Search results for: artificial neural networks; crop water stress index; canopy temperature
24275 Assessment of Surface Water Quality near Landfill Sites Using a Water Pollution Index
Authors: Alejandro Cittadino, David Allende
Abstract:
Landfilling of municipal solid waste is a common waste management practice in Argentina as in many parts of the world. There is extensive scientific literature on the potential negative effects of landfill leachates on the environment, so it’s necessary to be rigorous with the control and monitoring systems. Due to the specific municipal solid waste composition in Argentina, local landfill leachates contain large amounts of organic matter (biodegradable, but also refractory to biodegradation), as well as ammonia-nitrogen, small trace of some heavy metals, and inorganic salts. In order to investigate the surface water quality in the Reconquista river adjacent to the Norte III landfill, water samples both upstream and downstream the dumpsite are quarterly collected and analyzed for 43 parameters including organic matter, heavy metals, and inorganic salts, as required by the local standards. The objective of this study is to apply a water quality index that considers the leachate characteristics in order to determine the quality status of the watercourse through the landfill. The water pollution index method has been widely used in water quality assessments, particularly rivers, and it has played an increasingly important role in water resource management, since it provides a number simple enough for the public to understand, that states the overall water quality at a certain location and time. The chosen water quality index (ICA) is based on the values of six parameters: dissolved oxygen (in mg/l and percent saturation), temperature, biochemical oxygen demand (BOD5), ammonia-nitrogen and chloride (Cl-) concentration. The index 'ICA' was determined both upstream and downstream the Reconquista river, being the rating scale between 0 (very poor water quality) and 10 (excellent water quality). The monitoring results indicated that the water quality was unaffected by possible leachate runoff since the index scores upstream and downstream were ranked in the same category, although in general, most of the samples were classified as having poor water quality according to the index’s scale. The annual averaged ICA index scores (computed quarterly) were 4.9, 3.9, 4.4 and 5.0 upstream and 3.9, 5.0, 5.1 and 5.0 downstream the river during the study period between 2014 and 2017. Additionally, the water quality seemed to exhibit distinct seasonal variations, probably due to annual precipitation patterns in the study area. The ICA water quality index appears to be appropriate to evaluate landfill impacts since it accounts mainly for organic pollution and inorganic salts and the absence of heavy metals in the local leachate composition, however, the inclusion of other parameters could be more decisive in discerning the affected stream reaches from the landfill activities. A future work may consider adding to the index other parameters like total organic carbon (TOC) and total suspended solids (TSS) since they are present in the leachate in high concentrations.Keywords: landfill, leachate, surface water, water quality index
Procedia PDF Downloads 15124274 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 11124273 Response of Barley Quality Traits, Yield and Antioxidant Enzymes to Water-Stress and Chemical Inducers
Authors: Emad Hafez, Mahmoud Seleiman
Abstract:
Two field experiments were carried out in order to investigate the effect of chemical inducers [benzothiadiazole 0.9 mM L-1, oxalic acid 1.0 mM L-1, salicylic acid 0.2 mM L-1] on physiological and technological traits as well as on yields and antioxidant enzyme activities of barley grown under abiotic stress (i.e. water surplus and deficit conditions). Results showed that relative water content, leaf area, chlorophyll and yield as well as technological properties of barley were improved with chemical inducers application under water surplus and water-stress conditions. Antioxidant enzymes activity (i.e. catalase and peroxidase) were significantly increased in barley grown under water-stress and treated with chemical inducers. Yield and related parameters of barley presented also significant decrease under water-stress treatment, while chemical inducers application enhanced the yield-related traits. Starch and protein contents were higher in plants treated with salicylic acid than in untreated plants when water-stress was applied. In conclusion, results show that chemical inducers application have a positive interaction and synergetic influence and should be suggested to improve plant growth, yield and technological properties of water stressed barley. Salicylic acid application was better than oxalic acid and benzothiadiazole in terms of plant growth and yield improvement.Keywords: antioxidant enzymes, drought stress, Hordeum vulgare L., quality, yield
Procedia PDF Downloads 30324272 Nitrogen Fixation of Soybean Approaches for Enhancing under Saline and Water Stress Conditions
Authors: Ayman El Sabagh, AbdElhamid Omar, Dekoum Assaha, Khair Mohammad Youldash, Akihiro Ueda, Celaleddin Barutçular, Hirofumi Saneoka
Abstract:
Drought and salinity stress are a worldwide problem, constraining global crop production seriously. Hence, soybean is susceptible to yield loss from water deficit and salinity stress. Therefore, different approaches have been suggested to solve these issues. Osmoprotectants play an important role in protection the plants from various environmental stresses. Moreover, organic fertilization has several beneficial effects on agricultural fields. Presently, efforts to maximize nitrogen fixation in soybean are critical because of widespread increase in soil degradation in Egypt. Therefore, a greenhouse research was conducted at plant nutritional physiology laboratory, Hiroshima University, Japan for assessing the impact of exogenous osmoregulators and compost application in alleviating the adverse effects of salinity and water stress on soybean. Treatments was included (i) water stress treatments (different soil moisture levels consisting of (100%, 75%, and 50% of field water holding capacity), (ii) salinity concentrations (0 and 15 mM) were applied in fully developed trifoliolate leaf node (V1), (iii) compost treatments (0 and 24 t ha-1) and (iv) the exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each, was applied at two growth stages (V1 and R1). The seeds of soybean cultivar Giza 111, was sown into basin from wood (length10 meter, width 50cm, height 50cm and depth 350cm) containing a soil mixture of granite regosol soil and perlite (2:1 v/v). The nitrogen-fixing activity was estimated by using gas chromatography and all measurements were made in three replicates. The results showed that water deficit and salinity stress reduced biological nitrogen fixation and specific nodule activity than normal irrigation conditions. Exogenous osmoprotectants were improved biological nitrogen fixation and specific nodule activity as well as, applying of compost led to improving many of biological nitrogen fixation and specific nodule activity with superiority than stress conditions. The combined application compost fertilizer and exogenous osmoprotectants were more effective in alleviating the adverse effect of stress to improve biological nitrogen fixation and specific nodule activity of Soybean.Keywords: a biotic stress, biological nitrogen fixation, compost, osmoprotectants, specific nodule activity, soybean
Procedia PDF Downloads 30824271 An Artificial Intelligence Supported QUAL2K Model for the Simulation of Various Physiochemical Parameters of Water
Authors: Mehvish Bilal, Navneet Singh, Jasir Mushtaq
Abstract:
Water pollution puts people's health at risk, and it can also impact the ecology. For practitioners of integrated water resources management (IWRM), water quality modelling may be useful for informing decisions about pollution control (such as discharge permitting) or demand management (such as abstraction permitting). To comprehend the current pollutant load, movement of effective load movement of contaminants generates effective relation between pollutants, mathematical simulation, source, and water quality is regarded as one of the best estimating tools. The current study involves the Qual2k model, which includes manual simulation of the various physiochemical characteristics of water. To this end, various sensors could be installed for the automatic simulation of various physiochemical characteristics of water. An artificial intelligence model has been proposed for the automatic simulation of water quality parameters. Models of water quality have become an effective tool for identifying worldwide water contamination, as well as the ultimate fate and behavior of contaminants in the water environment. Water quality model research is primarily conducted in Europe and other industrialized countries in the first world, where theoretical underpinnings and practical research are prioritized.Keywords: artificial intelligence, QUAL2K, simulation, physiochemical parameters
Procedia PDF Downloads 10424270 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 44224269 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 27424268 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic
Abstract:
The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences
Procedia PDF Downloads 31924267 Employing Bayesian Artificial Neural Network for Evaluation of Cold Rolling Force
Authors: P. Kooche Baghy, S. Eskandari, E.javanmard
Abstract:
Neural network has been used as a predictive means of cold rolling force in this dissertation. Thus, imposed average force on rollers as a mere input and five pertaining parameters to its as a outputs are regarded. According to our study, feed-forward multilayer perceptron network has been selected. Besides, Bayesian algorithm based on the feed-forward back propagation method has been selected due to noisy data. Further, 470 out of 585 all tests were used for network learning and others (115 tests) were considered as assessment criteria. Eventually, by 30 times running the MATLAB software, mean error was obtained 3.84 percent as a criteria of network learning. As a consequence, this the mentioned error on par with other approaches such as numerical and empirical methods is acceptable admittedly.Keywords: artificial neural network, Bayesian, cold rolling, force evaluation
Procedia PDF Downloads 44324266 Elevated Temperature Shot Peening for M50 Steel
Authors: Xinxin Ma, Guangze Tang, Shuxin Yang, Jinguang He, Fan Zhang, Peiling Sun, Ming Liu, Minyu Sun, Liqin Wang
Abstract:
As a traditional surface hardening technique, shot peening is widely used in industry. By using shot peening, a residual compressive stress is formed in the surface which is beneficial for improving the fatigue life of metal materials. At the same time, very fine grains and high density defects are generated in the surface layer which enhances the surface hardness, either. However, most of the processes are carried out at room temperature. For high strength steel, such as M50, the thickness of the strengthen layer is limited. In order to obtain a thick strengthen surface layer, elevated temperature shot peening was carried out in this work by using Φ1mm cast ion balls with a speed of 80m/s. Considering the tempering temperature of M50 steel is about 550 oC, the processing temperature was in the range from 300 to 500 oC. The effect of processing temperature and processing time of shot peening on distribution of residual stress and surface hardness was investigated. As we known, the working temperature of M50 steel can be as high as 315 oC. Because the defects formed by shot peening are unstable when the working temperature goes higher, it is worthy to understand what happens during the shot peening process, and what happens when the strengthen samples were kept at a certain temperature. In our work, the shot peening time was selected from 2 to 10 min. And after the strengthening process, the samples were annealed at various temperatures from 200 to 500 oC up to 60 h. The results show that the maximum residual compressive stress is near 900 MPa. Compared with room temperature shot peening, the strengthening depth of 500 oC shot peening sample is about 2 times deep. The surface hardness increased with the processing temperature, and the saturation peening time decreases. After annealing, the residual compressive stress decreases, however, for 500 oC peening sample, even annealing at 500 oC for 20 h, the residual compressive stress is still over 600 MPa. However, it is clean to see from SEM that the grain size of surface layers is still very small.Keywords: shot peening, M50 steel, residual compressive stress, elevated temperature
Procedia PDF Downloads 45624265 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites
Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui
Abstract:
This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities
Procedia PDF Downloads 1024264 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence
Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar
Abstract:
This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves
Procedia PDF Downloads 19624263 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.Keywords: TDNN, neural networks, noise, speech recognition
Procedia PDF Downloads 28924262 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 14424261 Policy Monitoring and Water Stakeholders Network Analysis in Shemiranat
Authors: Fariba Ebrahimi, Mehdi Ghorbani
Abstract:
Achieving to integrated Water management fundamentally needs to effective relation, coordination, collaboration and synergy among various actors who have common but different responsibilities. In this sense, the foundation of comprehensive and integrated management is not compatible with centralization and top-down strategies. The aim of this paper is analysis institutional network of water relevant stakeholders and water policy monitoring in Shemiranat. In this study collaboration networks between informal and formal institutions co-management process have been investigated. Stakeholder network analysis as a quantitative method has been implicated in this research. The results of this study indicate that institutional cohesion is medium; sustainability of institutional network is about 40 percent (medium). Additionally the core-periphery index has measured in this study according to reciprocity index. Institutional capacities for integrated natural resource management in regional level are measured in this study. Furthermore, the necessity of centrality reduction and promote stakeholders relations and cohesion are emphasized to establish a collaborative natural resource governance.Keywords: policy monitoring, water management, social network, stakeholder, shemiranat
Procedia PDF Downloads 27424260 Computational Neurosciences: An Inspiration from Biological Neurosciences
Authors: Harsh Sadawarti, Kamal Malik
Abstract:
Humans are the unique and the most powerful creature on this planet just because of the high level of intelligence gifted by nature. Computational Intelligence is highly influenced by the term natural intelligence, neurosciences and mathematics. To deal with the in-depth study of computational intelligence and to utilize it in real-life applications, it is quite important to understand its simulation with the human brain. In this paper, the three important parts, Frontal Lobe, Occipital Lobe and Parietal Lobe of the human brain, are compared with the ANN(Artificial Neural Network), CNN(Convolutional Neural network), and RNN(Recurrent Neural Network), respectively. Intelligent computational systems are created by combining deductive reasoning, logical concepts and high-level algorithms with the simulation and study of the human brain. Human brain is a combination of Physiology, Psychology, emotions, calculations and many other parameters which are of utmost importance that determines the overall intelligence. To create intelligent algorithms, smart machines and to simulate the human brain in an effective manner, it is quite important to have an insight into the human brain and the basic concepts of biological neurosciences.Keywords: computational intelligence, neurosciences, convolutional neural network, recurrent neural network, artificial neural network, frontal lobe, occipital lobe, parietal lobe
Procedia PDF Downloads 11124259 Identification of Rice Quality Using Gas Sensors and Neural Networks
Authors: Moh Hanif Mubarok, Muhammad Rivai
Abstract:
The public's response to quality rice is very high. So it is necessary to set minimum standards in checking the quality of rice. Most rice quality measurements still use manual methods, which are prone to errors due to limited human vision and the subjectivity of testers. So, a gas detection system can be a solution that has high effectiveness and subjectivity for solving current problems. The use of gas sensors in testing rice quality must pay attention to several parameters. The parameters measured in this research are the percentage of rice water content, gas concentration, output voltage, and measurement time. Therefore, this research was carried out to identify carbon dioxide (CO₂), nitrous oxide (N₂O) and methane (CH₄) gases in rice quality using a series of gas sensors using the Neural Network method.Keywords: carbon dioxide, dinitrogen oxide, methane, semiconductor gas sensor, neural network
Procedia PDF Downloads 4824258 Assessment of Land Surface Temperature Using Satellite Remote Sensing
Authors: R. Vidhya, M. Navamuniyammal M. Sivakumar, S. Reeta
Abstract:
The unplanned urbanization affects the environment due to pollution, conditions of the atmosphere, decreased vegetation and the pervious and impervious soil surface. Considered to be a cumulative effect of all these impacts is the Urban Heat Island. In this paper, the urban heat island effect is studied for the Chennai city, TamilNadu, South India using satellite remote sensing data. LANDSAT 8 OLI and TIRS DATA acquired on 9th September 2014 were used to Land Surface Temperature (LST) map, vegetation fraction map, Impervious surface fraction, Normalized Difference Water Index (NDWI), Normalized Difference Building Index (NDBI) and Normalized Difference Vegetation Index (NDVI) map. The relationship among LST, Vegetation fraction, NDBI, NDWI, and NDVI was calculated. The Chennai city’s Urban Heat Island effect is significant, and the results indicate LST has strong negative correlation with the vegetation present and positive correlation with NDBI. The vegetation is the main factor to control urban heat island effect issues in urban area like Chennai City. This study will help in developing measures to land use planning to reduce the heat effects in urban area based on remote sensing derivatives.Keywords: land surface temperature, brightness temperature, emissivity, vegetation index
Procedia PDF Downloads 27424257 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 17524256 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: forced convection, square cylinder, nanofluid, neural network
Procedia PDF Downloads 32024255 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 9024254 Assessment of Spatial and Temporal Variations of Some Biological Water Quality Parameters in Mat River, Albania
Authors: Etleva Hamzaraj, Eva Kica, Anila Paparisto, Pranvera Lazo
Abstract:
Worldwide demographic developments of recent decades have been associated with negative environmental consequences. For this reason, there is a growing interest in assessing the state of natural ecosystems or assessing human impact on them. In this respect, this study aims to evaluate the change in water quality of the Mat River for a period of about ten years to highlight human impact. In one year, period of study, several biological and environmental parameters are determined to evaluate river water quality, and the data collected are compared with those of a similar study in 2007. Samples are collected every month in five stations evenly distributed along the river. Total coliform bacteria, the number of heterotrophic bacteria in water, and benthic macroinvertebrates are used as biological parameters of water quality. The most probable number index is used for evaluation of total coliform bacteria in water, while the number of heterotrophic bacteria is determined by counting colonies on plates with Plate Count Agar, cultivated with 0.1 ml sample after series dilutions. Benthic macroinvertebrates are analyzed by the number of individuals per taxa, the value of biotic index, EPT Richness Index value and tolerance value. Environmental parameters like pH, temperature, and electrical conductivity are measured onsite. As expected, the bacterial load was higher near urban areas, and the pollution increased with the course of the river. The maximum concentration of fecal coliforms was 1100 MPN/100 ml in summer and near the most urbanized area of the river. The data collected during this study show that after about ten years, there is a change in water quality of Mat River. According to a similar study carried out in 2007, the water of Mat River was of ‘excellent’ quality. But, according to this study, the water was classified as of ‘excellent’ quality only in one sampling site, near river source, while in all other stations was of ‘good’ quality. This result is based on biological and environmental parameters measured. The human impact on the quality of water of Mat River is more than evident.Keywords: water quality, coliform bacteria, MPN index, benthic macroinvertebrates, biotic index
Procedia PDF Downloads 11824253 Pinch Technology for Minimization of Water Consumption at a Refinery
Authors: W. Mughees, M. Alahmad
Abstract:
Water is the most significant entity that controls local and global development. For the Gulf region, especially Saudi Arabia, with its limited potable water resources, the potential of the fresh water problem is highly considerable. In this research, the study involves the design and analysis of pinch-based water/wastewater networks. Multiple water/wastewater networks were developed using pinch analysis involving direct recycle/material recycle method. Property-integration technique was adopted to carry out direct recycle method. Particularly, a petroleum refinery was considered as a case study. In direct recycle methodology, minimum water discharge and minimum fresh water resource targets were estimated. Re-design (or retrofitting) of water allocation in the networks was undertaken. Chemical Oxygen Demand (COD) and hardness properties were taken as pollutants. This research was based on single and double contaminant approach for COD and hardness and the amount of fresh water was reduced from 340.0 m3/h to 149.0 m3/h (43.8%), 208.0 m3/h (61.18%) respectively. While regarding double contaminant approach, reduction in fresh water demand was 132.0 m3/h (38.8%). The required analysis was also carried out using mathematical programming technique. Operating software such as LINGO was used for these studies which have verified the graphical method results in a valuable and accurate way. Among the multiple water networks, the one possible water allocation network was developed based on mass exchange.Keywords: minimization, water pinch, water management, pollution prevention
Procedia PDF Downloads 47724252 Application of Signature Verification Models for Document Recognition
Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova
Abstract:
In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.Keywords: signature recognition, biometric data, artificial intelligence, neural networks
Procedia PDF Downloads 14824251 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time
Procedia PDF Downloads 33124250 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network
Authors: Masoud Safarishaal
Abstract:
Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network
Procedia PDF Downloads 12324249 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification
Authors: Rujia Chen, Ajit Narayanan
Abstract:
Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels
Procedia PDF Downloads 18624248 Exogenous Application of Silicon through the Rooting Medium Modulate Growth, Ion Uptake, and Antioxidant Activity of Barley (Hordeum vulgare L.) Under Salt Stress
Authors: Sibgha Noreen, Muhammad Salim Akhter, Seema Mahmood
Abstract:
Salt stress is an abiotic stress that causes a heavy toll on growth and development and also reduces the productivity of arable and horticultural crops. Globally, a quarter of total arable land has fallen prey to this menace, and more is being encroached because of the usage of brackish water for irrigation purposes. Though barley is categorized as salt-tolerant crop, but cultivars show a wide genetic variability in response to it. In addressing salt stress, silicon nutrition would be a facile tool for enhancing salt tolerant to sustain crop production. A greenhouse study was conducted to evaluate the response of barley (Hordeum vulgare L.) cultivars to silicon nutrition under salt stress. The treatments included [(a) four barley cultivars (Jou-87, B-14002, B-14011, B-10008); (b) two salt levels (0, 200 mM, NaCl); and (c) two silicon levels (0, 200ppm, K2SiO3. nH2O), arranged in a factorial experiment in a completely randomized design with 16 treatments and repeated 4 times. Plants were harvested at 15 days after exposure to different experimental salinity and silicon foliar conditions. Results revealed that various physiological and biochemical attributes differed significantly (p<0.05) in response to different treatments and their interactive effects. Cultivar “B-10008” excelled in biological yield, chlorophyll constituents, antioxidant enzymes, and grain yield compared to other cultivars. The biological yield of shoot and root organs was reduced by 27.3 and 26.5 percent under salt stress, while it was increased by 14.5 and 18.5 percent by exogenous application of silicon over untreated check, respectively. The imposition of salt stress at 200 mM caused a reduction in total chlorophyll content, chl ‘a’ , ‘b’ and ratio a/b by 10.6,16.8,17.1 and 7.1, while spray of 200 ppm silicon improved the quantum of the constituents by 10.4,12.1,10.2,10.3 over untreated check, respectively. The quantum of free amino acids and protein content was enhanced in response to salt stress and the spray of silicon nutrients. The amounts of superoxide dismutase, catalases, peroxidases, hydrogen peroxide, and malondialdehyde contents rose to 18.1, 25.7, 28.1, 29.5, and 17.6 percent over non-saline conditions under salt stress. However, the values of these antioxidants were reduced in proportion to salt stress by 200 ppm silicon applied as rooting medium on barley crops. The salt stress caused a reduction in the number of tillers, number of grains per spike, and 100-grain weight to the amount of 29.4, 8.6, and 15.8 percent; however, these parameters were improved by 7.1, 10.3, and 9.6 percent by foliar spray of silicon over untreated crop, respectively. It is concluded that the barley cultivar “B-10008” showed greater tolerance and adaptability to saline conditions. The yield of barley crops could be potentiated by a foliar spray of 200 ppm silicon at the vegetative growth stage under salt stress.Keywords: salt stress, silicon nutrition, chlorophyll constituents, antioxidant enzymes, barley crop
Procedia PDF Downloads 3824247 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System
Authors: Afaneen Anwer, Samara M. Kamil
Abstract:
Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system
Procedia PDF Downloads 58324246 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 150