Search results for: short courses
3423 Fault Diagnosis in Induction Motors Using the Discrete Wavelet Transform
Authors: Khaled Yahia
Abstract:
This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), current park’s vector modulus (CPVM)
Procedia PDF Downloads 5693422 Effectiveness of Active Learning in Social Science Courses at Japanese Universities
Authors: Kumiko Inagaki
Abstract:
In recent, years, Japanese universities have begun to face a dilemma: more than half of all high school graduates go on to attend an institution of higher learning, overwhelming Japanese universities accustomed to small student bodies. These universities have been forced to embrace qualitative changes to accommodate the increased number and diversity of students who enter their establishments, students who differ in their motivations for learning, their levels of eagerness to learn, and their perspectives on the future. One of these changes is an increase in awareness among Japanese educators of the importance of active learning, which deepens students’ understanding of course material through a range of activities, including writing, speaking, thinking, and presenting, in addition to conventional “passive learning” methods such as listening to a one-way lecture. The purpose of this study is to examine the effectiveness of the teaching method adapted to improve active learning. A teaching method designed to promote active learning was implemented in a social science course at one of the most popular universities in Japan. A questionnaire using a five-point response format was given to students in 2,305 courses throughout the university to evaluate the effectiveness of the method based on the following measures: ① the ratio of students who were motivated to attend the classes, ② the rate at which students learned new information, and ③ the teaching method adopted in the classes. The results of this study show that the percentage of students who attended the active learning course eagerly, and the rate of new knowledge acquired through the course, both exceeded the average for the university, the department, and the subject area of social science. In addition, there are strong correlations between teaching method and student motivation and between teaching method and knowledge acquisition rate. These results indicate that the active learning teaching method was effectively implemented and that it may improve student eagerness to attend class and motivation to learn.Keywords: active learning, Japanese university, teaching method, university education
Procedia PDF Downloads 1953421 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption, and GDP for Turkey: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), carbon dioxide (CO2) emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Phillips–Perron (PP) test for stationarity, Johansen maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests negative long-run causalities from consumption of petroleum products and the direct combustion of crude oil, coal and natural gas to GDP. Conversely, positive impacts of CO2 emissions and electricity consumption on GDP are found to be significant in Turkey during the period. There exists a short-run bidirectional relationship between electricity consumption and natural gas consumption. There exists a positive unidirectional causality running from electricity consumption to natural gas consumption, while there exists a negative unidirectional causality running from natural gas consumption to electricity consumption. Moreover, GDP has a negative effect on electricity consumption in Turkey in the short run. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output but the associations can to be differed by the sources of energy in the case of Turkey over of period 1980-2010.Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis
Procedia PDF Downloads 5083420 Identification of Vessel Class with Long Short-Term Memory Using Kinematic Features in Maritime Traffic Control
Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi
Abstract:
Preventing abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep, long short-term memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviors far from the expected one depending on the declared type.Keywords: maritime surveillance, artificial intelligence, behavior analysis, LSTM
Procedia PDF Downloads 2313419 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling
Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte
Abstract:
This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.Keywords: CSP plants, thermal energy storage, thermocline, mathematical modelling, experimental data
Procedia PDF Downloads 3283418 A Virtual Electrode through Summation of Time Offset Pulses
Authors: Isaac Cassar, Trevor Davis, Yi-Kai Lo, Wentai Liu
Abstract:
Retinal prostheses have been successful in eliciting visual responses in implanted subjects. As these prostheses progress, one of their major limitations is the need for increased resolution. As an alternative to increasing the number of electrodes, virtual electrodes may be used to increase the effective resolution of current electrode arrays. This paper presents a virtual electrode technique based upon time-offsets between stimuli. Two adjacent electrodes are stimulated with identical pulses with too short of pulse widths to activate a neuron, but one has a time offset of one pulse width. A virtual electrode of twice the pulse width was then shown to appear in the center, with a total width capable of activating a neuron. This can be used in retinal implants by stimulating electrodes with pulse widths short enough to not elicit responses in neurons, but with their combined pulse width adequate to activate a neuron in between them.Keywords: electrical stimulation, neuroprosthesis, retinal implant, retinal prosthesis, virtual electrode
Procedia PDF Downloads 3023417 An AI-generated Semantic Communication Platform in HCI Course
Authors: Yi Yang, Jiasong Sun
Abstract:
Almost every aspect of our daily lives is now intertwined with some degree of human-computer interaction (HCI). HCI courses draw on knowledge from disciplines as diverse as computer science, psychology, design principles, anthropology, and more. Our HCI courses, named the Media and Cognition course, are constantly updated to reflect state-of-the-art technological advancements such as virtual reality, augmented reality, and artificial intelligence-based interactions. For more than a decade, our course has used an interest-based approach to teaching, in which students proactively propose some research-based questions and collaborate with teachers, using course knowledge to explore potential solutions. Semantic communication plays a key role in facilitating understanding and interaction between users and computer systems, ultimately enhancing system usability and user experience. The advancements in AI-generated technology, which have gained significant attention from both academia and industry in recent years, are exemplified by language models like GPT-3 that generate human-like dialogues from given prompts. Our latest version of the Human-Computer Interaction course practices a semantic communication platform based on AI-generated techniques. The purpose of this semantic communication is twofold: to extract and transmit task-specific information while ensuring efficient end-to-end communication with minimal latency. An AI-generated semantic communication platform evaluates the retention of signal sources and converts low-retain ability visual signals into textual prompts. These data are transmitted through AI-generated techniques and reconstructed at the receiving end; on the other hand, visual signals with a high retain ability rate are compressed and transmitted according to their respective regions. The platform and associated research are a testament to our students' growing ability to independently investigate state-of-the-art technologies.Keywords: human-computer interaction, media and cognition course, semantic communication, retainability, prompts
Procedia PDF Downloads 1153416 Activating Psychological Resources of DUI (Drivers under the Influence of Alcohol) Using the Traffic Psychology Intervention (IFT Course), Germany
Authors: Parichehr Sharifi, Konrad Reschke, Hans-Liudger Dienel
Abstract:
Psychological intervention generally targets changes in attitudes and behavior. Working with DUIs is part of traffic psychologists’ work. The primary goal of this field is to reduce the probability of re-conspicuous of the delinquent driver. One of these measurements in Germany is IFT courses for DUI s. The IFT course was designed by the Institute for Therapy Research. Participants are drivers who have fallen several times or once with a blood alcohol concentration of 1.6 per mill and who have completed a medical-psychological assessment (MPU) with the result of the course recommendation. The course covers four sessions of 3.5 hours each (1 hour / 60 m) and in a period of 3 to 4 weeks in the group discussion. This work analyzes interventions for the rehabilitation of DUI (Drunk Drivers offenders) offenders in groups under the aspect of activating psychological resources. From the aspect of sustainability, they should also have long-term consequences for the maintenance of unproblematic driving behavior in terms of the activation of resources. It is also addressing a selected consistency-theory-based intervention effect, activating psychological resources. So far, this has only been considered in the psychotherapeutic field but never in the field of traffic psychology. The methodology of this survey is one qualitative and three quantitative. In four sub-studies, it will be examined which measurements can determine the resources and how traffic psychological interventions can strengthen resources. The results of the studies have the following implications for traffic psychology research and practice: (1) In the field of traffic psychology intervention for the restoration of driving fitness, it can be stated that aspects of resource activation in this work have been investigated for the first time by qualitative and quantitative methods. (2) The resource activation could be confirmed based on the determined results as an effective factor of traffic psychological intervention. (3) Two sub-studies show a range of resources and resource activation options that must be given greater emphasis in traffic psychology interventions: - Social resource activation - improvement of the life skills of participants - Reactivation of existing social support options - Re-experiencing self-esteem, self-assurance, and acceptance of traffic-related behaviors. (4) In revising the IFT-§70 course, as well as other courses on recreating aptitude for DUI, new traffic-specific resource-enabling interventions against alcohol abuse should be developed to further enhance the courses through motivational, cognitive, and behavioral effects of resource activation, Resource-activating interventions can not only be integrated into behavioral group interventions but can also be applied in psychodynamic, psychodynamic (individual psychological) and other contexts of individual traffic psychology. The results are indicative but clearly show that personal resources can be strengthened through traffic psychology interventions. In the research, practice, training, and further education of traffic psychology, the aspect of primary resource activation (Grawe, 1999), therefore, always deserves the greatest attention for the rehabilitation of DUIs and Traffic safety.Keywords: traffic safety, psychological resources, activating of resources, intervention programs for alcohol offenders, empowerment
Procedia PDF Downloads 773415 Progressing Institutional Quality Assurance and Accreditation of Higher Education Programmes
Authors: Dominique Parrish
Abstract:
Globally, higher education institutions are responsible for the quality assurance and accreditation of their educational programmes (Courses). The primary purpose of these activities is to ensure that the educational standards of the governing higher education authority are met and the quality of the education provided to students is assured. Despite policies and frameworks being established in many countries, to improve the veracity and accountability of quality assurance and accreditation processes, there are reportedly still mistakes, gaps and deficiencies in these processes. An analysis of Australian universities’ quality assurance and accreditation processes noted that significant improvements were needed in managing these processes and ensuring that review recommendations were implemented. It has also been suggested that the following principles are critical for higher education quality assurance and accreditation to be effective and sustainable: academic standards and performance outcomes must be defined, attainable and monitored; those involved in providing the higher education must assume responsibility for the associated quality assurance and accreditation; potential academic risks must be identified and management solutions developed; and the expectations of the public, governments and students should be considered and incorporated into Course enhancements. This phenomenological study, which was conducted in a Faculty of Science, Medicine and Health in an Australian university, sought to systematically and iteratively develop an effective quality assurance and accreditation process that integrated the evidence-based principles of success and promoted meaningful and sustainable change. Qualitative evaluative feedback was gathered, over a period of eleven months (January - November 2014), from faculty staff engaged in the quality assurance and accreditation of forty-eight undergraduate and postgraduate Courses. Reflexive analysis was used to analyse the data and inform ongoing modifications and developments to the assurance and accreditation process as well as the associated supporting resources. The study resulted in the development of a formal quality assurance and accreditation process together with a suite of targeted resources that were identified as critical for success. The research findings also provided some insights into the institutional enablers that were antecedents to successful quality assurance and accreditation processes as well as meaningful change in the educational practices of academics. While longitudinal data will be collected to further assess the value of the assurance and accreditation process on educational quality, early indicators are that there has been a change in the pedagogical perspectives and activities of academic staff and growing momentum to explore opportunities to further enhance and develop Courses. This presentation will explain the formal quality assurance and accreditation process as well as the component parts, which resulted from this study. The targeted resources that were developed will be described, the pertinent factors that contributed to the success of the process will be discussed and early indicators of sustainable academic change as well as suggestions for future research will be outlined.Keywords: academic standards, quality assurance and accreditation, phenomenological study, process, resources
Procedia PDF Downloads 3773414 Nexus of Pakistan Stock Exchange with World's Top Five Stock Markets after Launching China Pakistan Economic Corridor
Authors: Abdul Rauf, Xiaoxing Liu, Waqas Amin
Abstract:
Stock markets are fascinating more and more conductive to each other due to liberalization and globalization trends in recent years. China Pakistan Economic Corridor (CPEC) has dragged Pakistan stock exchange to the new heights and global investors are making investments to reap its benefits. So, in investors and government perspective, the study focuses co-integration of Pakistan stock exchange with world’s five big economies i-e US, China, England, Japan, and France. The time period of study is seven years i-e 2010 to 2016 and daily values of major indices of corresponding stock exchanges collected. All variables of that particular study are stationary at first difference confirmed by unit root test. The study Johansen system co integration test for analysis of data along with Granger causality test is performed for result purpose. Co integration test asserted that Pakistan stock exchange integrated with Shanghai stock exchange (SSE) and NIKKEI stock exchange in short run. Granger causality test also proclaimed these results. But NASDAQ, FTSE, DAX not co integrated and Granger cause at a short run but long run these markets are bonded with Pakistan stock exchange (KSE). VECM also confirmed this liaison in short and long run. Investors, therefore, need to be updated regarding co-integration of world’s stock exchanges to ensure well diversified and risk adjusted high returns. Equally, governments also need updated status so that they could reduce co-integration through multiple steps and hence drag investors for diversified investment.Keywords: CPEC, DAX, FTSE, liberalization, NASDAQ, NIKKEI, SSE, stock markets
Procedia PDF Downloads 3023413 English Language Teaching Graduate Students' Use of Discussion Moves in Research Articles
Authors: Gamzegul Koca, Evrim Eveyik-Aydin
Abstract:
Genre and discipline-specific knowledge of academic discourse in writing has long been acknowledged as being a core skill to achieve formidable tasks that are expected of graduate students in academic settings. Genre analysis approaches can be adopted to unveil the challenges encountered in these tasks to be able to take instructional actions addressing the aspects of graduate writing that need improvement. In an attempt to find genre-specific academic writing needs of Turkish students enrolled in a graduate program in ELT, this study examines the rhetorical structure of discussion sections of research articles written during the course load stage of their graduate studies. The 35.437-word specialized corpus of graduate papers compiled for the purpose of the study includes discussions of 58 unpublished reports of empirical studies, 31 written in MA courses and 27 in Ph.D. courses by a total of 44 graduate students. The study does sentence-based move structure analysis using the framework developed by Eveyik-Aydın, Karabacak and Akyel in a corpus-based study that analyzed the discussion moves of expert writers in published articles in ELT journals indexed by Social Sciences Citation. The coding of 1577 sentences by three graders using this framework revealed that while the graduate papers included the same moves used in published articles, the rhetorical structure of MA and Ph.D. papers showed considerable differences in terms of the frequency of occurrence of main discussion moves, including interpretation of the results and drawing implications. The implications of these findings will be discussed with respect to the needs of graduate writers and the expectations of discourse community.Keywords: discussion moves, genre-specific rhetorical structure, move analysis, research articles, the specialized corpus of graduate papers
Procedia PDF Downloads 1663412 Destination Decision Model for Cruising Taxis Based on Embedding Model
Authors: Kazuki Kamada, Haruka Yamashita
Abstract:
In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.Keywords: taxi industry, decision making, recommendation system, embedding model
Procedia PDF Downloads 1383411 Fault Diagnosis in Induction Motors Using Discrete Wavelet Transform
Authors: K. Yahia, A. Titaouine, A. Ghoggal, S. E. Zouzou, F. Benchabane
Abstract:
This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.Keywords: Induction Motors (IMs), inter-turn short-circuits diagnosis, Discrete Wavelet Transform (DWT), Current Park’s Vector Modulus (CPVM)
Procedia PDF Downloads 5533410 Students’ Opinions Related to Virtual Classrooms within the Online Distance Education Graduate Program
Authors: Secil Kaya Gulen
Abstract:
Face to face and virtual classrooms that came up with different conditions and environments, but similar purposes have different characteristics. Although virtual classrooms have some similar facilities with face-to-face classes such as program, students, and administrators, they have no walls and corridors. Therefore, students can attend the courses from a distance and can control their own learning spaces. Virtual classrooms defined as simultaneous online environments where students in different places come together at the same time with the guidance of a teacher. Distance education and virtual classes require different intellectual and managerial skills and models. Therefore, for effective use of virtual classrooms, the virtual property should be taken into consideration. One of the most important factors that affect the spread and effective use of the virtual classrooms is the perceptions and opinions of students -as one the main participants-. Student opinions and recommendations are important in terms of providing information about the fulfillment of expectation. This will help to improve the applications and contribute to the more efficient implementations. In this context, ideas and perceptions of the students related to the virtual classrooms, in general, were determined in this study. Advantages and disadvantages of virtual classrooms expected contributions to the educational system and expected characteristics of virtual classrooms have examined in this study. Students of an online distance education graduate program in which all the courses offered by virtual classrooms have asked for their opinions. Online Distance Education Graduate Program has totally 19 students. The questionnaire that consists of open-ended and multiple choice questions sent to these 19 students and finally 12 of them answered the questionnaire. Analysis of the data presented as frequencies and percentages for each item. SPSS for multiple-choice questions and Nvivo for open-ended questions were used for analyses. According to the results obtained by the analysis, participants stated that they did not get any training on virtual classes before the courses; but they emphasize that newly enrolled students should be educated about the virtual classrooms. In addition, all participants mentioned that virtual classroom contribute their personal development and they want to improve their skills by gaining more experience. The participants, who mainly emphasize the advantages of virtual classrooms, express that the dissemination of virtual classrooms will contribute to the Turkish Education System. Within the advantages of virtual classrooms, ‘recordable and repeatable lessons’ and ‘eliminating the access and transportation costs’ are most common advantages according to the participants. On the other hand, they mentioned ‘technological features and keyboard usage skills affect the attendance’ is the most common disadvantage. Participants' most obvious problem during virtual lectures is ‘lack of technical support’. Finally ‘easy to use’, ‘support possibilities’, ‘communication level’ and ‘flexibility’ come to the forefront in the scope of expected features of virtual classrooms. Last of all, students' opinions about the virtual classrooms seems to be generally positive. Designing and managing virtual classrooms according to the prioritized features will increase the students’ satisfaction and will contribute to improve applications that are more effective.Keywords: distance education, virtual classrooms, higher education, e-learning
Procedia PDF Downloads 2693409 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform
Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya
Abstract:
A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.Keywords: AWGN, onset detection, piano note, STFT
Procedia PDF Downloads 1603408 Is the Okun's Law Valid in Tunisia?
Authors: El Andari Chifaa, Bouaziz Rached
Abstract:
The central focus of this paper was to check whether the Okun’s law in Tunisia is valid or not. For this purpose, we have used quarterly time series data during the period 1990Q1-2014Q1. Firstly, we applied the error correction model instead of the difference version of Okun's Law, the Engle-Granger and Johansen test are employed to find out long run association between unemployment, production, and how error correction mechanism (ECM) is used for short run dynamic. Secondly, we used the gap version of Okun’s law where the estimation is done from three band pass filters which are mathematical tools used in macro-economic and especially in business cycles theory. The finding of the study indicates that the inverse relationship between unemployment and output is verified in the short and long term, and the Okun's law holds for the Tunisian economy, but with an Okun’s coefficient lower than required. Therefore, our empirical results have important implications for structural and cyclical policymakers in Tunisia to promote economic growth in a context of lower unemployment growth.Keywords: Okun’s law, validity, unit root, cointegration, error correction model, bandpass filters
Procedia PDF Downloads 3173407 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP per capita for Oman: Time Series Analysis, 1980–2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfil the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption, carbon dioxide (CO2) emissions and gross domestic product (GDP) for Oman using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey Fuller (ADF) test for stationary, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests positive long-run causalities from CO2 emissions to GDP. Conversely, negative impacts of energy consumption on GDP are found to be significant in Oman during the period. In the short run, there exist negative unidirectional causalities among GDP, CO2 emissions and energy consumption running from GDP to CO2 emissions and from energy consumption to CO2 emissions. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output in Oman over of period 1980-2010.Keywords: CO2 emissions, energy consumption, GDP, Oman, time series analysis
Procedia PDF Downloads 4623406 Distributed Generation Connection to the Network: Obtaining Stability Using Transient Behavior
Authors: A. Hadadi, M. Abdollahi, A. Dustmohammadi
Abstract:
The growing use of DGs in distribution networks provide many advantages and also cause new problems which should be anticipated and be solved with appropriate solutions. One of the problems is transient voltage drop and short circuit in the electrical network, in the presence of distributed generation - which can lead to instability. The appearance of the short circuit will cause loss of generator synchronism, even though if it would be able to recover synchronizing mode after removing faulty generator, it will be stable. In order to increase system reliability and generator lifetime, some strategies should be planned to apply even in some situations which a fault prevent generators from separation. In this paper, one fault current limiter is installed due to prevent DGs separation from the grid when fault occurs. Furthermore, an innovative objective function is applied to determine the impedance optimal amount of fault current limiter in order to improve transient stability of distributed generation. Fault current limiter can prevent generator rotor's sudden acceleration after fault occurrence and thereby improve the network transient stability by reducing the current flow in a fast and effective manner. In fact, by applying created impedance by fault current limiter when a short circuit happens on the path of current injection DG to the fault location, the critical fault clearing time improve remarkably. Therefore, protective relay has more time to clear fault and isolate the fault zone without any instability. Finally, different transient scenarios of connection plan sustainability of small scale synchronous generators to the distribution network are presented.Keywords: critical clearing time, fault current limiter, synchronous generator, transient stability, transient states
Procedia PDF Downloads 1963405 An Analysis of the Impact of Government Budget Deficits on Economic Performance. A Zimbabwean Perspective
Authors: Tafadzwa Shumba, Rose C. Nyatondo, Regret Sunge
Abstract:
This research analyses the impact of budget deficits on the economic performance of Zimbabwe. The study employs the autoregressive distributed lag (ARDL) confines testing method to co-integration and long-run estimation using time series data from 1980-2018. The Augmented Dick Fuller (ADF) and the Granger approach were used to testing for stationarity and causality among the factors. Co-integration test results affirm a long term association between GDP development rate and descriptive factors. Causality test results show a unidirectional connection between budget shortfall to GDP development and bi-directional causality amid debt and budget deficit. This study also found unidirectional causality from debt to GDP growth rate. ARDL estimates indicate a significantly positive long term and significantly negative short term impact of budget shortfall on GDP. This suggests that budget deficits have a short-run growth retarding effect and a long-run growth-inducing effect. The long-run results follow the Keynesian theory that posits that fiscal deficits result in an increase in GDP growth. Short-run outcomes follow the neoclassical theory. In light of these findings, the government is recommended to minimize financing of recurrent expenditure using a budget deficit. To achieve sustainable growth and development, the government needs to spend an absorbable budget deficit focusing on capital projects such as the development of human capital and infrastructure.Keywords: ARDL, budget deficit, economic performance, long run
Procedia PDF Downloads 973404 Academic Motivation Maintenance for Students While Solving Mathematical Problems in the Middle School
Authors: M. Rodionov, Z. Dedovets
Abstract:
The level and type of student academic motivation are the key factors in their development and determine the effectiveness of their education. Improving motivation is very important with regard to courses on middle school mathematics. This article examines the general position regarding the practice of academic motivation. It also examines the particular features of mathematical problem solving in a school setting.Keywords: teaching strategy, mathematics, motivation, student
Procedia PDF Downloads 4453403 Performance of Segmented Thermoelectric Materials Using 'Open-Short Circuit' Technique under Different Polarity
Authors: N. H. S. Mustafa, N. M. Yatim
Abstract:
Thermoelectric materials arrange in segmented design could increase the conversion of heat to electricity performance. This is due to the properties of materials that perform peak at narrow temperature range. Performance of the materials determines by dimensionless figure-of-merit, ZT which consist of thermoelectric properties namely Seebeck coefficient, electrical resistivity, and thermal conductivity. Since different materials were arrange in segmented, determination of ZT cannot be measured using the conventional approach. Therefore, this research used 'open-short circuit' technique to measure the segmented performance. Segmented thermoelectric materials consist of bismuth telluride, and lead telluride was segmented together under cold press technique. The results show thermoelectric properties measured is comparable with calculated based on commercially available of individual material. Performances of segmented sample under different polarity also indicate dependability of material with position and temperature. Segmented materials successfully measured under real condition and optimization of the segmented can be designed from the study of polarity change.Keywords: thermoelectric, segmented, ZT, polarity, performance
Procedia PDF Downloads 2023402 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach
Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre
Abstract:
The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast
Procedia PDF Downloads 2173401 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 973400 Financial Development, Institutional Quality and Environmental Conditions in the Middle East and North Africa Region: Evidence From Oil- And Non-oil-Producing Countries
Authors: Jamel Boukhatem, Semia Rachid, Marmar Nasr
Abstract:
Considering the differences between oil- and non-oil-producing countries, this paper aims to evaluate the impact of financial development (FD) and institutional quality (IQ) on CO2 emissions in 15 MENA (Middle East and North Africa) countries over the period 1996-2018 using the Panel ARDL approach. We found evidence to support an unconditional long run effect of FD on environmental conditions (EC), with quite significant differences between the two groups of countries. While FD leads to environmental degradation (ED) in non-oil-producing countries, it helps protect the environment in oil-producing ones. Regarding the effects of IQ on EC, they are not significant in both short- and long run for non-oil-producing countries, but they are significant for oil-producing ones only in the long run. In the short run, IQ indicators haven’t significant effects on EC for the two groups of countries.Keywords: financial development, institutional quality, environmental conditions, Panel ARDL
Procedia PDF Downloads 823399 Induction Motor Stator Fault Analysis Using Phase-Angle and Magnitude of the Line Currents Spectra
Authors: Ahmed Hamida Boudinar, Noureddine Benouzza, Azeddine Bendiabdellah, Mohamed El Amine Khodja
Abstract:
This paper describes a new diagnosis approach for identification of the progressive stator winding inter-turn short-circuit fault in induction motor. This approach is based on a simple monitoring of the combined information related to both magnitude and phase-angle obtained from the fundamental by the three line currents frequency analysis. In addition, to simplify the interpretation and analysis of the data; a new graphical tool based on a triangular representation is suggested. This representation, depending on its size, enables to visualize in a simple and clear manner, the existence of the stator inter-turn short-circuit fault and its discrimination with respect to a healthy stator. Experimental results show well the benefit and effectiveness of the proposed approach.Keywords: induction motor, magnitude, phase-angle, spectral analysis, stator fault
Procedia PDF Downloads 3613398 Multi-Indicator Evaluation of Agricultural Drought Trends in Ethiopia: Implications for Dry Land Agriculture and Food Security
Authors: Dawd Ahmed, Venkatesh Uddameri
Abstract:
Agriculture in Ethiopia is the main economic sector influenced by agricultural drought. A simultaneous assessment of drought trends using multiple drought indicators is useful for drought planning and management. Intra-season and seasonal drought trends in Ethiopia were studied using a suite of drought indicators. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), and Z-index for long-rainy, dry, and short-rainy seasons are used to identify drought-causing mechanisms. The Statistical software package R version 3.5.2 was used for data extraction and data analyses. Trend analysis indicated shifts in late-season long-rainy season precipitation into dry in the southwest and south-central portions of Ethiopia. Droughts during the dry season (October–January) were largely temperature controlled. Short-term temperature-controlled hydrologic processes exacerbated rainfall deficits during the short rainy season (February–May) and highlight the importance of temperature- and hydrology-induced soil dryness on the production of short-season crops such as tef. Droughts during the long-rainy season (June–September) were largely driven by precipitation declines arising from the narrowing of the intertropical convergence zone (ITCZ). Increased dryness during long-rainy season had severe consequences on the production of corn and sorghum. PDSI was an aggressive indicator of seasonal droughts suggesting the low natural resilience to combat the effects of slow-acting, moisture-depleting hydrologic processes. The lack of irrigation systems in the nation limits the ability to combat droughts and improve agricultural resilience. There is an urgent need to monitor soil moisture (a key agro-hydrologic variable) to better quantify the impacts of meteorological droughts on agricultural systems in Ethiopia.Keywords: autocorrelation, climate change, droughts, Ethiopia, food security, palmer z-index, PDSI, SPEI, SPI, trend analysis
Procedia PDF Downloads 1413397 A Comparative Analysis of Hyper-Parameters Using Neural Networks for E-Mail Spam Detection
Authors: Syed Mahbubuz Zaman, A. B. M. Abrar Haque, Mehedi Hassan Nayeem, Misbah Uddin Sagor
Abstract:
Everyday e-mails are being used by millions of people as an effective form of communication over the Internet. Although e-mails allow high-speed communication, there is a constant threat known as spam. Spam e-mail is often called junk e-mails which are unsolicited and sent in bulk. These unsolicited emails cause security concerns among internet users because they are being exposed to inappropriate content. There is no guaranteed way to stop spammers who use static filters as they are bypassed very easily. In this paper, a smart system is proposed that will be using neural networks to approach spam in a different way, and meanwhile, this will also detect the most relevant features that will help to design the spam filter. Also, a comparison of different parameters for different neural network models has been shown to determine which model works best within suitable parameters.Keywords: long short-term memory, bidirectional long short-term memory, gated recurrent unit, natural language processing, natural language processing
Procedia PDF Downloads 2053396 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction
Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong
Abstract:
Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.Keywords: data refinement, machine learning, mutual information, short-term latency prediction
Procedia PDF Downloads 1693395 Understanding Mudrocks and Their Shear Strength Deterioration Associated with Inundation
Authors: Haslinda Nahazanan, Afshin Asadi, Zainuddin Md. Yusoff, Nik Nor Syahariati Nik Daud
Abstract:
Mudrocks is considered as a problematic material due to their unexpected behaviour specifically when they are contacting with water or being exposed to the atmosphere. Many instability problems of cutting slopes were found lying on high slaking mudrocks. It has become one of the major concerns to geotechnical engineer as mudrocks cover up to 50% of sedimentary rocks in the geologic records. Mudrocks display properties between soils and rocks which can be very hard to understand. Therefore, this paper aims to review the definition, mineralogy, geo-chemistry, classification and engineering properties of mudrocks. As water has become one of the major factors that will rapidly change the behaviour of mudrocks, a review on the shear strength of mudrocks in Derbyshire has been made using a fully automated hydraulic stress path testing system under three states: dry, short-term inundated and long-term inundated. It can be seen that the strength of mudrocks has deteriorated as it condition changed from dry to short-term inundated and finally to long-term inundated.Keywords: mudrocks, sedimentary rocks, inundation, shear strength
Procedia PDF Downloads 2353394 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling
Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou
Abstract:
In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change
Procedia PDF Downloads 261