Search results for: dataset quality
10299 Integration of Quality Function Deployment and Modular Function Deployment in Product Development
Authors: Naga Velamakuri, Jyothi K. Reddy
Abstract:
Quality must be designed into a product and not inspected has become the main motto of all the companies globally. Due to the rapidly increasing technology in the past few decades, the nature of demands from the consumers has become more sophisticated. To sustain this global revolution of innovation in production systems, companies have to take steps to accommodate this technology growth. In this process of understanding the customers' expectations, all the firms globally take steps to deliver a perfect output. Most of these techniques also concentrate on the consistent development and optimization of the product to exceed the expectations. Quality Function Deployment(QFD) and Modular Function Deployment(MFD) are such techniques which rely on the voice of the customer and help deliver the needs. In this paper, Quality Function Deployment and Modular Function Deployment techniques which help in converting the quantitative descriptions to qualitative outcomes are discussed. The area of interest would be to understand the scope of each of the techniques and the application range in product development when these are applied together to any problem. The research question would be mainly aimed at comprehending the limitations using modularity in product development.Keywords: quality function deployment, modular function deployment, house of quality, methodology
Procedia PDF Downloads 32810298 Exploring the Association between Race and Attitudes toward Physician-Assisted Death; An Analysis of the Gss Dataset
Authors: Seini G. Kaufusi
Abstract:
Background. Physician-assisted death (PAD) has and continues to be a controversial issue in the U.S. Dying with dignity statutes exists in 9 U.S. jurisdictions that permit competent adults diagnosed with a terminal illness and given a prognosis of 6 month or less to live to request medication to hasten death. Robust advocacy for and against PAD influences policy, and opinions vary. Aim. This study aims to explore the association between race and the attitudes toward physician-assisted death in the U.S. Methods. Data for this study derives from the General Social Survey (GSS) dataset, a national survey conducted by the National Opinion Research Center (NORC) that focuses on the opinions and values of American’s. A cross-sectional design and probability sample from the 2018 data set was used to randomly select respondents. Results. The results indicated that race is significantly associated with attitudes towards physician-assisted death. The level of significance suggests a strong positive association, and the direction indicated that Black and Other racial groups have higher rates of positive decision about PAD. Conclusion. Although attitudes towards PAD varied, Black and other racial groups had favorable decisions for PAD. Further research is crucial in the continuous debate on PAD and understanding the influences of predictors for or against PAD.Keywords: attitudes, euthanasia, physician-assisted death, race
Procedia PDF Downloads 16210297 The Audit Quality Effects on Reputation of the Certified Public Accountants in Thailand
Authors: Prateep Wajeetongratana
Abstract:
This research aims to study the audit quality that affected to the reputation of the certified public accountants in Thailand. The researcher defined the population for this research as a group of the certified public accountants in Thailand who are the member of the federation of accounting professions under the royal patronage of his majesty the king also disclose their information .The total sampling size is 325. The results showed the audit quality factor has influence to the reputation of the certified public accountants in Thailand by accuracy auditing, objectiveness auditing and clearness auditing .These factors show by y1 = 1.381 + .372x1.1 + .309x1.2 + .305x1.3 can be describe as professional standard strictly factor (Y.1.1) and the new clients raised from word of mount of old clients regularly factor (Y.1.2) by regression coefficient (R2) as.242, this shows that such variables could predict the audit quality variable as 24.2 percent.Keywords: audit quality, certified public accountants in Thailand, reputation
Procedia PDF Downloads 25810296 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT
Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh
Abstract:
Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module
Procedia PDF Downloads 19310295 Using Industrial Service Quality to Assess Service Quality Perception in Television Advertisement: A Case Study
Authors: Ana L. Martins, Rita S. Saraiva, João C. Ferreira
Abstract:
Much effort has been placed on the assessment of perceived service quality. Several models can be found in literature, but these are mainly focused on business-to-consumer (B2C) relationships. Literature on how to assess perceived quality in business-to-business (B2B) contexts is scarce both conceptually and in terms of its application. This research aims at filling this gap in literature by applying INDSERV to a case study situation. Under this scope, this research aims at analyzing the adequacy of the proposed assessment tool to other context besides the one where it was developed and by doing so analyzing the perceive quality of the advertisement service provided by a specific television network to its B2B customers. The INDSERV scale was adopted and applied to a sample of 33 clients, via questionnaires adapted to interviews. Data was collected in person or phone. Both quantitative and qualitative data collection was performed. Qualitative data analysis followed content analysis protocol. Quantitative analysis used hypotheses testing. Findings allowed to conclude that the perceived quality of the television service provided by television network is very positive, being the Soft Process Quality the parameter that reveals the highest perceived quality of the service as opposed to Potential Quality. To this end, some comments and suggestions were made by the clients regarding each one of these service quality parameters. Based on the hypotheses testing, it was noticed that only advertisement clients that maintain a connection to the television network from 5 to 10 years do show a significant different perception of the TV advertisement service provided by the company in what the Hard Process Quality parameter is concerned. Through the collected data content analysis, it was possible to obtain the percentage of clients which share the same opinions and suggestions for improvement. Finally, based on one of the four service quality parameter in a B2B context, managerial suggestions were developed aiming at improving the television network advertisement perceived quality service.Keywords: B2B, case study, INDSERV, perceived service quality
Procedia PDF Downloads 20610294 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information
Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin
Abstract:
The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.Keywords: frame freezing, mean opinion score, objective assessment, subjective evaluation
Procedia PDF Downloads 49410293 Private and Public Health Sector Difference on Client Satisfaction: Results from Secondary Data Analysis in Sindh, Pakistan
Authors: Wajiha Javed, Arsalan Jabbar, Nelofer Mehboob, Muhammad Tafseer, Zahid Memon
Abstract:
Introduction: Researchers globally have strived to explore diverse factors that augment the continuation and uptake of family planning methods. Clients’ satisfaction is one of the core determinants facilitating continuation of family planning methods. There is a major debate yet scanty evidence to contrast public and private sectors with respect to client satisfaction. The objective of this study is to compare quality-of-care provided by public and private sectors of Pakistan through a client satisfaction lens. Methods: We used Pakistan Demographic Heath Survey 2012-13 dataset (Sindh province) on a total of 3133 Married Women of Reproductive Age (MWRA) aged 15-49 years. Source of family planning (public/private sector) was the main exposure variable. Outcome variable was client satisfaction judged by ten different dimensions of client satisfaction. Means and standard deviations were calculated for continuous variable while for categorical variable frequencies and percentages were computed. For univariate analysis, Chi-square/Fisher Exact test was used to find an association between clients’ satisfaction in public and private sectors. Ten different multivariate models were made. Variables were checked for multi-collinearity, confounding, and interaction, and then advanced logistic regression was used to explore the relationship between client satisfaction and dependent outcome after adjusting for all known confounding factors and results are presented as OR and AOR (95% CI). Results: Multivariate analyses showed that clients were less satisfied in contraceptive provision from private sector as compared to public sector (AOR 0.92,95% CI 0.63-1.68) even though the result was not statistically significant. Clients were more satisfied from private sector as compared to the public sector with respect to other determinants of quality-of-care (follow-up care (AOR 3.29, 95% CI 1.95-5.55), infection prevention (AOR 2.41, 95% CI 1.60-3.62), counseling services (AOR 2.01, 95% CI 1.27-3.18, timely treatment (AOR 3.37, 95% CI 2.20-5.15), attitude of staff (AOR 2.23, 95% CI 1.50-3.33), punctuality of staff (AOR 2.28, 95% CI 1.92-4.13), timely referring (AOR 2.34, 95% CI 1.63-3.35), staff cooperation (AOR 1.75, 95% CI 1.22-2.51) and complications handling (AOR 2.27, 95% CI 1.56-3.29).Keywords: client satisfaction, family planning, public private partnership, quality of care
Procedia PDF Downloads 41910292 Heuristic Classification of Hydrophone Recordings
Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas
Abstract:
An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.Keywords: anthrophony, hydrophone, k-means, machine learning
Procedia PDF Downloads 17010291 Study and Improvement of the Quality of a Production Line
Authors: S. Bouchami, M.N. Lakhoua
Abstract:
The automotive market is a dynamic market that continues to grow. That’s why several companies belonging to this sector adopt a quality improvement approach. Wanting to be competitive and successful in the environment in which they operate, these companies are dedicated to establishing a system of quality management to ensure the achievement of the objective quality, improving the products and process as well as the satisfaction of the customers. In this paper, the management of the quality and the improvement of a production line in an industrial company is presented. In fact, the project is divided into two essential parts: the creation of the technical line documentation and the quality assurance documentation and the resolution of defects at the line, as well as those claimed by the customer. The creation of the documents has required a deep understanding of the manufacturing process. The analysis and problem solving were done through the implementation of PDCA (Plan Do Check Act) and FTA (Fault Tree Analysis). As perspective, in order to better optimize production and improve the efficiency of the production line, a study on the problems associated with the supply of raw materials should be made to solve the problems of stock-outs which cause delays penalizing for the industrial company.Keywords: quality management, documentary system, Plan Do Check Act (PDCA), fault tree analysis (FTA) method
Procedia PDF Downloads 14210290 Healthcare Service Quality in Indian Context
Authors: Ganesh Nivrutti Akhade
Abstract:
This paper attempts to develop a reliable and valid instrument of measuring Healthcare service quality in India, and also analyses the impact of demographic factor of respondent on healthcare service quality. In this research paper , extant literature survey, discussion with stakeholder of healthcare system such as patients, patients relative, administrators of hospitals, clinics, professionals and expert interviews were used to develop a attributes of healthcare service quality dimensions. A pilot study was conducted with a sample of 31 healthcare patients of private sector, public sector ,trust hospital ,primary health care centers and clinics was surveyed in the Nagpur Metropolitan Area. At the end fifteen dimensions—reliability, assurance, responsiveness, tangibility, empathy, affordability, respect, and caring, Attitude of staff, Technical competence, Appropriateness, Safety, continuity, Effectiveness, Availability, Financial support. This fifteen-dimensional model was validated through a content validity and construct validity. The proposed research model shows acceptable fit indices. Impact of these dimensions on the Overall Healthcare Service Quality and customer satisfaction are analyzed using multiple regression technique. Findings indicate that all dimensions carry significant impact on the Overall Healthcare Service Quality perceptions and customer satisfaction. However, availability and effectiveness dimensions carry the maximum impact on the Overall healthcare Service Quality .Keywords: healthcare, service quality, factor analysis (CFA), india, service quality dimensions
Procedia PDF Downloads 27710289 Gait Biometric for Person Re-Identification
Authors: Lavanya Srinivasan
Abstract:
Biometric identification is to identify unique features in a person like fingerprints, iris, ear, and voice recognition that need the subject's permission and physical contact. Gait biometric is used to identify the unique gait of the person by extracting moving features. The main advantage of gait biometric to identify the gait of a person at a distance, without any physical contact. In this work, the gait biometric is used for person re-identification. The person walking naturally compared with the same person walking with bag, coat, and case recorded using longwave infrared, short wave infrared, medium wave infrared, and visible cameras. The videos are recorded in rural and in urban environments. The pre-processing technique includes human identified using YOLO, background subtraction, silhouettes extraction, and synthesis Gait Entropy Image by averaging the silhouettes. The moving features are extracted from the Gait Entropy Energy Image. The extracted features are dimensionality reduced by the principal component analysis and recognised using different classifiers. The comparative results with the different classifier show that linear discriminant analysis outperforms other classifiers with 95.8% for visible in the rural dataset and 94.8% for longwave infrared in the urban dataset.Keywords: biometric, gait, silhouettes, YOLO
Procedia PDF Downloads 17210288 One-Shot Text Classification with Multilingual-BERT
Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao
Abstract:
Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.Keywords: OSML, BERT, text classification, one shot
Procedia PDF Downloads 10110287 Deteriorating Ambient Air Quality Resulted from Invasion of Foreign Air Pollutants
Authors: Kuo-C. Lo, Chung-H. Hung
Abstract:
Invasion of foreign air pollutants to deteriorate local air quality has become an emerging international issue of concern. This study aimed to apply meteorological and air quality model, WRF-Chem (V3.1), for simulating and analyzing the phenomenon of forming of high-concentrated particulate matters, PM10 and PM2.5, in ambient air of Taiwan during January 17th to 19th, 2014. The foreign air pollutants were mainly from long-distance transport of air pollutants of China being transported with a strong continental cold high. It was observed that PM10 and PM2.5 peaked as high as 182~588 μg/m3 and 95~165 μg/m3, respectively, in the ambient air of west side of Taiwan. They were about 2~3 folds higher than the usual concentrations of particulate matters in these seasons.Keywords: WRF-Chem, air pollution, PM2.5, ambient air quality
Procedia PDF Downloads 45810286 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images
Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei
Abstract:
Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.Keywords: miner self-rescue, object detection, underground mine, YOLO
Procedia PDF Downloads 8110285 A Review on Water Models of Surface Water Environment
Authors: Shahbaz G. Hassan
Abstract:
Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.Keywords: empirical models, mathematical, statistical, water quality
Procedia PDF Downloads 26410284 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases
Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha
Abstract:
Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.Keywords: feature fusion, image retrieval, membership function, normalization
Procedia PDF Downloads 34510283 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics
Authors: Mikheil Kalmakhelidze
Abstract:
Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.Keywords: description logic, fuzzy logic, neural networks, record linkage
Procedia PDF Downloads 27210282 Business Intelligence Dashboard Solutions for Improving Decision Making Process: A Focus on Prostate Cancer
Authors: Mona Isazad Mashinchi, Davood Roshan Sangachin, Francis J. Sullivan, Dietrich Rebholz-Schuhmann
Abstract:
Background: Decision-making processes are nowadays driven by data, data analytics and Business Intelligence (BI). BI as a software platform can provide a wide variety of capabilities such as organization memory, information integration, insight creation and presentation capabilities. Visualizing data through dashboards is one of the BI solutions (for a variety of areas) which helps managers in the decision making processes to expose the most informative information at a glance. In the healthcare domain to date, dashboard presentations are more frequently used to track performance related metrics and less frequently used to monitor those quality parameters which relate directly to patient outcomes. Providing effective and timely care for patients and improving the health outcome are highly dependent on presenting and visualizing data and information. Objective: In this research, the focus is on the presentation capabilities of BI to design a dashboard for prostate cancer (PC) data that allows better decision making for the patients, the hospital and the healthcare system related to a cancer dataset. The aim of this research is to customize a retrospective PC dataset in a dashboard interface to give a better understanding of data in the categories (risk factors, treatment approaches, disease control and side effects) which matter most to patients as well as other stakeholders. By presenting the outcome in the dashboard we address one of the major targets of a value-based health care (VBHC) delivery model which is measuring the value and presenting the outcome to different actors in HC industry (such as patients and doctors) for a better decision making. Method: For visualizing the stored data to users, three interactive dashboards based on the PC dataset have been developed (using the Tableau Software) to provide better views to the risk factors, treatment approaches, and side effects. Results: Many benefits derived from interactive graphs and tables in dashboards which helped to easily visualize and see the patients at risk, better understanding the relationship between patient's status after treatment and their initial status before treatment, or to choose better decision about treatments with fewer side effects regarding patient status and etc. Conclusions: Building a well-designed and informative dashboard is related to three important factors including; the users, goals and the data types. Dashboard's hierarchies, drilling, and graphical features can guide doctors to better navigate through information. The features of the interactive PC dashboard not only let doctors ask specific questions and filter the results based on the key performance indicators (KPI) such as: Gleason Grade, Patient's Age and Status, but may also help patients to better understand different treatment outcomes, such as side effects during the time, and have an active role in their treatment decisions. Currently, we are extending the results to the real-time interactive dashboard that users (either patients and doctors) can easily explore the data by choosing preferred attribute and data to make better near real-time decisions.Keywords: business intelligence, dashboard, decision making, healthcare, prostate cancer, value-based healthcare
Procedia PDF Downloads 14010281 Enhancing Quality Management Systems through Automated Controls and Neural Networks
Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova
Abstract:
The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.Keywords: automated control system, quality management, document structure, formal language
Procedia PDF Downloads 3910280 Implementing Total Quality Management in Higher Education
Authors: Abbos Utkirov
Abstract:
Total Quality Management (TQM) in the context of educational institutions requires careful planning and the implementation of an annual quality program to achieve its vision effectively. By applying TQM concepts, the higher education system can experience significant improvements. This study aims to examine TQM in higher education, focusing on Critical Success Factors (CSF) and their implementation across all areas. The study ultimately concludes that CSF and their execution play a crucial role in higher education institutions. Some institutions have already benefited from TQM methods by dedicating themselves to the system and using it to achieve their objectives. Through this review, recent studies shed light on how the TQM system can employ various strategies and hypotheses to empower employees, foster a positive and supportive environment, and emphasize the importance of enabling students to unleash their full potential.Keywords: total quality management (TQM), critical success factor (CSF), organizational performance, quality management practices
Procedia PDF Downloads 8910279 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network
Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba
Abstract:
Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network
Procedia PDF Downloads 23210278 Assessment of Sleep Disorders in Moroccan Women with Gynecological Cancer: Cross-Sectional Study
Authors: Amina Aquil, Abdeljalil El Got
Abstract:
Background: Sleep quality is one of the most important indicators related to the quality of life of patients suffering from cancer. Many factors could affect this quality of sleep and then be considered as associated predictors. Methods: The aim of this study was to assess the prevalence of sleep disorders and the associated factors with impaired sleep quality in Moroccan women with gynecological cancer. A cross-sectional study was carried out within the oncology department of the Ibn Rochd University Hospital, Casablanca, on Moroccan women who had undergone radical surgery for gynecological cancer (n=100). Translated and validated Arabic versions of the following international scales were used: Pittsburgh sleep quality index (PSQI), Hospital Anxiety and Depression Scale (HADS), Rosenberg's self-esteem scale (RSES), and Body image scale (BIS). Results: 78% of participants were considered poor sleepers. Most of the patients exhibited very poor subjective quality, low sleep latency, a short period of sleep, and a low rate of usual sleep efficiency. The vast majority of these patients were in poor shape during the day and did not use sleep medication. Waking up in the middle of the night or early in the morning and getting up to use the bathroom were the main reasons for poor sleep quality. PSQI scores were positively correlated with anxiety, depression, body image dissatisfaction, and lower self-esteem (p < 0.001). Conclusion: Sleep quality and its predictors require a systematic evaluation and adequate management to prevent sleep disturbances and mental distress as well as to improve the quality of life of these patients.Keywords: body image, gynecological cancer, self esteem, sleep quality
Procedia PDF Downloads 12310277 An Investigation of Food Quality and Risks in Thailand: A Case of Inbound Senior Tourists
Authors: Kevin Wongleedee
Abstract:
Food quality and risks are major concerns for inbound senior tourists when visiting tourist destinations in Thailand. The purposes of this study were to investigate food quality and risks perceived by inbound senior tourists. This paper drew upon data collection from an inbound senior tourist survey conducted in Thailand during summer 2013. Summer time in Thailand is a high season for inbound tourists. It is also a high risk period in which a variety food safety issues and incidents have often occurred. The survey was structured primarily to obtain inbound senior tourists’ concerns toward a variety of food quality and risks they encountered during their trip in Thailand. A total of 400 inbound senior tourists were elicited as data input for mean and standard deviation. The findings revealed that inbound tourists rated the overall food quality at a high level and the three most important perceived food risks were 1) unclean physical cooking facility, 2) toxic chemical handling, and 3) unclean water.Keywords: food quality, inbound senior tourists, risks, Thailand
Procedia PDF Downloads 39710276 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 8010275 Assessment of Water Quality Network in Karoon River by Dynamic Programming Approach (DPA)
Authors: M. Nasri Nasrabadi, A. A. Hassani
Abstract:
Karoon is one of the greatest and longest rivers of Iran, which because of the existence of numerous industrial, agricultural centers and drinking usage, has a strategic situation in the west and southwest parts of Iran, and the optimal monitoring of its water quality is an essential and indispensable national issue. Due to financial constraints, water quality monitoring network design is an efficient way to manage water quality. The most crucial part is to find appropriate locations for monitoring stations. Considering the objectives of water usage, we evaluate existing water quality sampling stations of this river. There are several methods for assessment of existing monitoring stations such as Sanders method, multiple criteria decision making and dynamic programming approach (DPA) which DPA opted in this study. The results showed that due to the drinking water quality index out of 20 existing monitoring stations, nine stations should be retained on the river, that include of Gorgor-Band-Ghir of A zone, Dez-Band-Ghir of B zone, Teir, Pole Panjom and Zargan of C zone, Darkhoein, Hafar, Chobade, and Sabonsazi of D zone. In additional, stations of Dez river have the best conditions.Keywords: DPA, karoon river, network monitoring, water quality, sampling site
Procedia PDF Downloads 37710274 An Effective Change in the Strategic Structure of Quality Management Systems: The Organization’s Needs Management
Authors: Joel Carlos Vieira Reinhardt, Mariana de Freitas Dewes, Odair Lelis Gonçalez
Abstract:
This paper proposes a method to implement a strategic framework for the quality management system that considers the analysis of prospective scenarios in the determination of policy, mission, vision, objectives, processes, monitoring, and goals. Semantic categorization of qualitative testimonial research on employee perception shows it was possible to implement an effective change in the organizations at the Department of Aerospace Science and Technology through the focus on the organization's needs management, producing a rupture with the historical managerial practice.Keywords: management of company needs, mission, prospective scenarios, quality management, quality policy, vision
Procedia PDF Downloads 11710273 An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings
Authors: Kwok W. Mui, Ling T. Wong, Chin T. Cheung, Ho C. Yu
Abstract:
Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents.Keywords: calculator, indoor environmental quality (IEQ), residential buildings, 5-star benchmarks
Procedia PDF Downloads 47410272 Predicting the Quality of Life on the Basis of Perceived Social Support among Patients with Coronary Artery Bypass Graft
Authors: Azadeh Yaraghchi, Reza Bagherian Sararoodi, Niknaz Salehi Moghadam, Mohammad Hossein Mandegar, Adis Kraskian Mujembari, Omid Rezaei
Abstract:
Background: Quality of life is one of the most important consequences of disease in psychosomatic disorders. Many psychological factors are considered in predicting quality of life in patients with coronary artery bypass graft (CABG). The present study was aimed to determine the relationship between perceived social support and quality of life in patients with coronary artery bypass graft (CABG). Methods: The population included 82 patients who had undergone CABG from October 2014 to May 2015 in four different hospitals in Tehran. The patients were evaluated with Multi-dimension scale of perceived social support (MSPSS) and after three months follow up were evaluated by Short-Form quality of life questionnaire (SF-36). The obtained data were analyzed through Pearson correlation test and multiple variable regression models. Findings: A relationship between perceived social support and quality of life in patients with CABG was observed (r=0.374, p<0.01). The results showed that 22.4% of variation in quality of life is predicted by perceived social support components (p<0.01, R2 =0.224). Conclusion: Based on the results, perceived social support is one of the predictors of quality of life in patients with coronary artery bypass graft. Accordingly, these results can be useful in conceiving proactive policies, detecting high risk patients and planning for psychological interventions.Keywords: coronary artery bypass graft, perceived social support, psychological factors, quality of life
Procedia PDF Downloads 36910271 Quality Assurance Practices in the Universities of Pakistan: Physical Facilities as Encouragement
Authors: Ijaz Ahamad Tatlah
Abstract:
The justification of this study was to identify about physical facilities as encouragement to Quality Assurance Practices (QAP) in the Universities of Pakistan concerning the views of students, teachers and Directors of Quality Enhancement Cells’ (QEC’s) and to differentiate the views of students, teachers and Directors of QECs in relation to physical facilities about quality assurance practices in the universities of Pakistan. It was a quantitative and qualitative research study. This study was conducted on a sample of 28 universities (public and private sector) of Pakistan by using random and purposive sampling technique. Questionnaires and semi-structured interviews were planned to gather information from students, teachers and Directors of QECs in relation to physical facilities about quality assurance practices in the universities of Pakistan. The data was analyzed by using Descriptive, inferential statistics, and thematic coding. The study revealed that students, teachers and Directors of QEC’s faced a lot of problems and issues without physical facilities. Quality assurance Agency (QAA), Quality Assurance Department (QAD) and Higher Education commission (HEC) all are relevant Pakistani Agencies, which are working consistently of both sectors i.e. public and private to supervise, guide and facilitate the universities of Pakistan for developing quality assurance practices. Majority of the students teachers and Directors’ of QECs opined that books, research journals, manuals for use of science laboratories, equipment for experiments and update computers were available for teachers and students’ in the universities. It was suggested by the students teachers and Directors of QECs of universities that Quality Assurance Practices (QAP) can be accelerated by thinking the following steps: provision of sufficient resources, add the latest software for computers laboratories and new edition of books.Keywords: physical facilities, quality assurance practices, library, laboratory
Procedia PDF Downloads 38510270 Beyond the Travel: The Impact of Public Transport on Quality of Life
Authors: Shadab Bahreini
Abstract:
Public transportation is one of the most important aspects of cities, which impacts various factors of the Quality of Life (QoL) of citizens. A passenger's experience is influenced by a variety of indicators in addition to the cost and safety of the trip. This article intends to investigate how QoL is affected by public transport in an urban environment by introducing a literature review of QoL and Quality of Urban Life (QoUL), investigating the intersection of QoL and public transport, and reviewing the background theory for Transport Quality of Life (TQoL). The article proposes a Public Transport Quality of Life (PTQoL) framework comprised of a set of indicators that measure how public transport impacts QoL across personal (physical and mental), socioeconomic, and environmental dimensions. The study proposes using the framework to evaluate objective or subjective factors affecting a person's QoL regarding public transport. Finally, it concludes that public transport is a key component in shaping QoL in urban environments and that policymakers and urban planners should use the PTQoL framework to make evidence-based decisions to improve public transport systems and their impact on QoL.Keywords: public transport, quality of life, subjective and objective indicators, urban environment
Procedia PDF Downloads 147