Search results for: online learning activities
9659 Difficulties Faced by the Sports Clubs in the Sultanate of Oman
Authors: Majid Al-Busafi, Almur Al-Hashmi
Abstract:
The aim of this study was to identify the difficulties of planning and organizational, technical and finance facing sports clubs in the Sultanate of Oman. To answer the research questions, the researchers set up and developed a questionnaire as a major tool for the study. The researchers also conducted field visits to targeted clubs, collecting documents and publications related to the current situation of these clubs. The study sample (totaling 231) was selected of boards members of sports clubs and federations, executive staff of the Ministry of Sports Affairs, sports clubs and federations, and the media. The results indicated that the order of the difficulties faced by sports clubs is as follows: planning difficulties, the financial difficulties, technical difficulties and fourth and finally organizational difficulties. The study recommended the need to develop long-term plans and a timetable for the activities of the federations or the clubs. It is also important not to ignore to plan the qualification activities for the workers in the federations and clubs. Finally, there is a need to develop regulated forms of relations between members in the clubs. This study makes an original contribution to knowledge as it addresses needs in a country with no clear clubs systems and is informed by case studies from other countries, two of which have similar cultural contexts.Keywords: sports club, sports federation, difficulties, plans
Procedia PDF Downloads 4779658 Position of the Constitutional Court of the Russian Federation on the Matter of Restricting Constitutional Rights of Citizens Concerning Banking Secrecy
Authors: A. V. Shashkova
Abstract:
The aim of the present article is to analyze the position of the Constitutional Court of the Russian Federation on the matter of restricting the constitutional rights of citizens to inviolability of professional and banking secrecy in effecting controlling activities. The methodological ground of the present Article represents the dialectic scientific method of the socio-political, legal and organizational processes with the principles of development, integrity, and consistency, etc. The consistency analysis method is used while researching the object of the analysis. Some public-private research methods are also used: the formally-logical method or the comparative legal method, are used to compare the understanding of the ‘secrecy’ concept. The aim of the present article is to find the root of the problem and to give recommendations for the solution of the problem. The result of the present research is the author’s conclusion on the necessity of the political will to improve Russian legislation with the aim of compliance with the provisions of the Constitution. It is also necessary to establish a clear balance between the constitutional rights of the individual and the limit of these rights when carrying out various control activities by public authorities. Attempts by the banks to "overdo" an anti-money laundering law under threat of severe sanctions by the regulators actually led to failures in the execution of normal economic activity. Therefore, individuals face huge problems with payments on the basis of clearing, in addition to problems with cash withdrawals. The Bank of Russia sets requirements for banks to execute Federal Law No. 115-FZ too high. It is high place to attract political will here. As well, recent changes in Russian legislation, e.g. allowing banks to refuse opening of accounts unilaterally, simplified banking activities in the country. The article focuses on different theoretical approaches towards the concept of “secrecy”. The author gives an overview of the practices of Spain, Switzerland and the United States of America on the matter of restricting the constitutional rights of citizens to inviolability of professional and banking secrecy in effecting controlling activities. The Constitutional Court of the Russian Federation basing on the Constitution of the Russian Federation has its special understanding of the issue, which should be supported by further legislative development in the Russian Federation.Keywords: constitutional court, restriction of constitutional rights, bank secrecy, control measures, money laundering, financial control, banking information
Procedia PDF Downloads 1899657 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1369656 Online Dietary Management System
Authors: Kyle Yatich Terik, Collins Oduor
Abstract:
The current healthcare system has made healthcare more accessible and efficient by the use of information technology through the implementation of computer algorithms that generate menus based on the diagnosis. While many systems just like these have been created over the years, their main objective is to help healthy individuals calculate their calorie intake and assist them by providing food selections based on a pre-specified calorie. That application has been proven to be useful in some ways, and they are not suitable for monitoring, planning, and managing hospital patients, especially that critical condition their dietary needs. The system also addresses a number of objectives, such as; the main objective is to be able to design, develop and implement an efficient, user-friendly as well as and interactive dietary management system. The specific design development objectives include developing a system that will facilitate a monitoring feature for users using graphs, developing a system that will provide system-generated reports to the users, dietitians, and system admins, design a system that allows users to measure their BMI (Body Mass Index), the system will also provide food template feature that will guide the user on a balanced diet plan. In order to develop the system, further research was carried out in Kenya, Nairobi County, using online questionnaires being the preferred research design approach. From the 44 respondents, one could create discussions such as the major challenges encountered from the manual dietary system, which include no easily accessible information of the calorie intake for food products, expensive to physically visit a dietitian to create a tailored diet plan. Conclusively, the system has the potential of improving the quality of life of people as a whole by providing a standard for healthy living and allowing individuals to have readily available knowledge through food templates that will guide people and allow users to create their own diet plans that consist of a balanced diet.Keywords: DMS, dietitian, patient, administrator
Procedia PDF Downloads 1669655 Off-Topic Text Detection System Using a Hybrid Model
Authors: Usama Shahid
Abstract:
Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.Keywords: off topic, text detection, eco state network, machine learning
Procedia PDF Downloads 919654 Pitfalls and Drawbacks in Visual Modelling of Learning Knowledge by Students
Authors: Tatyana Gavrilova, Vadim Onufriev
Abstract:
Knowledge-based systems’ design requires the developer’s owning the advanced analytical skills. The efficient development of that skills within university courses needs a deep understanding of main pitfalls and drawbacks, which students usually make during their analytical work in form of visual modeling. Thus, it was necessary to hold an analysis of 5-th year students’ learning exercises within courses of 'Intelligent systems' and 'Knowledge engineering' in Saint-Petersburg Polytechnic University. The analysis shows that both lack of system thinking skills and methodological mistakes in course design cause the errors that are discussed in the paper. The conclusion contains an exploration of the issues and topics necessary and sufficient for the implementation of the improved practices in educational design for future curricula of teaching programs.Keywords: knowledge based systems, knowledge engineering, students’ errors, visual modeling
Procedia PDF Downloads 3129653 Teaching Self-Advocacy Skills to Students With Learning Disabilities: The S.A.M.E. Program of Instruction
Authors: Dr. Rebecca Kimelman
Abstract:
Teaching students to self-advocate has become a central topic in special education literature and practice. However, many special education programs do not address this important skill area. To this end, I created and implemented the Self Advocacy Made Easy (S.A.M.E.) program of instruction, intended to enhance the self-advocacy skills of young adults with mild to moderate disabilities. The effectiveness of S.A.M.E., the degree to which self-advocacy skills were acquired and demonstrated by the students, the level of parental support, and the impact of culture on the process, and teachers’ beliefs and attitudes about the role of self-advocacy skills for their students were measured using action research that employed mixed methodology. Conducted at an overseas American International School, this action research study sought answers to these questions by providing an in-depth portrayal of the S.A.M.E. program, as well as the attitudes and perceptions of the stakeholders involved in the study (thirteen students, their parents, teachers and counsellors). The findings of this study were very positive. The S.A.M.E. program was found to be a valid and valuable instructional tool for teaching self-advocacy skills to students with learning disabilities and ADHD. The study showed participation in the S.A.M.E. program led to an increased understanding of the important elements of self-advocacy, an increase in students’ skills and abilities to self-advocate, and a positive increase in students’ feelings about themselves. Inclusion in the Student-Led IEP meetings, an authentic student assessment within the S.A.M.E. program, also yielded encouraging results, including a higher level of ownership of one’s profile and learning needs, a higher level of student engagement and participation in the IEP meeting, and a growing student awareness of the relevance of the document and the IEP process to their lives. Without exception, every parent believed that participating in the Student-Led IEP led to a growth in confidence in their children, including that it taught them how to ‘own’ their disability and an improvement in their communication skills. Teachers and counsellors that participated in the study felt the program was worthwhile, and led to an increase in the students’ ability to acknowledge their learning profile and to identify and request the accommodations (such as extended time or use of a calculator) they need to overcome or work around their disability. The implications for further research are many, and include an examination of the degree to which participation in S.A.M.E. fosters student achievement, the long-term effects of participation in the program, and the degree to which student participation in the Student-Led IEP meeting increases parents’ level of understanding and involvement.Keywords: self-advocacy, learning disabilities, ADHD, student-led IEP process
Procedia PDF Downloads 579652 Mobile Collaboration Learning Technique on Students in Developing Nations
Authors: Amah Nnachi Lofty, Oyefeso Olufemi, Ibiam Udu Ama
Abstract:
New and more powerful communications technologies continue to emerge at a rapid pace and their uses in education are widespread and the impact remarkable in the developing societies. This study investigates Mobile Collaboration Learning Technique (MCLT) on learners’ outcome among students in tertiary institutions of developing nations (a case of Nigeria students). It examines the significance of retention achievement scores of students taught using mobile collaboration and conventional method. The sample consisted of 120 students using Stratified random sampling method. Three research questions and hypotheses were formulated, and tested at a 0.05 level of significance. A student achievement test (SAT) was made of 40 items of multiple-choice objective type, developed and validated for data collection by professionals. The SAT was administered to students as pre-test and post-test. The data were analyzed using t-test statistic to test the hypotheses. The result indicated that students taught using MCLT performed significantly better than their counterparts using the conventional method of instruction. Also, there was no significant difference in the post-test performance scores of male and female students taught using MCLT. Based on the findings, the following recommendations was made that: Mobile collaboration system be encouraged in the institutions to boost knowledge sharing among learners, workshop and trainings should be organized to train teachers on the use of this technique and that schools and government should formulate policies and procedures towards responsible use of MCLT.Keywords: education, communication, learning, mobile collaboration, technology
Procedia PDF Downloads 2279651 Measures for Limiting Corruption upon Migration Wave in Europe
Authors: Jordan Georgiev Deliversky
Abstract:
Fight against migrant smuggling has been put as a priority issues at the European Union policy agenda for more than a decade. The trafficked person, who has been targeted as the object of criminal exploitation, is specifically unique for human trafficking. Generally, the beginning of human trafficking activities is related to profit from the victim’s exploitation. The objective of this paper is to present measures that could result in the limitation of corruption mainly through analyzing the existing legislation framework against corruption in Europe. The analysis is focused on exploring the multiple origins of factors influencing migration processes in Europe, as corruption could be characterized as one of the most significant reasons for refugees to flee their countries. The main results show that law enforcement must turn the focus on the financing of the organized crime groups that are involved in migrant smuggling activities. Corruption has a significant role in managing smuggling operations and in particular when criminal organizations and networks are involved. Illegal migrants and refugees usually represent significant sources of additional income for officials involved in the process of boarding protection and immigration control within the European Union borders.Keywords: corruption, influence, human smuggling, legislation, migration
Procedia PDF Downloads 3559650 A Fast Optimizer for Large-scale Fulfillment Planning based on Genetic Algorithm
Authors: Choonoh Lee, Seyeon Park, Dongyun Kang, Jaehyeong Choi, Soojee Kim, Younggeun Kim
Abstract:
Market Kurly is the first South Korean online grocery retailer that guarantees same-day, overnight shipping. More than 1.6 million customers place an average of 4.7 million orders and add 3 to 14 products into a cart per month. The company has sold almost 30,000 kinds of various products in the past 6 months, including food items, cosmetics, kitchenware, toys for kids/pets, and even flowers. The company is operating and expanding multiple dry, cold, and frozen fulfillment centers in order to store and ship these products. Due to the scale and complexity of the fulfillment, pick-pack-ship processes are planned and operated in batches, and thus, the planning that decides the batch of the customers’ orders is a critical factor in overall productivity. This paper introduces a metaheuristic optimization method that reduces the complexity of batch processing in a fulfillment center. The method is an iterative genetic algorithm with heuristic creation and evolution strategies; it aims to group similar orders into pick-pack-ship batches to minimize the total number of distinct products. With a well-designed approach to create initial genes, the method produces streamlined plans, up to 13.5% less complex than the actual plans carried out in the company’s fulfillment centers in the previous months. Furthermore, our digital-twin simulations show that the optimized plans can reduce 3% of operation time for packing, which is the most complex and time-consuming task in the process. The optimization method implements a multithreading design on the Spring framework to support the company’s warehouse management systems in near real-time, finding a solution for 4,000 orders within 5 to 7 seconds on an AWS c5.2xlarge instance.Keywords: fulfillment planning, genetic algorithm, online grocery retail, optimization
Procedia PDF Downloads 869649 Analysis of Artificial Hip Joint Using Finite Element Method
Authors: Syed Zameer, Mohamed Haneef
Abstract:
Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach
Procedia PDF Downloads 3579648 Use of External Sensory Stimuli in the Treatment of Parkinson Disease: Literature Review
Authors: Hadi O. Tohme
Abstract:
This study is a review on the effectiveness of new physiotherapy techniques with external sensory stimulus compared to standard physiotherapy in the daily activities of patients with Parkinson's disease. Twenty studies from 1996 to 2015 were analyzed and discussed in this review, using the rehabilitation strategy with external sensory stimulus evaluating walking, freezing episodes, balance, transfers, and daily activities of parkinsonian patients. The study highlights the effectiveness of the variety of rehabilitation with cueing strategy used in the treatment of Parkinson's disease. Based on the literature review completed, there is a need for more specific trials with better treatment strategies to support the most appropriate choice of physiotherapy intervention using external sensory stimulus to the type and frequency of this stimulus. In addition, no trials examined the long-term benefits of the physiotherapy intervention with the external sensory stimulus. In order to determine if, or how long the improvements due to the external sensory stimulus physiotherapy intervention can last, long-term follow-up should be performed.Keywords: cueing strategy, external sensory stimulus, parkinson disease, rehabilitation for parkinson, sensory attention focused exercises, sensory strategy reeducation
Procedia PDF Downloads 2539647 Analyzing the Perception of Social Networking Sites as a Learning Tool among University Students: Case Study of a Business School in India
Authors: Bhaskar Basu
Abstract:
Universities and higher education institutes are finding it increasingly difficult to engage students fruitfully through traditional pedagogic tools. Web 2.0 technologies comprising social networking sites (SNSs) offer a platform for students to collaborate and share information, thereby enhancing their learning experience. Despite the potential and reach of SNSs, its use has been limited in academic settings promoting higher education. The purpose of this paper is to assess the perception of social networking sites among business school students in India and analyze its role in enhancing quality of student experiences in a business school leading to the proposal of an agenda for future research. In this study, more than 300 students of a reputed business school were involved in a survey of their preferences of different social networking sites and their perceptions and attitudes towards these sites. A questionnaire with three major sections was designed, validated and distributed among a sample of students, the research method being descriptive in nature. Crucial questions were addressed to the students concerning time commitment, reasons for usage, nature of interaction on these sites, and the propensity to share information leading to direct and indirect modes of learning. It was further supplemented with focus group discussion to analyze the findings. The paper notes the resistance in the adoption of new technology by a section of business school faculty, who are staunch supporters of the classical “face-to-face” instruction. In conclusion, social networking sites like Facebook and LinkedIn provide new avenues for students to express themselves and to interact with one another. Universities could take advantage of the new ways in which students are communicating with one another. Although interactive educational options such as Moodle exist, social networking sites are rarely used for academic purposes. Using this medium opens new ways of academically-oriented interactions where faculty could discover more about students' interests, and students, in turn, might express and develop more intellectual facets of their lives. hitherto unknown intellectual facets. This study also throws up the enormous potential of mobile phones as a tool for “blended learning” in business schools going forward.Keywords: business school, India, learning, social media, social networking, university
Procedia PDF Downloads 2679646 A Cognitive Training Program in Learning Disability: A Program Evaluation and Follow-Up Study
Authors: Krisztina Bohacs, Klaudia Markus
Abstract:
To author’s best knowledge we are in absence of studies on cognitive program evaluation and we are certainly short of programs that prove to have high effect sizes with strong retention results. The purpose of our study was to investigate the effectiveness of a comprehensive cognitive training program, namely BrainRx. This cognitive rehabilitation program target and remediate seven core cognitive skills and related systems of sub-skills through repeated engagement in game-like mental procedures delivered one-on-one by a clinician, supplemented by digital training. A larger sample of children with learning disability were given pretest and post-test cognitive assessments. The experimental group completed a twenty-week cognitive training program in a BrainRx center. A matched control group received another twenty-week intervention with Feuerstein’s Instrumental Enrichment programs. A second matched control group did not receive training. As for pre- and post-test, we used a general intelligence test to assess IQ and a computer-based test battery for assessing cognition across the lifespan. Multiple regression analyses indicated that the experimental BrainRx treatment group had statistically significant higher outcomes in attention, working memory, processing speed, logic and reasoning, auditory processing, visual processing and long-term memory compared to the non-treatment control group with very large effect sizes. With the exception of logic and reasoning, the BrainRx treatment group realized significantly greater gains in six of the above given seven cognitive measures compared to the Feuerstein control group. Our one-year retention measures showed that all the cognitive training gains were above ninety percent with the greatest retention skills in visual processing, auditory processing, logic, and reasoning. The BrainRx program may be an effective tool to establish long-term cognitive changes in case of students with learning disabilities. Recommendations are made for treatment centers and special education institutions on the cognitive training of students with special needs. The importance of our study is that targeted, systematic, progressively loaded and intensive brain training approach may significantly change learning disabilities.Keywords: cognitive rehabilitation training, cognitive skills, learning disability, permanent structural cognitive changes
Procedia PDF Downloads 2049645 Study of Toxic Effect and Anti-Oxidative Activity of a β- Amidophosphonates
Authors: Houria Djebar, Amina Saib, Malika Berredjem, Khaoula Bechlem, Mohammed-Reda Djebar
Abstract:
Reactive oxygen species (ROS) have a high potential to damage almost all types of cellular components of the body, which explains their involvement in the induction and/or amplification of several pathologies. Supplementation of the body by exogenous antioxidants is very useful against these harmful species. In this context, we attempted to evaluate the in vitro and in vivo antioxidant activities of three newly synthesized amidophosphonates (AP1, AP2, and AP3). The results relating to the in vitro tests for DPPH radical scavenging activity shows that these amidophosphonates have a modest antiradical power (ARP) less effectively pronounced compared with an analogue marketed in Algeria: (Dursban) Clorpiryphos ethyl. However, in vivo effects were evaluated on some antioxidant systems (LP intensity, CAT activity and GSH content), or in combination with 2, 2-diphenyl-picrylhydrazyle (DPPH) radical in paramecium tetraurelia used as a complementary system to rapidly elucidate the cytotoxicity. On the basis of the results obtained it can be concluded that amidophosphonates studied exhibited a mild protective effect. The mechanism for how they influenced the antioxidant activities was discussed.Keywords: Paramecium tetraurelia, amidophosphonates, antioxidant activity, DPPH free radical, in vitro experiments, biochemical parameters
Procedia PDF Downloads 1729644 Legal Personality and Responsibility of Robots
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Arrival of artificial intelligence or smart robots in the modern world put them in charge on pericise and at risk. So acting human activities with robots makes criminal or civil responsibilities for their acts or behavior. The practical usage of smart robots has entered them in to a unique situation when naturalization happens and smart robots are identifies as members of society. There would be some legal situation by adopting these new smart citizens. The first situation is about legal responsibility of robots. Recognizing the naturalization of robot involves some basic right , so humans have the rights of employment, property, housing, using energy and other human rights may be employed for robots. So how would be the practice of these rights in the society and if some problems happens with these rights, how would the civil responsibility and punishment? May we consider them as population and count on the social programs? The second episode is about the criminal responsibility of robots in important activity instead of human that is the aim of inventing robots with handling works in AI technology , but the problem arises when some accidents are happened by robots who are in charge of important activities like army, surgery, transporting, judgement and so on. Moreover, recognizing independent identification for robots in the legal world by register ID cards, naturalization and civilian rights makes and prepare the same rights and obligations of human. So, the civil responsibility is not avoidable and if the robot commit a crime it would have criminal responsibility and have to be punished. The basic component of criminal responsibility may changes in so situation. For example, if designation for criminal responsibility bounds to human by sane, maturity, voluntariness, it would be for robots by being intelligent, good programming, not being hacked and so on. So it is irrational to punish robots by prisoning , execution and other human punishments for body. We may determine to make digital punishments like changing or repairing programs, exchanging some parts of its body or wreck it down completely. Finally the responsibility of the smart robot creators, programmers, the boss in chief, the organization who employed robot, the government which permitted to use robot in important bases and activities , will be analyzing and investigating in their article.Keywords: robot, artificial intelligence, personality, responsibility
Procedia PDF Downloads 1509643 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 1969642 Spatial Planning and Tourism Development with Sustainability Model of the Territorial Tourist with Land Use Approach
Authors: Mehrangiz Rezaee, Zabih Charrahi
Abstract:
In the last decade, with increasing tourism destinations and tourism growth, we are witnessing the widespread impacts of tourism on the economy, environment and society. Tourism and its related economy are now undergoing a transformation and as one of the key pillars of business economics, it plays a vital role in the world economy. Activities related to tourism and providing services appropriate to it in an area, like many economic sectors, require the necessary context on its origin. Given the importance of tourism industry and tourism potentials of Yazd province in Iran, it is necessary to use a proper procedure for prioritizing different areas for proper and efficient planning. One of the most important goals of planning is foresight and creating balanced development in different geographical areas. This process requires an accurate study of the areas and potential and actual talents, as well as evaluation and understanding of the relationship between the indicators affecting the development of the region. At the global and regional level, the development of tourist resorts and the proper distribution of tourism destinations are needed to counter environmental impacts and risks. The main objective of this study is the sustainable development of suitable tourism areas. Given that tourism activities in different territorial areas require operational zoning, this study deals with the evaluation of territorial tourism using concepts such as land use, fitness and sustainable development. It is essential to understand the structure of tourism development and the spatial development of tourism using land use patterns, spatial planning and sustainable development. Tourism spatial planning implements different approaches. However, the development of tourism as well as the spatial development of tourism is complex, since tourist activities can be carried out in different areas with different purposes. Multipurpose areas have great important for tourism because it determines the flow of tourism. Therefore, in this paper, by studying the development and determination of tourism suitability that is related to spatial development, it is possible to plan tourism spatial development by developing a model that describes the characteristics of tourism. The results of this research determine the suitability of multi-functional territorial tourism development in line with spatial planning of tourism.Keywords: land use change, spatial planning, sustainability, territorial tourist, Yazd
Procedia PDF Downloads 1869641 Assessing Adoption Trends of Mukau (Melia volkensii (Gürke)) Enterprises in Eastern and Coastal Regions of Kenya
Authors: Lydia Murugi Mugendi
Abstract:
The promotion of tree growing as a lucrative enterprise is the focus of this paper as management practices have shifted focus from protection of natural forest resources to community/government partnerships with the aim of resource conservation, management and increase of on-farm tree growing. Using KEFRI as (the source) of information pertaining Melia volkensii (the medium or message) being transferred, this paper investigates the current perception towards forestry and the behavioural attitudes of recipients of forest intervention activities. The two objectives explored in this paper are to find out the level of adoption of Mukau in Kitui, Kibwezi and Samburu/Taru and secondly, to find out the characteristics of the adoption process between Kitui, Kibwezi and Samburu/Taru. The methodologies used during data collection were participatory rural appraisal tools in conjunction with the social survey questionnaires. Simple random sampling and snowball sampling were used to identify respondents within the three target sites and analysis was done using SPSS. Results of the study of indicating that adoption rates of the Mukau in Samburu/Taru, where forestry-related activities were introduced within the past one decade had significantly increase despite initial resistance. The other areas, which had benefited from numerous decades of intense forestry extension projects and activities, indicated a decline in re-adoption rates of Mukau as an enterprise. This study has brought out the reality of adoption trends and state of Mukau population within the three counties while providing a glimpse towards the communities’ perception in regards to adoption of forestry and other environmental innovations. The outcome of the study is to provide a guideline for extension/ dissemination officers in KEFRI and related stakeholders to promote seamless cohesive interaction between the recipient communities of the proposed interventions.Keywords: adoption, innovation, enterprise, extension, DOI Theory
Procedia PDF Downloads 1189640 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers
Authors: Helen Zhang
Abstract:
Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning
Procedia PDF Downloads 1249639 Antioxidant Activity of Nanoparticle of Etlingera elatior (Jack) R.M.Sm Flower Extract on Liver and Kidney of Rats
Authors: Tita Nofianti, Tresna Lestari, Ade Y. Aprillia, Lilis Tuslinah, Ruswanto Ruswanto
Abstract:
Nanoparticle technology gives a chance for drugs, especially natural based product, to give better activities than in its macromolecule form. The ginger torch is known to have activities as an antioxidant, antimicrobial, anticancer, etc. In this research, ginger torch flower extract was nanoparticlized using poloxamer 1, 3, and 5%. Nanoparticle was charaterized for its particle size, polydispersity index, zeta potential, entrapment efficiency, and morphological form by SEM (scanning electron microscope). The result shows that nanoparticle formulations have particle size 134.7-193.1 nm, polydispersity index is less than 0.5 for all formulations, zeta potential is -41.0 to (-24.3) mV, and entrapment efficiency is 89.93 to 97.99 against flavonoid content with a soft surface and spherical form of particles. Methanolic extract of ginger torch flower could enhance superoxide dismutase activity by 1,3183 U/mL in male rats. Nanoparticle formulation of ginger torch extract is expected to increase the capability of drug to enhance superoxide dismutase activity.Keywords: superoxide dismutase, ginger torch flower, nanoparticle, poloxamer
Procedia PDF Downloads 2129638 Communities And Local Food Systems In The Post Pandemic World: Lessons For Kerala
Authors: Salimah Hasnah, Namratha Radhakrishnan
Abstract:
Communities play a vital role in mobilizing people and resources for the benefit of all. Since time immemorial, communities have been spear heading different activities ranging from disaster management, palliative care, local economic development and many more with laudable success. Urban agriculture is one such activity where communities can prove to make a real difference. Farming activities in cities across different developed countries have proved to have favorable outcomes in the form of increased food security, neighborhood revitalization, health benefits and local economic growth. However, urban agriculture in the developing nations have never been prioritized as an important planning tool to cater to the basic needs of the public. Urban agricultural practices are being carried out in a fragmented fashion without a formal backing. The urban dwellers rely heavily on their far-off rural counterparts for daily food requirements. With the onset of the pandemic and the recurring lockdowns, the significance of geographic proximity and its impact on the availability of food to the public are gradually being realized around the globe. This warrants a need for localized food systems by shortening the distance between production and consumption of food. The significance of communities in realizing these urban farming benefits is explored in this paper. A case-study approach is adopted to understand how different communities have overcome barriers to urban farming in cities. The applicability of these practices is validated against the state of Kerala in India wherein different community centered approaches have been successful in the past. The existing barriers are assessed and way forward to achieve a self-sufficient localized food systems is formulated with the key lessons from the case studies. These recommendations will be helpful to successfully establish and sustain farming activities in urban areas by leveraging the power of communities.Keywords: community-centric, COVID-19, drivers and barriers, local food system, urban agriculture
Procedia PDF Downloads 1419637 Model Development of Health Tourism at Ban Nam Chieo Community, Laem Ngop, Trat Province
Authors: Pradapet Krutchangthong, Jirawat Sudsawart
Abstract:
This research aims to study the health tourism administration and factors related to health tourism promotion at Ban Nam Chieo Community, Laem Ngop, Trat Province. The sample in this research is 361 tourists who use the service and Ban Nam Chieo Community residents who provide the service. Sampling was done from a population size of 3,780 using Taro Yamane’s formula. The tools used in the study were questionnaires and interviews. The statistics used in this research are percentage, mean and standard deviation. The result of Model Development of Health Tourism at Ban Nam Chieo Community, Laem Ngop , Trat Province shows that most of them are female with bachelor degree. They are government officers with an average income between 16,001-20,000 Baht. Suggested health system activities for health tourism development are: 1) health massage, 2) herbal compress, 3) exercise in the water by walking on shell. Meanwhile, factors related to health tourism promotion at Ban Nam Chieo Community, Laem Ngop, Trat Province are: 1) understanding the context of the community and service providers, 2) cooperation from related government and private sectors.Keywords: health tourism, health system activities, promotion, administration
Procedia PDF Downloads 3929636 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3169635 A Study of Faculty Development Programs in India to Assist Pedagogy and Curriculum Development
Authors: Chhavi Rana, Sanjay K Jain
Abstract:
All sides of every education debate agree that quality learning happens when knowledgeable, caring teachers use sound pedagogy. Many deliberations of pedagogy make the fault of considering it as principally being about teaching. There has been lot of research about how to build a positive climate for learning, improve student curiosity, and enhance classroom association. However, these things can only be facilitated when teachers are equipped with better teaching techniques that use sound and accurate pedagogy. Pedagogy is the science and art of education. Its aims range from the full development of the human being to skills acquisition. In India, a project named Mission 10 x has been started by an esteemed IT Corporation Wipro as a faculty development programme (FDP) that particularly focus on elements that facilitated teachers in developing curriculum and new pedagogies that can lead to improvement in student engagement. This paper presents a study of these FDPs and examines (1) the parameters that help teachers in building new pedagogies (2) the extent to which appropriate usage of pedagogy is improved after the conduct of Mission 10 x FDPs, and (3) whether institutions differ in terms of their ability to convert usage of improved pedagogy into academic performance via these FDPs. The sample consisted of 2,236 students at 6 four-year engineering colleges and universities that completed several FDPs during 2012-2014. Many measures of usage of better pedagogy were linked positively with such FDPs, although some of the relationships were weak in strength. The results suggest that the usage of pedagogy were more benefited after conducting these FDPs and application of novel approaches in conducting classes.Keywords: student engagement, critical thinking; achievement, student learning, pedagogy
Procedia PDF Downloads 4239634 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: distribution network, machine learning, network topology, phase identification, smart grid
Procedia PDF Downloads 3049633 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms
Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani
Abstract:
Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.Keywords: face recognition, body-worn cameras, deep learning, person identification
Procedia PDF Downloads 1709632 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO
Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky
Abstract:
The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.Keywords: aeronautics, big data, data processing, machine learning, S1000D
Procedia PDF Downloads 1659631 Pomegranates Attenuates Cognitive and Behavioural Deficts and reduces inflammation in a Transgenic Mice Model of Alzheimer's Disease
Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein
Abstract:
Objective: Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioural deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Pomegranates contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani pomegranate extract on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 4% pomegranate. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analysed. Results: APPsw/Tg2576 mice that were fed a standard chow diet without pomegranates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, APPsw/Tg2576 mice that were fed a diet containing 4% pomegranates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Conclusion: Our results suggest that dietary supplementation with pomegranates may slow the progression of cognitive and behavioural impairments in AD. The exact mechanism is still unclear and further extensive research needed.Keywords: Alzheimer's disease, pomegranates, oman, cognitive decline, memory loss, anxiety, inflammation
Procedia PDF Downloads 5319630 Socioeconomic Benefits in Agroforestry Practices by Rural Community: Case Study in Paitan District, Sabah, Malaysia
Authors: J. Kodoh, H. L. Dumil, M. Maid
Abstract:
Agroforestry system has been widely documented that provide benefits to rural livelihoods and improved socioeconomic status. This study concerns on agroforestry practices in generating local socioeconomic livelihoods. The general approach is to survey local community involvement in the agroforestry activities at four selected rural villages in Paitan district, using a structured questionnaire through personal interview technique. A total of 200 respondents were interviewed where the largest age group of the respondents was more than 50 years old (31%). Almost all respondents had former education (76%), and majority of them were employed (97%) either in the government and private sectors or self-employed. All respondents (100%) were involved in agroforestry activities where agroforestry products as their source of income (Hevea brasiliensis, Durio zibethinus, Elaeis guinensis) and foods (Manihot esculenta, Mangifera sp., Musa sp.) The mean monthly income from selling agroforestry products contributed 16.6% (USD130.37) of the mean total monthly income of the respondents (r=0.407, r²=0.166, p < 0.01). This study also showed that the main driven factor for the respondents (93%) to adopt and sustain the agroforestry practices is their traditional ways of farming that transferred from generation to generation.Keywords: agroforestry, Paitan district, rural community, socioeconomic
Procedia PDF Downloads 231