrakech-Agadir highway in southern Morocco, which crosses mountainous areas of the High Western Atlas, the main problem faced is the stability of the slopes. Indeed, the use of explosives as a means of excavation associated with the geological structure of the terrain encountered can trigger major ruptures and cause damage which depends on the intrinsic characteristics of the rock mass. The study consists of a geological and geotechnical analysis of several unstable zones located along the route, mobilizing millions of cubic meters of rock, with deduction of the parameters influencing slope stability. From this analysis, a predictive model for rock mass stability is carried out, based on a statistic method of logistic regression, in order to predict the geomechanical behavior of the rock slopes constrained by earthworks.Keywords: explosive, logistic regression, rock mass, slope stability
Procedia PDF Downloads 3762940 Count Regression Modelling on Number of Migrants in Households
Authors: Tsedeke Lambore Gemecho, Ayele Taye Goshu
Abstract:
The main objective of this study is to identify the determinants of the number of international migrants in a household and to compare regression models for count response. This study is done by collecting data from total of 2288 household heads of 16 randomly sampled districts in Hadiya and Kembata-Tembaro zones of Southern Ethiopia. The Poisson mixed models, as special cases of the generalized linear mixed model, is explored to determine effects of the predictors: age of household head, farm land size, and household size. Two ethnicities Hadiya and Kembata are included in the final model as dummy variables. Stepwise variable selection has indentified four predictors: age of head, farm land size, family size and dummy variable ethnic2 (0=other, 1=Kembata). These predictors are significant at 5% significance level with count response number of migrant. The Poisson mixed model consisting of the four predictors with random effects districts. Area specific random effects are significant with the variance of about 0.5105 and standard deviation of 0.7145. The results show that the number of migrant increases with heads age, family size, and farm land size. In conclusion, there is a significantly high number of international migration per household in the area. Age of household head, family size, and farm land size are determinants that increase the number of international migrant in households. Community-based intervention is needed so as to monitor and regulate the international migration for the benefits of the society.Keywords: Poisson regression, GLM, number of migrant, Hadiya and Kembata Tembaro zones
Procedia PDF Downloads 2832939 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements
Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva
Abstract:
The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN
Procedia PDF Downloads 4442938 Examining Bulling Rates among Youth with Intellectual Disabilities
Authors: Kaycee L. Bills
Abstract:
Adolescents and youth who are members of a minority group are more likely to experience higher rates of bullying in comparison to other student demographics. Specifically, adolescents with intellectual disabilities are a minority population that is more susceptible to experience unfair treatment in social settings. This study employs the 2015 Wave of the National Crime Victimization Survey – School Crime Supplement (NCVS/SCS) longitudinal dataset to explore bullying rates experienced among adolescents with intellectual disabilities. This study uses chi-square testing and a logistic regression to analyze if having a disability influences the likelihood of being bullied in comparison to other student demographics. Results of the chi-square testing and the logistic regression indicate that adolescent students who were identified as having a disability were approximately four times more likely to experience higher bullying rates in comparison to all other majority and minority student populations. Thus, it means having a disability resulted in higher bullying rates in comparison to all student groups.Keywords: disability, bullying, social work, school bullying
Procedia PDF Downloads 1312937 Investigating the Impact of the Laundry and Sterilization Process on the Performance of Reusable Surgical Gowns
Authors: N. Khomarloo, F. Mousazadegan, M. Latifi, N. Hemmatinejad
Abstract:
Recently, the utilization of reusable surgical gowns in order to decrease costs, environmental protection and enhance surgeon’s comfort is considered. One of the concerns in applying this kind of medical protective clothing is reduction of their resistance to bacterial penetration especially in wet state, after repeated laundering and sterilizing process. The purpose of this study is to investigate the effect of the laundering and sterilizing process on the reusable surgical gown’s resistance against bacterial wet penetration. To this end, penetration of Staphylococcus aureus bacteria in wet state after 70 washing and sterilizing cycles was evaluated on the two single-layer and three-layer reusable gowns. The outcomes reveal that up to 20 laundering and sterilizing cycles, protective property of samples improves due to fabric shrinkage, after that because of the fabric’s construction opening, the bacterial penetration increase. However, the three-layer gown presents higher protective performance comparing to the single-layer one.Keywords: laundry, porosity, reusable surgical gown, sterilization, wet bacterial penetration
Procedia PDF Downloads 2772936 Gender Estimation by Means of Quantitative Measurements of Foramen Magnum: An Analysis of CT Head Images
Authors: Thilini Hathurusinghe, Uthpalie Siriwardhana, W. M. Ediri Arachchi, Ranga Thudugala, Indeewari Herath, Gayani Senanayake
Abstract:
The foramen magnum is more prone to protect than other skeletal remains during high impact and severe disruptive injuries. Therefore, it is worthwhile to explore whether these measurements can be used to determine the human gender which is vital in forensic and anthropological studies. The idea was to find out the ability to use quantitative measurements of foramen magnum as an anatomical indicator for human gender estimation and to evaluate the gender-dependent variations of foramen magnum using quantitative measurements. Randomly selected 113 subjects who underwent CT head scans at Sri Jayawardhanapura General Hospital of Sri Lanka within a period of six months, were included in the study. The sample contained 58 males (48.76 ± 14.7 years old) and 55 females (47.04 ±15.9 years old). Maximum length of the foramen magnum (LFM), maximum width of the foramen magnum (WFM), minimum distance between occipital condyles (MnD) and maximum interior distance between occipital condyles (MxID) were measured. Further, AreaT and AreaR were also calculated. The gender was estimated using binomial logistic regression. The mean values of all explanatory variables (LFM, WFM, MnD, MxID, AreaT, and AreaR) were greater among male than female. All explanatory variables except MnD (p=0.669) were statistically significant (p < 0.05). Significant bivariate correlations were demonstrated by AreaT and AreaR with the explanatory variables. The results evidenced that WFM and MxID were the best measurements in predicting gender according to binomial logistic regression. The estimated model was: log (p/1-p) =10.391-0.136×MxID-0.231×WFM, where p is the probability of being a female. The classification accuracy given by the above model was 65.5%. The quantitative measurements of foramen magnum can be used as a reliable anatomical marker for human gender estimation in the Sri Lankan context.Keywords: foramen magnum, forensic and anthropological studies, gender estimation, logistic regression
Procedia PDF Downloads 1512935 Durability and Early-Age Behavior of Sprayed Concrete with an Expansion Admixture
Authors: Kyong-Ku Yun, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han, Pan-Gil Choi
Abstract:
Sprayed concrete is a way to spray a concrete using a machinery with high air pressure. There are insufficient studies on the durability and early-age behavior of sprayed concrete using high quality expansion agent. A series of an experiment were executed with 5 varying expansion agent replacement rates, while all the other conditions were kept constant, including cement binder content and water-cement ratio. The tests includes early-age shrinkage test, rapid chloride permeability test, and image analysis of air void structure. The early-age expansion test with the variation of expansion agent show that the expansion strain increases as the ratio of expansion agent increases. The rapid chloride permeability test shows that it decrease as the expansion agent increase. Therefore, expansion agent affects into the rapid chloride permeability in a better way. As expansion agent content increased, spacing factor slightly decreased while specific surface kept relatively stable. As a results, the optimum ratio of expansion agent would be selected between 7 % and 11%.Keywords: sprayed concrete, durability, early-age behavior, expansion admixture
Procedia PDF Downloads 5072934 Optimization of Plastic Injection Molding Parameters by Altering Gate and Runner of Feeding System
Authors: Ali Ramezani
Abstract:
Balancing feeding system of plastic injection molding has overriding importance as it minimizes the process’s product defects such as weld line, shrinkage, sink marks and warpage. This article presents the difference between optimization of feeding system in identical multi-cavity molding and family molding using Moldflow Plastic Insight software. In this work, the effect of dimension, shape, position and type of gates and runners on the products quality was studied. The optimization was carried out by analyzing plastic injection molding process parameters, including melt temperature, mold temperature, cooling time, cooling temperature packing time and packing pressure. It was found that symmetrical feeding system is the most efficient shape for diminishing defects in identical multi-cavity molding. However, the same results were not concluded for family molding due to the differences between volume, mass, thickness and shape of cavities.Keywords: balancing feeding system, family molding, multi-cavity, Moldflow, plastic injection
Procedia PDF Downloads 1352933 Association Between Short-term NOx Exposure and Asthma Exacerbations in East London: A Time Series Regression Model
Authors: Hajar Hajmohammadi, Paul Pfeffer, Anna De Simoni, Jim Cole, Chris Griffiths, Sally Hull, Benjamin Heydecker
Abstract:
Background: There is strong interest in the relationship between short-term air pollution exposure and human health. Most studies in this field focus on serious health effects such as death or hospital admission, but air pollution exposure affects many people with less severe impacts, such as exacerbations of respiratory conditions. A lack of quantitative analysis and inconsistent findings suggest improved methodology is needed to understand these effectsmore fully. Method: We developed a time series regression model to quantify the relationship between daily NOₓ concentration and Asthma exacerbations requiring oral steroids from primary care settings. Explanatory variables include daily NOₓ concentration measurements extracted from 8 available background and roadside monitoring stations in east London and daily ambient temperature extracted for London City Airport, located in east London. Lags of NOx concentrations up to 21 days (3 weeks) were used in the model. The dependent variable was the daily number of oral steroid courses prescribed for GP registered patients with asthma in east London. A mixed distribution model was then fitted to the significant lags of the regression model. Result: Results of the time series modelling showed a significant relationship between NOₓconcentrations on each day and the number of oral steroid courses prescribed in the following three weeks. In addition, the model using only roadside stations performs better than the model with a mixture of roadside and background stations.Keywords: air pollution, time series modeling, public health, road transport
Procedia PDF Downloads 142