Search results for: automatic attendance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1055

Search results for: automatic attendance

605 Remote Wireless Patient Monitoring System

Authors: Sagar R. Patil, Dinesh R. Gawade, Sudhir N. Divekar

Abstract:

One of the medical devices we found when we visit a hospital care unit such device is ‘patient monitoring system’. This device (patient monitoring system) informs doctors and nurses about the patient’s physiological signals. However, this device (patient monitoring system) does not have a remote monitoring capability, which is necessitates constant onsite attendance by support personnel (doctors and nurses). Thus, we have developed a Remote Wireless Patient Monitoring System using some biomedical sensors and Android OS, which is a portable patient monitoring. This device(Remote Wireless Patient Monitoring System) monitors the biomedical signals of patients in real time and sends them to remote stations (doctors and nurse’s android Smartphone and web) for display and with alerts when necessary. Wireless Patient Monitoring System different from conventional device (Patient Monitoring system) in two aspects: First its wireless communication capability allows physiological signals to be monitored remotely and second, it is portable so patients can move while there biomedical signals are being monitor. Wireless Patient Monitoring is also notable because of its implementation. We are integrated four sensors such as pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate and electrocardiogram (ECG) in this device (Wireless Patient Monitoring System) and Monitoring and communication applications are implemented on the Android OS using threads, which facilitate the stable and timely manipulation of signals and the appropriate sharing of resources. The biomedical data will be display on android smart phone as well as on web Using web server and database system we can share these physiological signals with remote place medical personnel’s or with any where in the world medical personnel’s. We verified that the multitasking implementation used in the system was suitable for patient monitoring and for other Healthcare applications.

Keywords: patient monitoring, wireless patient monitoring, bio-medical signals, physiological signals, embedded system, Android OS, healthcare, pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate, electrocardiogram (ECG)

Procedia PDF Downloads 571
604 Nectariferous Plant Genetic Resources for Apicultural Entrepreneurship in Nigeria: Prerequisite for Conservation, Sustainable Management and Policy

Authors: C. V. Nnamani, O. L. Adedeji

Abstract:

The contemporary global economic meltdown has devastating effect on the Nigerian’s economy and its frantic search for alternative source of national revenue aside from oil and gas has become imperative for economic emancipation for Nigerians. Apicultural entrepreneurship could provide a source of livelihood if the basic knowledge of those plant genetic resources needed by bees is made available. A palynological evaluation of those palynotaxa which honey bees forage for pollen and nectar was carried out after standard acetolysis method. Results showed that the honey samples were highly diversified and rich in honey plants. A total of 9544.3 honey pollen, consisting of 39 honey plants belonging to 21 plant families and distributed within 38 genera were identified excluding 238 unidentified pollen grains. Data from the analysis equally revealed that Elaeis guineensis Jacq, Anacardium occidentale L, Diospyros mespiliformis Hochist xe ADC, Alchornea cordifolia Muell, Arg, Daniella oliveri (Rolfe) Hutch & Dalz, Irvingia wombolu Okafor ex Baill, Treculia africana Decne, Nauclea latifolia Smith and Crossopteryx febrifuga Afzil ex Benth were the predominant honey plants. It provided a guide to the optimal utilization of floral resources by honeybees in these regions, showing the opportunity and amazing potentials for apiculture entrepreneurship of these palytaxa. Most of these plants are rare, threatened and endangered. It calls for urgent conservation techniques and step by all players. Critical awareness creation to ensure farmers knowledge of these palynotaxa to ensure proper understanding and attendance boost from them as economic empowerment is needed.

Keywords: palynotaxa, acetolysis, enterprise, livelihood, Nigeria

Procedia PDF Downloads 292
603 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 105
602 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment

Authors: Ibrahim Ozkan

Abstract:

In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.

Keywords: cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading

Procedia PDF Downloads 143
601 Exploring Women's Needs Referring to Health Care Centers for Doing Pap Smear Test

Authors: Arezoo Fallahi, Fateme Aslibigi, Parvaneh Taymoori, Babak Nematshahrbabaki

Abstract:

Background and Aims: Cancer of the cervix, one of cancer-related death, is the second most common cancer in women worldwide. It develops over time but it is one of the most preventable types of cancer and there is the available proper screening program for its preventing. Since Pap smear test is vital to prevent and control of disease but women do not accomplish it regularly. Therefore, this study was aimed to explore women's needs referring to health care centers for doing Pap smear test. Material and methods: In this study, an inductive qualitative method with content analysis approach was used. This survey was done in varamin city (is located capital of Iran) in year 2014. Through the purposive sampling 15 women's view of point referring to health care centers of for doing Pap smear test was surveyed. Inclusion criteria were: 20-50 years old married women, having experience Pap smear test and attendance to participate in the Study. Recorded semi- structured interviews were typed and analyzed through of content analysis method. To obtain trustworthiness and rigor of the data, the criteria of credibility, dependability, confirmability and transferability was used. Results: During the data analysis, four main categories of “role of health care team”, “role of organizations”, “social support” and “policies and administration system” were developed. The participants emphasized on making motivational rules and coordination among organizations to do behaviors related to women health. Conclusion: The findings of study showed that doing Pap smear test are attributed to appropriate and intimate interactions with health professionals, family support, encouraging legislation and policies and coordination and notification of organizations. Therefore, designers and stockholders of policies and health system should more consider to growth and involve other organizations toward women's health.

Keywords: qualitative approach, pap smear test, women, health care centers

Procedia PDF Downloads 496
600 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application

Authors: Jurijs Salijevs, Katrina Bolocko

Abstract:

The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.

Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare

Procedia PDF Downloads 103
599 Research on ARQ Transmission Technique in Mars Detection Telecommunications System

Authors: Zhongfei Cai, Hui He, Changsheng Li

Abstract:

This paper studied in the automatic repeat request (ARQ) transmission technique in Mars detection telecommunications system. An ARQ method applied to proximity-1 space link protocol was proposed by this paper. In order to ensure the efficiency of data reliable transmission, this ARQ method combined these different ARQ maneuvers characteristics. Considering the Mars detection communication environments, this paper analyzed the characteristics of the saturation throughput rate, packet dropping probability, average delay and energy efficiency with different ARQ algorithms. Combined thus results with the theories of ARQ transmission technique, an ARQ transmission project in Mars detection telecommunications system was established. The simulation results showed that this algorithm had excellent saturation throughput rate and energy efficiency with low complexity.

Keywords: ARQ, mars, CCSDS, proximity-1, deepspace

Procedia PDF Downloads 340
598 Density-based Denoising of Point Cloud

Authors: Faisal Zaman, Ya Ping Wong, Boon Yian Ng

Abstract:

Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this, we present a novel approach using modified kernel density estimation (KDE) technique with bilateral filtering to remove noisy points and outliers. First we present a method for estimating optimal bandwidth of multivariate KDE using particle swarm optimization technique which ensures the robust performance of density estimation. Then we use mean-shift algorithm to find the local maxima of the density estimation which gives the centroid of the clusters. Then we compute the distance of a certain point from the centroid. Points belong to outliers then removed by automatic thresholding scheme which yields an accurate and economical point surface. The experimental results show that our approach comparably robust and efficient.

Keywords: point preprocessing, outlier removal, surface reconstruction, kernel density estimation

Procedia PDF Downloads 344
597 On the Interactive Search with Web Documents

Authors: Mario Kubek, Herwig Unger

Abstract:

Due to the large amount of information in the World Wide Web (WWW, web) and the lengthy and usually linearly ordered result lists of web search engines that do not indicate semantic relationships between their entries, the search for topically similar and related documents can become a tedious task. Especially, the process of formulating queries with proper terms representing specific information needs requires much effort from the user. This problem gets even bigger when the user's knowledge on a subject and its technical terms is not sufficient enough to do so. This article presents the new and interactive search application DocAnalyser that addresses this problem by enabling users to find similar and related web documents based on automatic query formulation and state-of-the-art search word extraction. Additionally, this tool can be used to track topics across semantically connected web documents

Keywords: DocAnalyser, interactive web search, search word extraction, query formulation, source topic detection, topic tracking

Procedia PDF Downloads 393
596 Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images

Authors: Moein Izadi, Ali Mohammadzadeh

Abstract:

Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach.

Keywords: SVM classifier, disaster management, road damage detection, quickBird images

Procedia PDF Downloads 623
595 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams

Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew

Abstract:

Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.

Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions

Procedia PDF Downloads 114
594 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: case-based reasoning, decision tree, stock selection, machine learning

Procedia PDF Downloads 419
593 Practical Methods for Automatic MC/DC Test Cases Generation of Boolean Expressions

Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau

Abstract:

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that aims to prove that all conditions involved in a Boolean expression can influence the result of that expression. In the context of automotive, MC/DC is highly recommended and even required for most security and safety applications testing. However, due to complex Boolean expressions that often embedded in those applications, generating a set of MC/DC compliant test cases for any of these expressions is a nontrivial task and can be time consuming for testers. In this paper we present an approach to automatically generate MC/DC test cases for any Boolean expression. We introduce novel techniques, essentially based on binary trees to quickly and optimally generate MC/DC test cases for the expressions. Thus, the approach can be used to reduce the manual testing effort of testers.

Keywords: binary trees, MC/DC, test case generation, nontrivial task

Procedia PDF Downloads 447
592 Smart Unmanned Parking System Based on Radio Frequency Identification Technology

Authors: Yu Qin

Abstract:

In order to tackle the ever-growing problem of the lack of parking space, this paper presents the design and implementation of a smart unmanned parking system that is based on RFID (radio frequency identification) technology and Wireless communication technology. This system uses RFID technology to achieve the identification function (transmitted by 2.4 G wireless module) and is equipped with an STM32L053 micro controller as the main control chip of the smart vehicle. This chip can accomplish automatic parking (in/out), charging and other functions. On this basis, it can also help users easily query the information that is stored in the database through the Internet. Experimental tests have shown that the system has the features of low power consumption and stable operation, among others. It can effectively improve the level of automation control of the parking lot management system and has enormous application prospects.

Keywords: RFID, embedded system, unmanned, parking management

Procedia PDF Downloads 333
591 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches

Keywords: pollens identification, features extraction, pollens classification, automated palynology

Procedia PDF Downloads 136
590 Mental Contrasting with Implementation Intentions: A Metacognitive Strategy on Educational Context

Authors: Paula Paulino, Alzira Matias, Ana Margarida Veiga Simão

Abstract:

Self-regulated learning (SRL) directs students in analyzing proposed tasks, setting goals and designing plans to achieve those goals. The literature has suggested a metacognitive strategy for goal attainment known as Mental Contrasting with Implementation Intentions (MCII). This strategy involves Mental Contrasting (MC), in which a significant goal and an obstacle are identified, and Implementation Intentions (II), in which an "if... then…" plan is conceived and operationalized to overcome that obstacle. The present study proposes to assess the MCII process and whether it promotes students’ commitment towards learning goals during school tasks in sciences subjects. In this investigation, we intended to study the MCII strategy in a systemic context of the classroom. Fifty-six students from middle school and secondary education attending a public school in Lisbon (Portugal) participated in the study. The MCII strategy was explicitly taught in a procedure that included metacognitive modeling, guided practice and autonomous practice of strategy. A mental contrast between a goal they wanted to achieve and a possible obstacle to achieving that desire was instructed, and then the formulation of plans in order to overcome the obstacle identified previously. The preliminary results suggest that the MCII metacognitive strategy, applied to the school context, leads to more sophisticated reflections, the promotion of learning goals and the elaboration of more complex and specific self-regulated plans. Further, students achieve better results on school tests and worksheets after strategy practice. This study presents important implications since the MCII has been related to improved outcomes and increased attendance. Additionally, MCII seems to be an innovative process that captures students’ efforts to learn and enhances self-efficacy beliefs during learning tasks.

Keywords: implementation intentions, learning goals, mental contrasting, metacognitive strategy, self-regulated learning

Procedia PDF Downloads 241
589 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques

Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail

Abstract:

Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.

Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation

Procedia PDF Downloads 181
588 Validating the Home Experiences of Children that Negatively Impact Their Right to Education in South Africa: The Case of HIV/AIDS Orphans and Vulnerable Children (OVCs) Living in the Amatole District

Authors: Tatenda Manomano, Moreblessing Memory Ndonga

Abstract:

In South Africa and the world over, despite an array of commendable policies to protect the rights of children, the situation on the ground indicates that HIV/AIDS continues to pose increasing challenges on the children’s’ right to education due to the death of their parents. This study sought to validate the home experiences of children that negatively impact on their right to education in South Africa with a case of HIV/AIDS orphans and vulnerable children (OVCs) in Amatole District. The study utilized a qualitative research method in collecting the feelings, views and attitudes of these children to establish the children’s home experiences. An interview guide with semi-structured questions was used to steer the one-on-one in-depth interviews with children from Parkside Primary School, Langa-Liphumile High School and one anonymous school in East London, Eastern Cape Province. 5 learners were purposively selected from each school and subjected to a one-on-one interview with the researcher. The researcher purposively selected one teacher per school, 2 members each from 3 community based organizations (CBOs) who were also subjected to a one-on-one in-depth interview. The findings indicated these negative experiences of the OVCs in their homes such as; attendance to a school was poor; academic performance was low; enrollment in schools was very low and abuse of these children was high. These researchers recommend for psychosocial support for these children to be placed in the schools; integration of HIV/AIDS programmes to target especially the OVCs; social workers should ensure that they regularly do home visits to these OVCs to establish whether the home circumstances these children are still conducive for them. It is hoped that the findings from this paper will be an asset that other researchers, policy makers, the government and NGOs/CBOs will take into consideration for the benefit of OVCs.

Keywords: orphaned and vulnerable children (OVCs), HIV, AIDS, home experiences

Procedia PDF Downloads 366
587 Pick and Place System for Dip Glaze Using PID Controller

Authors: Benchalak Muangmeesri

Abstract:

Glazes ceramics are ceramic materials produced through controlled crystallization of a parent glass. The great variety of compositions and the possibility of developing special micro structures with specific technological properties have allowed glass ceramic materials to be used in a wide range of applications. At the same time, glazes ceramics need to improvement in the mechanical and chemical properties of glazed. The pick and place station is equipped with a three-axis module. test piece housings placed on the vacuum are detected module picks up a test piece insert from the slide and places it on the test piece housing. Overall, glazes ceramics are compared with automatically and manually of speed and position control. The handling modules of automatic transfer are a new generation of high speed and precision then these color results from absorption and thickness than manual is also included.

Keywords: glaze, PID control, pick and place, ceramic

Procedia PDF Downloads 378
586 A Model-Driven Approach of User Interface for MVP Rich Internet Application

Authors: Sarra Roubi, Mohammed Erramdani, Samir Mbarki

Abstract:

This paper presents an approach for the model-driven generating of Rich Internet Application (RIA) focusing on the graphical aspect. We used well known Model-Driven Engineering (MDE) frameworks and technologies, such as Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF), Query View Transformation (QVTo) and Acceleo to enable the design and the code automatic generation of the RIA. During the development of the approach, we focused on the graphical aspect of the application in terms of interfaces while opting for the Model View Presenter pattern that is designed for graphics interfaces. The paper describes the process followed to define the approach, the supporting tool and presents the results from a case study.

Keywords: metamodel, model-driven engineering, MVP, rich internet application, transformation, user interface

Procedia PDF Downloads 353
585 Spatial Audio Player Using Musical Genre Classification

Authors: Jun-Yong Lee, Hyoung-Gook Kim

Abstract:

In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.

Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing

Procedia PDF Downloads 429
584 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method

Authors: Shiyin He, Zheng Huang

Abstract:

In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.

Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet

Procedia PDF Downloads 188
583 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems

Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov

Abstract:

This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.

Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller

Procedia PDF Downloads 495
582 Automatic Calibration of Agent-Based Models Using Deep Neural Networks

Authors: Sima Najafzadehkhoei, George Vega Yon

Abstract:

This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.

Keywords: ABM, calibration, CNN, LSTM, epidemiology

Procedia PDF Downloads 24
581 Endocardial Ultrasound Segmentation using Level Set method

Authors: Daoudi Abdelaziz, Mahmoudi Saïd, Chikh Mohamed Amine

Abstract:

This paper presents a fully automatic segmentation method of the left ventricle at End Systolic (ES) and End Diastolic (ED) in the ultrasound images by means of an implicit deformable model (level set) based on Geodesic Active Contour model. A pre-processing Gaussian smoothing stage is applied to the image, which is essential for a good segmentation. Before the segmentation phase, we locate automatically the area of the left ventricle by using a detection approach based on the Hough Transform method. Consequently, the result obtained is used to automate the initialization of the level set model. This initial curve (zero level set) deforms to search the Endocardial border in the image. On the other hand, quantitative evaluation was performed on a data set composed of 15 subjects with a comparison to ground truth (manual segmentation).

Keywords: level set method, transform Hough, Gaussian smoothing, left ventricle, ultrasound images.

Procedia PDF Downloads 465
580 Analysing the Stability of Electrical Grid for Increased Renewable Energy Penetration by Focussing on LI-Ion Battery Storage Technology

Authors: Hemendra Singh Rathod

Abstract:

Frequency is, among other factors, one of the governing parameters for maintaining electrical grid stability. The quality of an electrical transmission and supply system is mainly described by the stability of the grid frequency. Over the past few decades, energy generation by intermittent sustainable sources like wind and solar has seen a significant increase globally. Consequently, controlling the associated deviations in grid frequency within safe limits has been gaining momentum so that the balance between demand and supply can be maintained. Lithium-ion battery energy storage system (Li-Ion BESS) has been a promising technology to tackle the challenges associated with grid instability. BESS is, therefore, an effective response to the ongoing debate whether it is feasible to have an electrical grid constantly functioning on a hundred percent renewable power in the near future. In recent years, large-scale manufacturing and capital investment into battery production processes have made the Li-ion battery systems cost-effective and increasingly efficient. The Li-ion systems require very low maintenance and are also independent of geographical constraints while being easily scalable. The paper highlights the use of stationary and moving BESS for balancing electrical energy, thereby maintaining grid frequency at a rapid rate. Moving BESS technology, as implemented in the selected railway network in Germany, is here considered as an exemplary concept for demonstrating the same functionality in the electrical grid system. Further, using certain applications of Li-ion batteries, such as self-consumption of wind and solar parks or their ancillary services, wind and solar energy storage during low demand, black start, island operation, residential home storage, etc. offers a solution to effectively integrate the renewables and support Europe’s future smart grid. EMT software tool DIgSILENT PowerFactory has been utilised to model an electrical transmission system with 100% renewable energy penetration. The stability of such a transmission system has been evaluated together with BESS within a defined frequency band. The transmission system operators (TSO) have the superordinate responsibility for system stability and must also coordinate with the other European transmission system operators. Frequency control is implemented by TSO by maintaining a balance between electricity generation and consumption. Li-ion battery systems are here seen as flexible, controllable loads and flexible, controllable generation for balancing energy pools. Thus using Li-ion battery storage solution, frequency-dependent load shedding, i.e., automatic gradual disconnection of loads from the grid, and frequency-dependent electricity generation, i.e., automatic gradual connection of BESS to the grid, is used as a perfect security measure to maintain grid stability in any case scenario. The paper emphasizes the use of stationary and moving Li-ion battery storage for meeting the demands of maintaining grid frequency and stability for near future operations.

Keywords: frequency control, grid stability, li-ion battery storage, smart grid

Procedia PDF Downloads 150
579 Research on Architectural Steel Structure Design Based on BIM

Authors: Tianyu Gao

Abstract:

Digital architectures use computer-aided design, programming, simulation, and imaging to create virtual forms and physical structures. Today's customers want to know more about their buildings. They want an automatic thermostat to learn their behavior and contact them, such as the doors and windows they want to open with a mobile app. Therefore, the architectural display form is more closely related to the customer's experience. Based on the purpose of building informationization, this paper studies the steel structure design based on BIM. Taking the Zigan office building in Hangzhou as an example, it is divided into four parts, namely, the digital design modulus of the steel structure, the node analysis of the steel structure, the digital production and construction of the steel structure. Through the application of BIM software, the architectural design can be synergized, and the building components can be informationized. Not only can the architectural design be feedback in the early stage, but also the stability of the construction can be guaranteed. In this way, the monitoring of the entire life cycle of the building and the meeting of customer needs can be realized.

Keywords: digital architectures, BIM, steel structure, architectural design

Procedia PDF Downloads 195
578 Automatic Measurement of Garment Sizes Using Deep Learning

Authors: Maulik Parmar, Sumeet Sandhu

Abstract:

The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.

Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints

Procedia PDF Downloads 308
577 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.

Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition

Procedia PDF Downloads 480
576 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: segmentation, road signs, characters, classification

Procedia PDF Downloads 444