Search results for: clinical survey data simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33603

Search results for: clinical survey data simulation

33153 Cloud Computing in Data Mining: A Technical Survey

Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham

Abstract:

Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.

Keywords: cloud computing, data mining, computing models, cloud services

Procedia PDF Downloads 482
33152 Analytical Study of Data Mining Techniques for Software Quality Assurance

Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar

Abstract:

Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.

Keywords: data mining, defect prediction, missing requirements, software quality

Procedia PDF Downloads 472
33151 Consumption Insurance against the Chronic Illness: Evidence from Thailand

Authors: Yuthapoom Thanakijborisut

Abstract:

This paper studies consumption insurance against the chronic illness in Thailand. The study estimates the impact of household consumption in the chronic illness on consumption growth. Chronic illness is the health care costs of a person or a household’s decision in treatment for the long term; the causes and effects of the household’s ability for smooth consumption. The chronic illnesses are measured in health status when at least one member within the household faces the chronic illness. The data used is from the Household Social Economic Panel Survey conducted during 2007 and 2012. The survey collected data from approximately 6,000 households from every province, both inside and outside municipal areas in Thailand. The study estimates the change in household consumption by using an ordinary least squares (OLS) regression model. The result shows that the members within the household facing the chronic illness would reduce the consumption by around 4%. This case indicates that consumption insurance in Thailand is quite sufficient against chronic illness.

Keywords: consumption insurance, chronic illness, health care, Thailand

Procedia PDF Downloads 242
33150 An Empirical Study of Students’ Learning Attitude, Problem-solving Skills and Learning Engagement in an Online Internship Course During Pandemic

Authors: PB Venkataraman

Abstract:

Most of the real-life problems are ill-structured. They do not have a single solution but many competing solutions. The solution paths are non-linear and ambiguous, and the problem definition itself is many times a challenge. Students of professional education learn to solve such problems through internships. The current pandemic situation has constrained on-site internship opportunities; thus the students have no option but to pursue this learning online. This research assessed the learning gain of four undergraduate students in engineering as they undertook an online internship in an organisation over a period of eight weeks. A clinical interview at the end of the internship provided the primary data to assess the team’s problem-solving skills using a tested rubric. In addition to this, change in their learning attitudes were assessed through a pre-post study using a repurposed CLASS instrument for Electrical Engineering. Analysis of CLASS data indicated a shift in the sophistication of their learning attitude. A learning engagement survey adopting a 6-point Likert scale showed active participation and motivation in learning. We hope this new research will stimulate educators to exploit online internships even beyond the time of pandemic as more and more business operations are transforming into virtual.

Keywords: ill-structured problems, learning attitudes, internship, assessment, student engagement

Procedia PDF Downloads 204
33149 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 252
33148 Traditional Chinese Medicine Treatment for Coronary Heart Disease: a Meta-Analysis

Authors: Yuxi Wang, Xuan Gao

Abstract:

Traditional Chinese medicine has been used in the treatment of coronary heart disease (CHD) for centuries, and in recent years, the research data on the efficacy of traditional Chinese medicine through clinical trials has gradually increased to explore its real efficacy and internal pharmacology. However, due to the complexity of traditional Chinese medicine prescriptions, the efficacy of each component is difficult to clarify, and pharmacological research is challenging. This study aims to systematically review and clarify the clinical efficacy of traditional Chinese medicine in the treatment of coronary heart disease through a meta-analysis. Based on PubMed, CNKI database, Wanfang data, and other databases, eleven randomized controlled trials and 1091 CHD subjects were included. Two researchers conducted a systematic review of the papers and conducted a meta-analysis supporting the positive therapeutic effect of traditional Chinese medicine in the treatment of CHD.

Keywords: coronary heart disease, Chinese medicine, treatment, meta-analysis

Procedia PDF Downloads 129
33147 Immunity Boosting and Balanced Diet Prevents Viral Infections with Special Emphasis on COVID-19

Authors: K. R. Padma, K. R. Don

Abstract:

Background and aims: A balanced nutritional diet is essential in maintaining immunity and for deterrence as well as desisting of viral infections. Nevertheless, currently, very less information is available online regarding nutrition consumption during the period of coronavirus infection, i.e. (COVID-19). In our systematic review article, we portrayed and aimed to evaluate evidence from various previous clinical trials, which was based on nutritional interventions for viral diseases and given a concise overview. Methods: A systematic search was carried out employing 3 key medical databases: PubMed®, Web of Science®, and SciVerse Scopus®. Studies were performed and evaluated suitable if clinical trials in humans, appropriate immunological parameters on viral and respiratory infections, need to perform. Basic Clinical trials on nutritional vitamins, minerals, nutraceuticals as well as probiotics were included. Results: We have explored 10 review articles and extracted data for our study. A total of > 2000 participants were included and excluded several other trace elements as well as various vitamins, but in inclusion criteria mainly concentrated on those who have shown propitious immune-modulatory effects against viral respiratory infections. Conclusions: We have encapsulated the potential health benefits of some minerals, vitamins, as well as certain designer foods, nutraceuticals, and probiotics in viral infections. Based on this nutritional interventional strategy available from our present data, it could be promising to abstain and reduce the COVID-19 infection replication and boost our immunity to fight against the virus.

Keywords: COVID-19, immunity, vitamins, nutritional intervention strategy

Procedia PDF Downloads 139
33146 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 135
33145 The Impact of Transformational Leadership on Individual Attributes

Authors: Bilal Liaqat, Muhammad Umar, Zara Bashir, Hassan Rafique, Mohsin Abbasi, Zarak Khan

Abstract:

Transformational leadership is one of the most studied topics in the organization sciences. However, the impact of transformational leadership on employee’s individual attributes have not yet been studied. Purpose: This research aims to discover the relationship between transformational leadership and employee motivation, performance and creativity. Moreover, the study will also investigate the influence of transformational leadership on employee performance through employee motivation and employee creativity. Design-Methodology-Approach: The data was collected from employees in different organization. This cross-sectional study collected data from employees and the methodology used includes survey data that were collected from employees in organizations. Structured interviews were also conducted to explain the outcomes from the survey. Findings: The results of this study reveal that transformational leadership has a positive impact on employee’s individual attributes. Research Implications: Although this study expands our knowledge about the role of learning orientation between transformational leadership and employee motivation, performance and creativity, the prospects for further research are still present.

Keywords: employee creativity, employee motivation, employee performance, transformational leadership

Procedia PDF Downloads 232
33144 Experimental Performance and Numerical Simulation of Double Glass Wall

Authors: Thana Ananacha

Abstract:

This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered namely 400 and 800 W.m-2 the corresponding initial condition temperatures were to 30.5 and 38.5 ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.

Keywords: thermal simulation, Double Glass Wall, velocity field, finite element method (FEM)

Procedia PDF Downloads 363
33143 Practical Application of Simulation of Business Processes

Authors: Markéta Gregušová, Vladimíra Schindlerová, Ivana Šajdlerová, Petr Mohyla, Jan Kedroň

Abstract:

Company managers are always looking for more and more opportunities to succeed in today's fiercely competitive market. To maintain your place among the successful companies on the market today or to come up with a revolutionary business idea is much more difficult than before. Each new or improved method, tool, or approach that can improve the functioning of business processes or even of the entire system is worth checking and verification. The use of simulation in the design of manufacturing systems and their management in practice is one of the ways without increased risk, which makes it possible to find the optimal parameters of manufacturing processes and systems. The paper presents an example of use of simulation for solution of the bottleneck problem in the concrete company.

Keywords: practical applications, business processes, systems, simulation

Procedia PDF Downloads 548
33142 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation

Authors: Li-hsing Shih, Wei-Jen Hsu

Abstract:

Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.

Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation

Procedia PDF Downloads 76
33141 Threat Analysis: A Technical Review on Risk Assessment and Management of National Testing Service (NTS)

Authors: Beenish Urooj, Ubaid Ullah, Sidra Riasat

Abstract:

National Testing Service-Pakistan (NTS) is an agency in Pakistan that conducts student success appraisal examinations. In this research paper, we must present a security model for the NTS organization. The security model will depict certain security countermeasures for a better defense against certain types of breaches and system malware. We will provide a security roadmap, which will help the company to execute its further goals to maintain security standards and policies. We also covered multiple aspects in securing the environment of the organization. We introduced the processes, architecture, data classification, auditing approaches, survey responses, data handling, and also training and awareness of risk for the company. The primary contribution is the Risk Survey, based on the maturity model meant to assess and examine employee training and knowledge of risks in the company's activities.

Keywords: NTS, risk assessment, threat factors, security, services

Procedia PDF Downloads 74
33140 Prediction of Cardiovascular Markers Associated With Aromatase Inhibitors Side Effects Among Breast Cancer Women in Africa

Authors: Jean Paul M. Milambo

Abstract:

Purpose: Aromatase inhibitors (AIs) are indicated in the treatment of hormone-receptive breast cancer in postmenopausal women in various settings. Studies have shown cardiovascular events in some developed countries. To date the data is sparce for evidence-based recommendations in African clinical settings due to lack of cancer registries, capacity building and surveillance systems. Therefore, this study was conducted to assess the feasibility of HyBeacon® probe genotyping adjunctive to standard care for timely prediction and diagnosis of Aromatase inhibitors (AIs) associated adverse events in breast cancer survivors in Africa. Methods: Cross sectional study was conducted to assess the knowledge of POCT among six African countries using online survey and telephonically contacted. Incremental cost effectiveness ratio (ICER) was calculated, using diagnostic accuracy study. This was based on mathematical modeling. Results: One hundred twenty-six participants were considered for analysis (mean age = 61 years; SD = 7.11 years; 95%CI: 60-62 years). Comparison of genotyping from HyBeacon® probe technology to Sanger sequencing showed that sensitivity was reported at 99% (95% CI: 94.55% to 99.97%), specificity at 89.44% (95% CI: 87.25 to 91.38%), PPV at 51% (95%: 43.77 to 58.26%), and NPV at 99.88% (95% CI: 99.31 to 100.00%). Based on the mathematical model, the assumptions revealed that ICER was R7 044.55. Conclusion: POCT using HyBeacon® probe genotyping for AI-associated adverse events maybe cost effective in many African clinical settings. Integration of preventive measures for early detection and prevention guided by different subtype of breast cancer diagnosis with specific clinical, biomedical and genetic screenings may improve cancer survivorship. Feasibility of POCT was demonstrated but the implementation could be achieved by improving the integration of POCT within primary health cares, referral cancer hospitals with capacity building activities at different level of health systems. This finding is pertinent for a future envisioned implementation and global scale-up of POCT-based initiative as part of risk communication strategies with clear management pathways.

Keywords: breast cancer, diagnosis, point of care, South Africa, aromatase inhibitors

Procedia PDF Downloads 83
33139 Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor

Authors: U. P. L. Wijayarathne, K. C. Wasalathilake

Abstract:

This work presents the modelling and simulation of saponification of ethyl acetate in the presence of sodium hydroxide in a plug flow reactor using Aspen Plus simulation software. Plug flow reactors are widely used in the industry due to the non-mixing property. The use of plug flow reactors becomes significant when there is a need for continuous large scale reaction or fast reaction. Plug flow reactors have a high volumetric unit conversion as the occurrence for side reactions is minimum. In this research Aspen Plus V8.0 has been successfully used to simulate the plug flow reactor. In order to simulate the process as accurately as possible HYSYS Peng-Robinson EOS package was used as the property method. The results obtained from the simulation were verified by the experiment carried out in the EDIBON plug flow reactor module. The correlation coefficient (r2) was 0.98 and it proved that simulation results satisfactorily fit for the experimental model. The developed model can be used as a guide for understanding the reaction kinetics of a plug flow reactor.

Keywords: aspen plus, modelling, plug flow reactor, simulation

Procedia PDF Downloads 604
33138 Analysis of User Complaints and Preferences by Conducting User Surveys to Ascertain the Need for Change in Current Design of Helmets

Authors: Pratham Baheti, Rohan Sanghi, Aditya Gupta

Abstract:

In the largely populated city of New Delhi, India, there are a lot of people that travel by two-wheelers. Majority of the people wear helmets while traveling and know how important it is to wear helmets for their safety. Still, the number of deaths because of road accidents involving two-wheelers is significant. We had conducted a survey by traveling within and in the outskirts of Delhi so as to see the variation in data and in the opinion of people towards helmet being a safety device rather than to escape the traffic police. We conducted a survey at traffic junctions and crossings of all the stakeholders and collected feedback on the Helmet scenario in India. According to the survey, the possible reason for these deaths is that the people, being unaware of helmet safety standards (ISI standards for helmets), buy helmets with fake ISI mark from unauthorized helmet sellers for a cheap price. Also, for the people who do not wear a helmet at all or wear a helmet just because it is a law, the reasons that they do not want to wear a helmet is heavyweight, lack of ventilation, inconvenience due to a strap, and hair problems. To address all these problems, we are designing a helmet with reduced weight and also working on the Helmet’s retention system and ventilation. We plan to provide this product at a cheap cost whilst maintaining the ISI standards so that a larger section of the population would be able to afford the helmet.

Keywords: safety, survey, ISI marks, stakeholders, helmet

Procedia PDF Downloads 282
33137 Phantom and Clinical Evaluation of Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in Ga-PSMA PET/CT Studies Using Various Relative Difference Penalties and Acquisition Durations

Authors: Fatemeh Sadeghi, Peyman Sheikhzadeh

Abstract:

Introduction: Block Sequential Regularized Expectation Maximization (BSREM) reconstruction algorithm was recently developed to suppress excessive noise by applying a relative difference penalty. The aim of this study was to investigate the effect of various strengths of noise penalization factor in the BSREM algorithm under different acquisition duration and lesion sizes in order to determine an optimum penalty factor by considering both quantitative and qualitative image evaluation parameters in clinical uses. Materials and Methods: The NEMA IQ phantom and 15 clinical whole-body patients with prostate cancer were evaluated. Phantom and patients were injected withGallium-68 Prostate-Specific Membrane Antigen(68 Ga-PSMA)and scanned on a non-time-of-flight Discovery IQ Positron Emission Tomography/Computed Tomography(PET/CT) scanner with BGO crystals. The data were reconstructed using BSREM with a β-value of 100-500 at an interval of 100. These reconstructions were compared to OSEM as a widely used reconstruction algorithm. Following the standard NEMA measurement procedure, background variability (BV), recovery coefficient (RC), contrast recovery (CR) and residual lung error (LE) from phantom data and signal-to-noise ratio (SNR), signal-to-background ratio (SBR) and tumor SUV from clinical data were measured. Qualitative features of clinical images visually were ranked by one nuclear medicine expert. Results: The β-value acts as a noise suppression factor, so BSREM showed a decreasing image noise with an increasing β-value. BSREM, with a β-value of 400 at a decreased acquisition duration (2 min/ bp), made an approximately equal noise level with OSEM at an increased acquisition duration (5 min/ bp). For the β-value of 400 at 2 min/bp duration, SNR increased by 43.7%, and LE decreased by 62%, compared with OSEM at a 5 min/bp duration. In both phantom and clinical data, an increase in the β-value is translated into a decrease in SUV. The lowest level of SUV and noise were reached with the highest β-value (β=500), resulting in the highest SNR and lowest SBR due to the greater noise reduction than SUV reduction at the highest β-value. In compression of BSREM with different β-values, the relative difference in the quantitative parameters was generally larger for smaller lesions. As the β-value decreased from 500 to 100, the increase in CR was 160.2% for the smallest sphere (10mm) and 12.6% for the largest sphere (37mm), and the trend was similar for SNR (-58.4% and -20.5%, respectively). BSREM visually was ranked more than OSEM in all Qualitative features. Conclusions: The BSREM algorithm using more iteration numbers leads to more quantitative accuracy without excessive noise, which translates into higher overall image quality and lesion detectability. This improvement can be used to shorter acquisition time.

Keywords: BSREM reconstruction, PET/CT imaging, noise penalization, quantification accuracy

Procedia PDF Downloads 101
33136 Increasing the Speed of the Apriori Algorithm by Dimension Reduction

Authors: A. Abyar, R. Khavarzadeh

Abstract:

The most basic and important decision-making tool for industrial and service managers is understanding the market and customer behavior. In this regard, the Apriori algorithm, as one of the well-known machine learning methods, is used to identify customer preferences. On the other hand, with the increasing diversity of goods and services and the speed of changing customer behavior, we are faced with big data. Also, due to the large number of competitors and changing customer behavior, there is an urgent need for continuous analysis of this big data. While the speed of the Apriori algorithm decreases with increasing data volume. In this paper, the big data PCA method is used to reduce the dimension of the data in order to increase the speed of Apriori algorithm. Then, in the simulation section, the results are examined by generating data with different volumes and different diversity. The results show that when using this method, the speed of the a priori algorithm increases significantly.

Keywords: association rules, Apriori algorithm, big data, big data PCA, market basket analysis

Procedia PDF Downloads 10
33135 CFD simulation of Near Wall Turbulence and Heat Transfer of Molten Salts

Authors: C. S. Sona, Makrand A. Khanwale, Channamallikarjun S. Mathpati

Abstract:

New generation nuclear power plants are currently being developed to be highly economical, to be passive safe, to produce hydrogen. An important feature of these reactors will be the use of coolants at temperature higher than that being used in current nuclear reactors. The molten fluoride salt with a eutectic composition of 46.5% LiF - 11.5% NaF - 42% KF (mol %) commonly known as FLiNaK is a leading candidate for heat transfer coolant for these nuclear reactors. CFD simulations were carried out using large eddy simulations to investigate the flow characteristics of molten FLiNaK at 850°C at a Reynolds number of 10,500 in a cylindrical pipe. Simulation results have been validated with the help of mean velocity profile using direct numerical simulation data. Transient velocity information was used to identify and characterise turbulent structures which are important for transfer of heat across solid-fluid interface. A wavelet transform based methodology called wavelet transform modulus maxima was used to identify and characterise the singularities. This analysis was also used for flow visualisation, and also to calculate the heat transfer coefficient using small eddy model. The predicted Nusselt number showed good agreement with the available experimental data.

Keywords: FLiNaK, heat transfer, molten salt, turbulent structures

Procedia PDF Downloads 451
33134 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility

Authors: He Chao, Zhang Lei, Liu Ran, Li Ang

Abstract:

Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.

Keywords: space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent

Procedia PDF Downloads 408
33133 Evaluated Nuclear Data Based Photon Induced Nuclear Reaction Model of GEANT4

Authors: Jae Won Shin

Abstract:

We develop an evaluated nuclear data based photonuclear reaction model of GEANT4 for a more accurate simulation of photon-induced neutron production. The evaluated photonuclear data libraries from the ENDF/B-VII.1 are taken as input. Incident photon energies up to 140 MeV which is the threshold energy for the pion production are considered. For checking the validity of the use of the data-based model, we calculate the photoneutron production cross-sections and yields and compared them with experimental data. The results obtained from the developed model are found to be in good agreement with the experimental data for (γ,xn) reactions.

Keywords: ENDF/B-VII.1, GEANT4, photoneutron, photonuclear reaction

Procedia PDF Downloads 277
33132 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant

Authors: M. Wigwe, J. G Akpa, E. N Wami

Abstract:

Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.

Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol

Procedia PDF Downloads 503
33131 Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm

Authors: Galu Papy Yuma

Abstract:

This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system.

Keywords: GUPFC, IC-HS algorithm, Matlab/Simulink, damping oscillation

Procedia PDF Downloads 451
33130 A Cross-Sectional Study Assessing Communication Practices among Doctors at a University Hospital in Pakistan

Authors: Muhammad Waqas Baqai, Noman Shahzad, Rehman Alvi

Abstract:

Communication among health care givers is the essence of quality patient care and any compromise results in errors and inefficiency leading to cumbersome outcomes. The use of smartphone among health professionals has increased tremendously. Almost every health professional carries it and majority of them uses a third party communication software called whatsApp for work related communications. It gives instant access to the person responsible for any particular query and therefore helps in efficient and timely decision making. It is also an easy way of sharing medical documents, multimedia and provides platform for consensual decision making through group discussions. However clinical communication through whatsApp has some demerits too including reduction in verbal communication, worsening professional relations, unprofessional behavior, risk of confidentiality breach and threats from cyber-attacks. On the other hand the traditional pager device being used in many health care systems is a unidirectional communication that lacks the ability to convey any information other than the number to which the receiver has to respond. Our study focused on these two widely used modalities of communication among doctors of the largest tertiary care center of Pakistan i.e. The Aga Khan University Hospital. Our aim was to note which modality is considered better and has fewer threats to medical data. Approval from ethical review committee of the institute was taken prior to conduction of this study. We submitted an online survey form to all the interns and residents working at our institute and collected their response in a month’s time. 162 submissions were recorded and analyzed using descriptive statistics. Only 20% of them were comfortable with using pagers exclusively, 52% with whatsApp and 28% with both. 65% think that whatsApp is time-saving and quicker than pager. 54% of them considered whatsApp to be causing nuisance from work related notifications in their off-work hours. 60% think that they are more likely to miss information through pager system because of the unidirectional nature. Almost all (96%) of residents and interns found whatsApp to be useful in terms of saving information for future reference. For urgent issues, majority (70%) preferred pager over whatsApp and also pager was considered more valid in terms of hospital policies and legal issues. Among major advantages of whatsApp as listed by them were; easy mass communication, sharing of clinical pictures, universal access and no need of carrying additional device. However the major drawback of using whatsApp for clinical communication that everyone shared was threat to patients’ confidentiality as clinicians usually share pictures of wounds, clinical documents etc. Lastly we asked them if they think there is a need of a separate application for instant communication dedicated to clinical communication only and 90% responded positively. Therefore, we concluded that both modalities have their merits and demerits but the greatest drawback with whatsApp is the risk of breach in patients’ confidentiality and off-work disturbance. Hence, we recommend a more secure, institute-run application for all intra hospital communications where they can share documents, pictures etc. easily under a controlled environment.

Keywords: WhatsApp, pager, clinical communication, confidentiality

Procedia PDF Downloads 150
33129 Performance Analysis of the Precise Point Positioning Data Online Processing Service and Using for Monitoring Plate Tectonic of Thailand

Authors: Nateepat Srivarom, Weng Jingnong, Serm Chinnarat

Abstract:

Precise Point Positioning (PPP) technique is use to improve accuracy by using precise satellite orbit and clock correction data, but this technique is complicated methods and high costs. Currently, there are several online processing service providers which offer simplified calculation. In the first part of this research, we compare the efficiency and precision of four software. There are three popular online processing service providers: Australian Online GPS Processing Service (AUSPOS), CSRS-Precise Point Positioning and CenterPoint RTX post processing by Trimble and 1 offline software, RTKLIB, which collected data from 10 the International GNSS Service (IGS) stations for 10 days. The results indicated that AUSPOS has the least distance root mean square (DRMS) value of 0.0029 which is good enough to be calculated for monitoring the movement of tectonic plates. The second, we use AUSPOS to process the data of geodetic network of Thailand. In December 26, 2004, the earthquake occurred a 9.3 MW at the north of Sumatra that highly affected all nearby countries, including Thailand. Earthquake effects have led to errors of the coordinate system of Thailand. The Royal Thai Survey Department (RTSD) is primarily responsible for monitoring of the crustal movement of the country. The difference of the geodetic network movement is not the same network and relatively large. This result is needed for survey to continue to improve GPS coordinates system in every year. Therefore, in this research we chose the AUSPOS to calculate the magnitude and direction of movement, to improve coordinates adjustment of the geodetic network consisting of 19 pins in Thailand during October 2013 to November 2017. Finally, results are displayed on the simulation map by using the ArcMap program with the Inverse Distance Weighting (IDW) method. The pin with the maximum movement is pin no. 3239 (Tak) in the northern part of Thailand. This pin moved in the south-western direction to 11.04 cm. Meanwhile, the directional movement of the other pins in the south gradually changed from south-west to south-east, i.e., in the direction noticed before the earthquake. The magnitude of the movement is in the range of 4 - 7 cm, implying small impact of the earthquake. However, the GPS network should be continuously surveyed in order to secure accuracy of the geodetic network of Thailand.

Keywords: precise point positioning, online processing service, geodetic network, inverse distance weighting

Procedia PDF Downloads 189
33128 Establishing a Drug Discovery Platform to Progress Compounds into the Clinic

Authors: Sheraz Gul

Abstract:

The requirements for progressing a compound to clinical trials is well established and relies on the results from in-vitro and in-vivo animal tests to indicate that it is likely to be safe and efficacious when testing in humans. The typical data package required will include demonstrating compound safety, toxicity, bioavailability, pharmacodynamics (potential effects of the compound on body systems) and pharmacokinetics (how the compound is potentially absorbed, distributed, metabolised and eliminated after dosing in humans). If the desired criteria are met and the compound meets the clinical Candidate criteria and is deemed worthy of further development, a submission to regulatory bodies such as the US Food & Drug Administration for an exploratory Investigational New Drug Study can be made. The purpose of this study is to collect data to establish that the compound will not expose humans to unreasonable risks when used in limited, early-stage clinical studies in patients or normal volunteer subjects (Phase I). These studies are also designed to determine the metabolism and pharmacologic actions of the drug in humans, the side effects associated with increasing doses, and, if possible, to gain early evidence on their effectiveness. In order to reach the above goals, we have developed a pre-clinical high throughput Absorption, Distribution, Metabolism and Excretion–Toxicity (ADME–Toxicity) panel of assays to identify compounds that are likely to meet the Lead and Candidate compound acceptance criteria. This panel includes solubility studies in a range of biological fluids, cell viability studies in cancer and primary cell-lines, mitochondrial toxicity, off-target effects (across the kinase, protease, histone deacetylase, phosphodiesterase and GPCR protein families), CYP450 inhibition (5 different CYP450 enzymes), CYP450 induction, cardio-toxicity (hERG) and gene-toxicity. This panel of assays has been applied to multiple compound series developed in a number of projects delivering Lead and clinical Candidates and examples from these will be presented.

Keywords: absorption, distribution, metabolism and excretion–toxicity , drug discovery, food and drug administration , pharmacodynamics

Procedia PDF Downloads 177
33127 The Relationships among Self-Efficacy, Critical Thinking and Communication Skills Ability in Oncology Nurses for Cancer Immunotherapy in Taiwan

Authors: Yun-Hsiang Lee

Abstract:

Cancer is the main cause of death worldwide. With advances in medical technology, immunotherapy, which is a newly developed advanced treatment, is currently a crucial cancer treatment option. For better quality cancer care, the ability to communicate and critical thinking plays a central role in clinical oncology settings. However, few studies have explored the impact of communication skills on immunotherapy-related issues and their related factors. This study was to (i) explore the current status of communication skill ability for immunotherapy-related issues, self-efficacy for immunotherapy-related care, and critical thinking ability; and (ii) identify factors related to communication skill ability. This is a cross-sectional study. Oncology nurses were recruited from the Taiwan Oncology Nursing Society, in which nurses came from different hospitals distributed across four major geographic regions (North, Center, South, East) of Taiwan. A total of 123 oncology nurses participated in this study. A set of questionnaires were used for collecting data. Communication skill ability for immunotherapy issues, self-efficacy for immunotherapy-related care, critical thinking ability, and background information were assessed in this survey. Independent T-test and one-way ANOVA were used to examine different levels of communication skill ability based on nurses having done oncology courses (yes vs. no) and education years (< 1 year, 1-3 years, and > 3 years), respectively. Spearman correlation was conducted to understand the relationships between communication skill ability and other variables. Among the 123 oncology nurses in the current study, the majority of them were female (98.4%), and most of them were employed at a hospital in the North (46.8%) of Taiwan. Most of them possessed a university degree (78.9%) and had at least 3 years of prior work experience (71.7%). Forty-three of the oncology nurses indicated in the survey that they had not received oncology nurses-related training. Those oncology nurses reported moderate to high levels of communication skill ability for immunotherapy issues (mean=4.24, SD=0.7, range 1-5). Nurses reported moderate levels of self-efficacy for immunotherapy-related care (mean=5.20, SD=1.98, range 0-10) and also had high levels of critical thinking ability (mean=4.76, SD=0.60, range 1-6). Oncology nurses who had received oncology training courses had significantly better communication skill ability than those who had not received oncology training. Oncology nurses who had higher work experience (1-3 years, or > 3 years) had significantly higher levels of communication skill ability for immunotherapy-related issues than those with lower work experience (<1 year). When those nurses reported better communication skill ability, they also had significantly better self-efficacy (r=.42, p<.01) and better critical thinking ability (r=.47, p<.01). Taken altogether, courses designed to improve communication skill ability for immunotherapy-related issues can make a significant impact in clinical settings. Communication skill ability for oncology nurses is the major factor associated with self-efficacy and critical thinking, especially for those with lower work experience (< 1 year).

Keywords: communication skills, critical thinking, immunotherapy, oncology nurses, self-efficacy

Procedia PDF Downloads 112
33126 A Survey on Early Screen Exposure during Infancy and Autism

Authors: I. Mahmood

Abstract:

This survey was conducted to explore the hypothesis that excessive screen exposure combined with a subsequent decrease in parent-child interaction during infancy might be associated with autism. The main questions being asked are: Were children with autism exposed to long hours of screen time during the first 2 years of life? And what was the reason(s) for exposure at such an early age? Other variables were also addressed in this survey. An Arabic questionnaire was administered online (June 2019) via a Facebook page, relatively well-known in Arab countries. 1725 parents of children diagnosed with autism participated in this survey. Results show that 80.9% of children surveyed who were diagnosed with autism had been exposed to screens for long periods of time during the first 2 years of life. It can be inferred from the results of this survey that over-exposure to screens disrupt the parent-child interaction which is shown to be associated with ASD. The results of this survey highlight the harmful effects of screen exposure during infancy and the importance of parent-child interaction during the critical period of brain development. This paper attempts to further explore the connection between parent-child interaction and ASD, as well as serve as a call for further research and investigation of the relation between screens and parent-child interactions during infancy and Autism.

Keywords: attachment disorder, autism, screen exposure, virtual autism

Procedia PDF Downloads 131
33125 Evaluation of Aquifer Protective Capacity and Soil Corrosivity Using Geoelectrical Method

Authors: M. T. Tsepav, Y. Adamu, M. A. Umar

Abstract:

A geoelectric survey was carried out in some parts of Angwan Gwari, an outskirt of Lapai Local Government Area on Niger State which belongs to the Nigerian Basement Complex, with the aim of evaluating the soil corrosivity, aquifer transmissivity and protective capacity of the area from which aquifer characterisation was made. The G41 Resistivity Meter was employed to obtain fifteen Schlumberger Vertical Electrical Sounding data along profiles in a square grid network. The data were processed using interpex 1-D sounding inversion software, which gives vertical electrical sounding curves with layered model comprising of the apparent resistivities, overburden thicknesses and depth. This information was used to evaluate longitudinal conductance and transmissivities of the layers. The results show generally low resistivities across the survey area and an average longitudinal conductance variation from 0.0237Siemens in VES 6 to 0.1261 Siemens in VES 15 with almost the entire area giving values less than 1.0 Siemens. The average transmissivity values range from 96.45 Ω.m2 in VES 4 to 299070 Ω.m2 in VES 1. All but VES 4 and VES14 had an average overburden greater than 400 Ω.m2, these results suggest that the aquifers are highly permeable to fluid movement within, leading to the possibility of enhanced migration and circulation of contaminants in the groundwater system and that the area is generally corrosive.

Keywords: geoelectric survey, corrosivity, protective capacity, transmissivity

Procedia PDF Downloads 341
33124 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging

Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott

Abstract:

The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.

Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging

Procedia PDF Downloads 138