Search results for: natural energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12863

Search results for: natural energy

12413 The Geometry of Natural Formation: an Application of Geometrical Analysis for Complex Natural Order of Pomegranate

Authors: Anahita Aris

Abstract:

Geometry always plays a key role in natural structures, which can be a source of inspiration for architects and urban designers to create spaces. By understanding formative principles in nature, a variety of options can be provided that lead to freedom of formation. The main purpose of this paper is to analyze the geometrical order found in pomegranate to find formative principles explaining its complex structure. The point is how spherical arils of pomegranate pressed together inside the fruit and filled the space as they expand in the growing process, which made a self-organized system leads to the formation of each of the arils are unique in size, topology and shape. The main challenge of this paper would be using advanced architectural modeling techniques to discover these principles.

Keywords: advanced modeling techniques, architectural modeling, computational design, the geometry of natural formation, geometrical analysis, the natural order of pomegranate, voronoi diagrams

Procedia PDF Downloads 198
12412 The Politics of Renewable Energy Generation and Its Challenges: A Case Study of Iran

Authors: Naresh Kumar Verma

Abstract:

Nuclear energy being adapted as a renewable energy source and its production by developing countries has turned into a major strategic concern and politics by the developed world. The West seem to be the sole proprietor of such energy source and any country opting for such energy production either face significant hurdles or geopolitical challenges in developing such energy source. History of West Asia is full of interference by external powers which has been integral in the incessant conflict in the region. Whether it was the creation of Israel, the Gulf war of 1991, or the invasion of Iraq in 2003, and more recently the Iranian nuclear conundrum, the soil of West Asia has always been a witness to the play of extra regional powers game. Iran, being a theocratic state has been facing such threats and challenges, regarding its intentions and its capability in such energy production. The paper will try to assess the following issues: -Politics of Renewable Energy Generation. -Geographical and strategic significance of Iran’s nuclear programme. -Challenges in the path of Iran developing nuclear energy as a RE source. -The interests of the regional and extra-regional actors in challenging Iranian Nuclear Programme.

Keywords: developing countries, geopolitics, Iran, nuclear energy, renewable energy

Procedia PDF Downloads 605
12411 Drying of Agro-Industrial Wastes Using an Indirect Solar Dryer

Authors: N. Metidji, N. Kasbadji Merzouk, O. Badaoui, R. Sellami, A. Djebli

Abstract:

The Agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipments Development. Indirect solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of orange to make fruit juice, by using an indirect forced convection solar dryer at 50 °C and 60 °C, the rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely orange waste.

Keywords: solar energy, solar dryer, energy conversion, orange drying, forced convection solar dryer

Procedia PDF Downloads 335
12410 Semi-Natural Vertical Gardens and Urban Ecology, the Sample of Bartın City

Authors: Yeliz Sarı Nayim, B. N. Nayim

Abstract:

Vertical natural gardens encountered in urban ecosystems are important elements contributing to urban ecology by raising the quality of urban life. This research covers the investigation of the semi-natural plant walls of Bartın city which is located on the western Black Sea coast of Turkey. Landscape analysis and evaluation as a result of land and office work have resulted in vertical garden ecosystems that have been processed in the urban habitat map, mostly in natural stone walls, wooden garden fences, garden entrance doors, historical buildings and building walls. Structural surfaces on old building facades, especially with abandoned or still in use with natural stone walls, have been found to have many natural vertical gardens over time. Parietaria judaica, Cymbalaria longipes and Hedera helix species were dominant, and other types of content were recorded, providing information on the current biotope potential, human activities and effects on them. It has been emphasized that the described vertical gardens together with the species they contain should be protected in terms of Bartin urban ecology and biodiversity. It has been stated that sustainable urban planning, design and management should be considered as a compensation for open and green area losses.

Keywords: semi-natural vertical gardens, urban ecology, sustainable urban planning and design, Bartın

Procedia PDF Downloads 328
12409 Acoustic and Thermal Compliance from the Execution Theory

Authors: Saou Mohamed Amine

Abstract:

The construction industry has been identified as a user of substantial amount of materials and energy resources that has an enormous impact on environment. The energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability in construction industry. The increasing concern for environment has made building owners and designers to incorporate the energy efficiency features into their building projects. However, an overwhelming issue of existing non-energy efficient buildings which exceeds the number of new building could be ineffective if the buildings are not refurbished through the energy efficient measures. Thus, energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability that offers significant opportunities for reducing global energy consumption and greenhouse gas emissions. However, the quality of design team attributes and the characteristics of the refurbishment building projects have been argued to be the main factors that determine the energy efficiency performance of the building.

Keywords: construction industry, design team attributes, energy efficient performance, refurbishment projects characteristics

Procedia PDF Downloads 340
12408 Household Energy Usage in Nigeria: Emerging Advances for Sustainable Development

Authors: O. A. Akinsanya

Abstract:

This paper presents the emerging trends in household energy usage in Nigeria for sustainable development. The paper relied on a direct appraisal of energy use in the residential sector and the use of a structured questionnaire to establish the usage pattern, energy management measures and emerging advances. The use of efficient appliances, retrofitting, smart building and smart attitude are some of the benefitting measures. The paper also identified smart building, prosumer activities, hybrid energy use, improved awareness, and solar stand-alone street/security lights as the trend and concluded that energy management strategies would result in a significant reduction in the monthly bills and peak loads as well as the total electricity consumption in Nigeria and therefore it is good for sustainable development.

Keywords: household, energy, trends, strategy, sustainable, Nigeria

Procedia PDF Downloads 38
12407 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 187
12406 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading

Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro

Abstract:

Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.

Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling

Procedia PDF Downloads 246
12405 CertifHy: Developing a European Framework for the Generation of Guarantees of Origin for Green Hydrogen

Authors: Frederic Barth, Wouter Vanhoudt, Marc Londo, Jaap C. Jansen, Karine Veum, Javier Castro, Klaus Nürnberger, Matthias Altmann

Abstract:

Hydrogen is expected to play a key role in the transition towards a low-carbon economy, especially within the transport sector, the energy sector and the (petro)chemical industry sector. However, the production and use of hydrogen only make sense if the production and transportation are carried out with minimal impact on natural resources, and if greenhouse gas emissions are reduced in comparison to conventional hydrogen or conventional fuels. The CertifHy project, supported by a wide range of key European industry leaders (gas companies, chemical industry, energy utilities, green hydrogen technology developers and automobile manufacturers, as well as other leading industrial players) therefore aims to: 1. Define a widely acceptable definition of green hydrogen. 2. Determine how a robust Guarantee of Origin (GoO) scheme for green hydrogen should be designed and implemented throughout the EU. It is divided into the following work packages (WPs). 1. Generic market outlook for green hydrogen: Evidence of existing industrial markets and the potential development of new energy related markets for green hydrogen in the EU, overview of the segments and their future trends, drivers and market outlook (WP1). 2. Definition of “green” hydrogen: step-by-step consultation approach leading to a consensus on the definition of green hydrogen within the EU (WP2). 3. Review of existing platforms and interactions between existing GoO and green hydrogen: Lessons learnt and mapping of interactions (WP3). 4. Definition of a framework of guarantees of origin for “green” hydrogen: Technical specifications, rules and obligations for the GoO, impact analysis (WP4). 5. Roadmap for the implementation of an EU-wide GoO scheme for green hydrogen: the project implementation plan will be presented to the FCH JU and the European Commission as the key outcome of the project and shared with stakeholders before finalisation (WP5 and 6). Definition of Green Hydrogen: CertifHy Green hydrogen is hydrogen from renewable sources that is also CertifHy Low-GHG-emissions hydrogen. Hydrogen from renewable sources is hydrogen belonging to the share of production equal to the share of renewable energy sources (as defined in the EU RES directive) in energy consumption for hydrogen production, excluding ancillary functions. CertifHy Low-GHG hydrogen is hydrogen with emissions lower than the defined CertifHy Low-GHG-emissions threshold, i.e. 36.4 gCO2eq/MJ, produced in a plant where the average emissions intensity of the non-CertifHy Low-GHG hydrogen production (based on an LCA approach), since sign-up or in the past 12 months, does not exceed the emissions intensity of the benchmark process (SMR of natural gas), i.e. 91.0 gCO2eq/MJ.

Keywords: green hydrogen, cross-cutting, guarantee of origin, certificate, DG energy, bankability

Procedia PDF Downloads 462
12404 Hybrid Energy Harvesting System with Energy Storage Management

Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia

Abstract:

In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.

Keywords: supercapacitors, energy storage, electronic overvoltage protection, energy harvesting

Procedia PDF Downloads 42
12403 A Quadratic Approach for Generating Pythagorean Triples

Authors: P. K. Rahul Krishna, S. Sandeep Kumar, Jayanthi Sunder Raj

Abstract:

The article explores one of the important relations between numbers-the Pythagorean triples (triplets) which finds its application in distance measurement, construction of roads, towers, buildings and wherever Pythagoras theorem finds its application. The Pythagorean triples are numbers, that satisfy the condition “In a given set of three natural numbers, the sum of squares of two natural numbers is equal to the square of the other natural number”. There are numerous methods and equations to obtain the triplets, which have their own merits and demerits. Here, quadratic approach for generating triples uses the hypotenuse leg difference method. The advantage is that variables are few and finally only three independent variables are present.

Keywords: arithmetic progression, hypotenuse leg difference method, natural numbers, Pythagorean triplets, quadratic equation

Procedia PDF Downloads 177
12402 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 361
12401 Thermal and Solar Performances of Adsorption Solar Refrigerating Machine

Authors: Nadia Allouache

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 46
12400 Semi-Natural Meadows of Natura 2000 Habitats – Conservation and Renewable Energy Source

Authors: Mateusz Meserszmit, Mariusz Chrabąszcz, Adriana Trojanowska-Olichwer, Zygmunt Kącki

Abstract:

Semi-natural meadows are valuable communities from the point of view of biodiversity, but their survival is strongly related to human activity. Unfortunately, the current status of preservation of extensively used meadows in Europe is frequently assessed as “unfavorable”. This is due to agricultural activity, in particular the lack of appropriate conservation procedures such as the cutting of meadows or livestock grazing. However, for more effective protective measures, the preservation of the biological diversity of meadows requires an interdisciplinary approach from both scientists and practitioners from many fields. Our research aimed to present the possibility of conservation of semi-natural meadows using cut biomass for the production of bioenergy – biogas, taking into consideration the botanical characteristics of the studied habitat and the chemical properties of biomass. A field study was conducted in Poland, within an area covered by the European Union's nature conservation programme. The samples were collected on four dates (May 24th, July 1st, July 23rd, and September 1st) from a study site established within a Molinion meadow. The biomass collected at the earliest date mostly consisted of plants with flowers in bud or fully open flowers. At the later harvest dates, most plants were at the fruiting or seed shed stage. An earlier stage of plant growth contributed to a lower biomass yield, which also resulted in a lower methane yield per hectare. The methane yield per hectare was at the end of May 482 m3 CH4 ha-1, at the beginning of July 867 m3 CH4 ha-1, at the end of July 759 m3 CH4 ha-1 and at the beginning of September 730 m3 CH4 ha-1. The biomass harvested in May demonstrated a significantly higher content of the elements: N, P, and K, but a lower Ca content compared to later harvested biomass, which may affect the biogas production process. The use of hay as a source of renewable energy can become an important element of conservation adapted for this type of habitat.

Keywords: nature conservation, biomass, bioenergy, grassland

Procedia PDF Downloads 87
12399 Distributed Energy System - Microgrid Integration of Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, grid code compliance

Procedia PDF Downloads 123
12398 Study Concerning the Energy-to-Mass Ratio in Pneumatic Muscles

Authors: Tudor Deaconescu, Andrea Deaconescu

Abstract:

The utilization of pneumatic muscles in the actuation of industrial systems is still in its early stages, hence studies on the constructive solutions which include an assessment of their functional performance with a focus on one of the most important characteristics-energy efficiency are required. A quality indicator that adequately reflects the energy efficiency of an actuator is the energy-to-mass ratio. This ratio is computed in the paper for various types and sizes of pneumatic muscles manufactured by Festo, and is subsequently compared to the similar ratios determined for two categories of pneumatic cylinders.

Keywords: pneumatic cylinders, pneumatic muscles, energy-to-mass ratio, muscle stroke

Procedia PDF Downloads 315
12397 Performance Analysis of Hybrid Solar Photovoltaic-Thermal Collector with TRANSYS Simulator

Authors: Ashish Lochan, Anil K. Dahiya, Amit Verma

Abstract:

The idea of combining photovoltaic and solar thermal collector to provide electrical and heat energy is not new, however, it is an area of limited attention. Hybrid photovoltaic-thermals have become a focus point of interest in the field of solar energy. Integration of both (photovoltaic and thermal collector) provide greater opportunity for the use of renewable solar energy. This system converts solar energy into electricity and heat energy simultaneously. Theoretical performance analyses of hybrid PV/Ts have been carried out. Also, the temperature of water (as a heat carrier) have been calculated for different seasons with the help of TRANSYS.

Keywords: photovoltaic-thermal, solar energy, seasonal performance analysis, TRANSYS

Procedia PDF Downloads 629
12396 Positive Energy Districts in the Swedish Energy System

Authors: Vartan Ahrens Kayayan, Mattias Gustafsson, Erik Dotzauer

Abstract:

The European Union is introducing the positive energy district concept, which has the goal to reduce overall carbon dioxide emissions. Other studies have already mapped the make-up of such districts, and reviewed their definitions and where they are positioned. The Swedish energy system is unique compared to others in Europe, due to the implementation of low-carbon electricity and heat energy sources and high uptake of district heating. The goal for this paper is to start the discussion about how the concept of positive energy districts can best be applied to the Swedish context and meet their mitigation goals. To explore how these differences impact the formation of positive energy districts, two cases were analyzed for their methods and how these integrate into the Swedish energy system: a district in Uppsala with a focus on energy and another in Helsingborg with a focus on climate. The case in Uppsala uses primary energy calculations which can be critisied but take a virtual border that allows for its surrounding system to be considered. The district in Helsingborg has a complex methodology for considering the life cycle emissions of the neighborhood. It is successful in considering the energy balance on a monthly basis, but it can be problematized in terms of creating sub-optimized systems due to setting tight geographical constraints. The discussion of shaping the definitions and methodologies for positive energy districts is taking place in Europe and Sweden. We identify three pitfalls that must be avoided so that positive energy districts meet their mitigation goals in the Swedish context. The goal of pushing out fossil fuels is not relevant in the current energy system, the mismatch between summer electricity production and winter energy demands should be addressed, and further implementations should consider collaboration with the established district heating grid.

Keywords: positive energy districts, energy system, renewable energy, European Union

Procedia PDF Downloads 56
12395 Conceptualization and Strategies of Biogas Technology for Rural Development in Nigeria

Authors: Okorowo Cyril Agochi

Abstract:

The main challenge of present world is to harness the energy source which is environment friendly and ecologically balanced. This need has forced to search for other alternate source of energy. But unfortunately the new alternative energy sources like the solar, hydro, wind etc. require huge economical value and technical power to operate, which seem to be very difficult for the developing countries like Nigeria. In the present moment biogas energy can be one and only reliable, easily available and economically feasible source of alternative and renewable source which can be managed by locally available sources and simple technology for secondary schools, tertiary institution and rural villages. This paper is aimed at boosting the energy generation for developing of rural Nigeria, through Biogas.

Keywords: bio-gas, energy, environment, nigeria, technology

Procedia PDF Downloads 454
12394 Comparative Study of Ecological City Criteria in Traditional Iranian Cities

Authors: Zahra Yazdani Paraii, Zohreh Yazdani Paraei

Abstract:

Many urban designers and planners have been involved in the design of environmentally friendly or nature adaptable urban development models due to increase in urban populations in the recent century, limitation on natural resources, climate change, and lack of enough water and food. Ecological city is one of the latest models proposed to accomplish the latter goal. In this work, the existing establishing indicators of the ecological city are used regarding energy, water, land use and transportation issues. The model is used to compare the function of traditional settlements of Iran. The result of investigation shows that the specifications and functions of the traditional settlements of Iran fit well into the ecological city model. It is found that the inhabitants of the old cities and villages in Iran had founded ecological cities based on their knowledge of the environment and its natural opportunities and limitations.

Keywords: ecological city, traditional city, urban design, environment

Procedia PDF Downloads 221
12393 Experimental Study of Solar Drying of Verbena in Three Types of Solar Dryers

Authors: Llham Lhoume, Rachid Tadili, Nora Arbaoui

Abstract:

One of the most crucial ways to combat food insecurity is to minimize crop losses, food drying is one of the most organic, effective, low-cost and energy-efficient food preservation methods. In this regard, we undertake in this study an experimental evaluation and analysis of the thermal performance of different natural convection drying systems: a solar greenhouse dryer, an indirect solar dryer with a single compartment and a solar dryer with two compartments. These systems have been implemented at the Solar Energy and Environment Laboratory of Mohammed V University (Morocco). The objective of this work is to study the feasibility of converting a solar greenhouse into a solar dryer for use during the summer. On the other hand, to study the thermal performances of this greenhouse dryer by comparing it with other solar dryers. The experimental study showed that the drying of verbena leaves took 6 hours in the indirect dryer 1, 3 hours in the indirect dryer, 2 and 4 hours in the greenhouse dryer, but the amortization period of the solar greenhouse dryer is lower than the other two solar dryers. The results of this study provide key information on the implementation and performance of these systems for drying a food of great global interest.

Keywords: solar energy, drying, agriculture, biotechnologie

Procedia PDF Downloads 51
12392 Green-Y Model for Preliminary Sustainable Economical Concept of Renewable Energy Sources Deployment in ASEAN Countries

Authors: H. H. Goh, K. C. Goh, W. N. Z. S. Wan Sukri, Q. S. Chua, S. W. Lee, B. C. Kok

Abstract:

Endowed of renewable energy sources (RES) are the advantages of ASEAN, but they are using a low amount of RES only to generate electricity because their primary energy sources are fossil and coal. The cost of purchasing fossil and coal is cheaper now, but it might be expensive soon, as it will be depleted sooner and after. ASEAN showed that the RES are convenient to be implemented. Some country in ASEAN has huge renewable energy sources potential and use. The primary aim of this project is to assist ASEAN countries in preparing the renewable energy and to guide the policies for RES in the more upright direction. The Green-Y model will help ASEAN government to study and forecast the economic concept, including feed-in tariff.

Keywords: ASEAN RES, Renewable Energy, RES Policies, RES Potential, RES Utilization

Procedia PDF Downloads 473
12391 Energy-Saving Methods and Principles of Energy-Efficient Concept Design in the Northern Hemisphere

Authors: Yulia A. Kononova, Znang X. Ning

Abstract:

Nowadays, architectural development is getting faster and faster. Nevertheless, modern architecture often does not meet all the points, which could help our planet to get better. As we know, people are spending an enormous amount of energy every day of their lives. Because of the uncontrolled energy usage, people have to increase energy production. As energy production process demands a lot of fuel sources, it courses a lot of problems such as climate changes, environment pollution, animals’ distinction, and lack of energy sources also. Nevertheless, nowadays humanity has all the opportunities to change this situation. Architecture is one of the most popular fields where it is possible to apply new methods of saving energy or even creating it. Nowadays we have kinds of buildings, which can meet new willing. One of them is energy effective buildings, which can save or even produce energy, combining several energy-saving principles. The main aim of this research is to provide information that helps to apply energy-saving methods while designing an environment-friendly building. The research methodology requires gathering relevant information from literature, building guidelines documents and previous research works in order to analyze it and sum up into a material that can be applied to energy-efficient building design. To mark results it should be noted that the usage of all the energy-saving methods applied to a design project of building results in ultra-low energy buildings that require little energy for space heating or cooling. As a conclusion it can be stated that developing methods of passive house design can decrease the need of energy production, which is an important issue that has to be solved in order to save planet sources and decrease environment pollution.

Keywords: accumulation, energy-efficient building, storage, superinsulation, passive house

Procedia PDF Downloads 237
12390 Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.

Keywords: CO₂, energy intensity map, geographic information system (GIS), Hungary, Jewish quarter, rehabilitation

Procedia PDF Downloads 272
12389 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment

Authors: Leila Torkaman, Nasser Ghassembaglou

Abstract:

Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified. finally needed methods to optimize energy consumption and cooler's classification are provided.

Keywords: cooler, EER, energy label, optimization

Procedia PDF Downloads 317
12388 Natural Hazards and Their Costs in Albanian Part of Ohrid Graben

Authors: Mentor Sulollari

Abstract:

Albania, according to (UNU-EHS) United Nations University, Institute for Environment and Human Security studies for 2015, is listed as the number one country in Europe for the possibility to be caught by natural catastrophes. This is conditioned by unstudied human activity, which has seriously damaged the environment. Albanian part of Ohrid graben that lies in Southeast of Albania, is endangered by landslides and floods, as a result of uncontrolled urban development and low level of investment in infrastructure, rugged terrain in its western part and capricious climate caused by global warming. To be dealt with natural disasters, which cause casualties and material damage, it is important to study them in order to anticipate and reduce damages in future. As part of this study is the construction of natural hazards map, which show us where they are distributed, and which are the vulnerable areas. This article will also be dealing with socio-economic and environmental costs of those events and what are the measures to be taken to reduce them.

Keywords: flooding, landslides, natural catastrophes mapping, Pogradec, lake Ohrid, Albanian part of Ohrid graben

Procedia PDF Downloads 270
12387 Energy Service Companies as a Facilitator for Implementation of Energy-Environment Conventions

Authors: Bahareh Arghand

Abstract:

The establishment of rules and regulations for more effective energy-environment interactions are essential to achieving sustainable development. Sustainable development requires mechanisms that can promote compliance in energy-environment conventions. There are many binding agreements and non-binding instruments at regional and international levels on energy and the environment. These conventions try to decrease conflicts of interest between energy, environment and economic by legal principles and practical mechanisms. The major core of conventions is their implementations because the poor implementation and enforcement power affect their success. In this regard, the main goal of this study is proposing the effective implementation mechanisms. Energy service companies' (ESCOs) activities can improve energy efficiency and decrease the environmental degradations. Therefore, it can be proposed and assessed the merit mechanism of ESCO performance as a facilitator to implement energy-environment conventions. An assessment of ESCO performance, including its potentials, problems, and limitations, as a facilitator for effective implementation of the energy-environment convention, is included. This study is oriented towards effective development and application of laws and the function of ESCOs as appropriate economic instruments and facilitator for implementation of energy-environment conventions. The resulting system of close cooperation between the energy-environment conventions and ESCOs is geared toward advancing environmental protection and economic factors by the transfer of environmentally-sound technologies that meet sustainable development objectives.

Keywords: energy-environment conventions, energy service company, facilitator mechanism, sustainable development

Procedia PDF Downloads 146
12386 Condition for Plasma Instability and Stability Approaches

Authors: Ratna Sen

Abstract:

As due to very high temperature of Plasma it is very difficult to confine it for sufficient time so that nuclear fusion reactions to take place, As we know Plasma escapes faster than the binary collision rates. We studied the ball analogy and the ‘energy principle’ and calculated the total potential energy for the whole Plasma. If δ ⃗w is negative, that is decrease in potential energy then the plasma will be unstable. We also discussed different approaches of stability analysis such as Nyquist Method, MHD approximation and Vlasov approach of plasma stability. So that by using magnetic field configurations we can able to create a stable Plasma in Tokamak for generating energy for future generations.

Keywords: jello, magnetic field configuration, MHD approximation, energy principle

Procedia PDF Downloads 414
12385 Multi-Dimensional Energy Resource Evaluation in Climate Change beyond the 21st Century

Authors: Hameed Alshammari

Abstract:

The decarbonisation of the energy sector beyond the 21ˢᵗ century is akin to establishing morally responsible mechanisms that can propagate sustainable livelihoods (Denina et al., 2021). It implies that Kuwait undertakes a re-evaluation of energy generation gaps so as to tap the potential to reduce overreliance on fossil fuel (Si et al., 2020) and align with global views on sustainable energy generation and consumption.(Herrero, Pineda, Villar, & Zambrano, 2020). Without the economic pressure to switch to alternative sources of energy, Kuwait requires a multi-dimensional analysis the energy policies andsources of energy other than fossil fuels (Alsaad, 2021).Currently, Kuwait has an energy system that is highly skewed towards fossil fuels (Alsaad, 2021); hence, the reliance on burning fossil fuels forms part of the core elements of the general inefficient energy systems that have negative consequences to global environmental and economic systems (Kang et al., 2020). This paper undertakes a detailed literature review on factors needed for the development of a framework for the multi-dimensional energy resource analysis in Kuwait. The framework aims aligning the current energy policies in Kuwait with the global decarbonisation drive, to promote sustainable energy strategies.

Keywords: decarbonisation, energy, fossil fuels, multi-dimensional analysis, sustainability

Procedia PDF Downloads 63
12384 Performance Tracking of Thermal Plant Systems of Kuwait and Impact on the Environment

Authors: Abdullah Alharbi

Abstract:

Purpose: This research seeks to take a holistic strategic evaluation of the thermal power plants in Kuwait at both policy and technical level in order to allow a systematic retrofitting program. The new world order in energy generation and consumption demand that sources of energy can safeguard the use of natural resources and generate minimal impacts on the environment. For Kuwait, the energy used per capita is mainly associated with desalination plants. The overall impact of thermal power plant installations manifests indisposed of seawater and the health of marine life. Design/methodology/approach: The research adopts a case study based evaluation of performance data and documents of thermal plant installations in Kuwait. Findings: Research findings on the performance of existing thermal plants demand policy benchmarking with internationally acceptable standards in order to create clarity on decisions regarding demolition, retrofitting, or renewal. Research implications: This research has the potential to strategically inform and influence the piecemeal changes to power plants, including the replacement of power generation equipment, considering the varied technologies for thermal plants. Originality/value: This research provides evidence based data that can be useful for influencing operational efficiency after a holistic evaluation of existing capacity in comparison with future demands.

Keywords: energy, Kuwait, performance, stainability, tracking, thermal plant

Procedia PDF Downloads 69