Search results for: star network
289 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China
Abstract:
With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.Keywords: landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture
Procedia PDF Downloads 170288 Effect of E-Governance and E-Learning Platform on Access to University Education by Public Servants in Nigeria
Authors: Nwamaka Patricia Ibeme, Musa Zakari
Abstract:
E-learning is made more effective because; it is enable student to students to easily interact, share, and collaborate across time and space with the help of e-governance platform. Zoom and the Microsoft classroom team can invite students from all around the world to join a conversation on a certain subject simultaneously. E-governance may be able to work on problem solving skills, as well as brainstorming and developing ideas. As a result of the shared experiences and knowledge, students are able to express themselves and reflect on their own learning." For students, e-governance facilities provide greater opportunity for students to build critical (higher order) thinking abilities through constructive learning methods. Students' critical thinking abilities may improve with more time spent in an online classroom. Students' inventiveness can be enhanced through the use of computer-based instruction. Discover multimedia tools and produce products in the styles that are easily available through games, Compact Disks, and television. The use of e-learning has increased both teaching and learning quality by combining student autonomy, capacity, and creativity over time in developed countries." Teachers are catalysts for the integration of technology through Information and Communication Technology, and e-learning supports teaching by simplifying access to course content." Creating an Information and Communication Technology class will be much easier if educational institutions provide teachers with the assistance, equipment, and resources they need. The study adopted survey research design. The populations of the study are Students and staff. The study adopted a simple random sampling technique to select a representative population. Both primary and secondary method of data collection was used to obtain the data. A chi-square statistical technique was used to analyze. Finding from the study revealed that e-learning has increase accesses to universities educational by public servants in Nigeria. Public servants in Nigeria have utilized e-learning and Online Distance Learning (ODL) programme to into various degree programmes. Finding also shows that E-learning plays an important role in teaching because it is oriented toward the use of information and communication technologies that have become a part of the everyday life and day-to-day business. E-learning contributes to traditional teaching methods and provides many advantages to society and citizens. The study recommends that the e-learning tools and internet facilities should be upgrade to foster any network challenges in the online facilitation and lecture delivery system.Keywords: E-governance, E-learning, online distance learning, university education public servants, Nigeria
Procedia PDF Downloads 72287 Immunomodulatory Role of Heat Killed Mycobacterium indicus pranii against Cervical Cancer
Authors: Priyanka Bhowmik, Subrata Majumdar, Debprasad Chattopadhyay
Abstract:
Background: Cervical cancer is the third major cause of cancer in women and the second most frequent cause of cancer related deaths causing 300,000 deaths annually worldwide. Evasion of immune response by Human Papilloma Virus (HPV), the key contributing factor behind cancer and pre-cancerous lesions of the uterine cervix, makes immunotherapy a necessity to treat this disease. Objective: A Heat killed fraction of Mycobacterium indicus pranii (MIP), a non-pathogenic Mycobacterium has been shown to exhibit cytotoxic effects on different cancer cells, including human cervical carcinoma cell line HeLa. However, the underlying mechanisms remain unknown. The aim of this study is to decipher the mechanism of MIP induced HeLa cell death. Methods: The cytotoxicity of Mycobacterium indicus pranii against HeLa cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and Propidium iodide (PI) staining. The assessment of reactive oxygen species (ROS) generation and cell cycle analysis were measured by flow cytometry. The expression of apoptosis associated genes was analyzed by real time PCR. Result: MIP could inhibit the proliferation of HeLa cell in a time and dose dependent manner but caused minor damage to normal cells. The induction of apoptosis was confirmed by the cell surface presentation of phosphatidyl serine, DNA fragmentation, and mitochondrial damage. MIP caused very early (as early as 30 minutes) transcriptional activation of p53, followed by a higher activation (32 fold) at 24 hours suggesting prime importance of p53 in MIP-induced apoptosis in HeLa cell. The up regulation of p53 dependent pro-apoptotic genes Bax, Bak, PUMA, and Noxa followed a lag phase that was required for the transcriptional p53 program. MIP also caused the transcriptional up regulation of Toll like receptor 2 and 4 after 30 minutes of MIP treatment suggesting recognition of MIP by toll like receptors. Moreover, MIP caused the inhibition of expression of HPV anti apoptotic gene E6, which is known to interfere with p53/PUMA/Bax apoptotic cascade. This inhibition might have played a role in transcriptional up regulation of PUMA and subsequently apoptosis. ROS was generated transiently which was concomitant with the highest transcription activation of p53 suggesting a plausible feedback loop network of p53 and ROS in the apoptosis of HeLa cells. Scavenger of ROS, such as N-acetyl-L-cysteine, decreased apoptosis suggesting ROS is an important effector of MIP induced apoptosis. Conclusion: Taken together, MIP possesses full potential to be a novel therapeutic agent in the clinical treatment of cervical cancer.Keywords: cancer, mycobacterium, immunity, immunotherapy.
Procedia PDF Downloads 252286 Transmedia and Platformized Political Discourse in a Growing Democracy: A Study of Nigeria’s 2023 General Elections
Authors: Tunde Ope-Davies
Abstract:
Transmediality and platformization as online content-sharing protocols have continued to accentuate the growing impact of the unprecedented digital revolution across the world. The rapid transformation across all sectors as a result of this revolution has continued to spotlight the increasing importance of new media technologies in redefining and reshaping the rhythm and dynamics of our private and public discursive practices. Equally, social and political activities are being impacted daily through the creation and transmission of political discourse content through multi-channel platforms such as mobile telephone communication, social media networks and the internet. It has been observed that digital platforms have become central to the production, processing, and distribution of multimodal social data and cultural content. The platformization paradigm thus underpins our understanding of how digital platforms enhance the production and heterogenous distribution of media and cultural content through these platforms and how this process facilitates socioeconomic and political activities. The use of multiple digital platforms to share and transmit political discourse material synchronously and asynchronously has gained some exciting momentum in the last few years. Nigeria’s 2023 general elections amplified the usage of social media and other online platforms as tools for electioneering campaigns, socio-political mobilizations and civic engagement. The study, therefore, focuses on transmedia and platformed political discourse as a new strategy to promote political candidates and their manifesto in order to mobilize support and woo voters. This innovative transmedia digital discourse model involves a constellation of online texts and images transmitted through different online platforms almost simultaneously. The data for the study was extracted from the 2023 general elections campaigns in Nigeria between January- March 2023 through media monitoring, manual download and the use of software to harvest the online electioneering campaign material. I adopted a discursive-analytic qualitative technique with toolkits drawn from a computer-mediated multimodal discourse paradigm. The study maps the progressive development of digital political discourse in this young democracy. The findings also demonstrate the inevitable transformation of modern democratic practice through platform-dependent and transmedia political discourse. Political actors and media practitioners now deploy layers of social media network platforms to convey messages and mobilize supporters in order to aggregate and maximize the impact of their media campaign projects and audience reach.Keywords: social media, digital humanities, political discourse, platformized discourse, multimodal discourse
Procedia PDF Downloads 89285 Intelligent Control of Agricultural Farms, Gardens, Greenhouses, Livestock
Authors: Vahid Bairami Rad
Abstract:
The intelligentization of agricultural fields can control the temperature, humidity, and variables affecting the growth of agricultural products online and on a mobile phone or computer. Smarting agricultural fields and gardens is one of the best and best ways to optimize agricultural equipment and has a 100 percent direct effect on the growth of plants and agricultural products and farms. Smart farms are the topic that we are going to discuss today, the Internet of Things and artificial intelligence. Agriculture is becoming smarter every day. From large industrial operations to individuals growing organic produce locally, technology is at the forefront of reducing costs, improving results and ensuring optimal delivery to market. A key element to having a smart agriculture is the use of useful data. Modern farmers have more tools to collect intelligent data than in previous years. Data related to soil chemistry also allows people to make informed decisions about fertilizing farmland. Moisture meter sensors and accurate irrigation controllers have made the irrigation processes to be optimized and at the same time reduce the cost of water consumption. Drones can apply pesticides precisely on the desired point. Automated harvesting machines navigate crop fields based on position and capacity sensors. The list goes on. Almost any process related to agriculture can use sensors that collect data to optimize existing processes and make informed decisions. The Internet of Things (IoT) is at the center of this great transformation. Internet of Things hardware has grown and developed rapidly to provide low-cost sensors for people's needs. These sensors are embedded in IoT devices with a battery and can be evaluated over the years and have access to a low-power and cost-effective mobile network. IoT device management platforms have also evolved rapidly and can now be used securely and manage existing devices at scale. IoT cloud services also provide a set of application enablement services that can be easily used by developers and allow them to build application business logic. Focus on yourself. These development processes have created powerful and new applications in the field of Internet of Things, and these programs can be used in various industries such as agriculture and building smart farms. But the question is, what makes today's farms truly smart farms? Let us put this question in another way. When will the technologies associated with smart farms reach the point where the range of intelligence they provide can exceed the intelligence of experienced and professional farmers?Keywords: food security, IoT automation, wireless communication, hybrid lifestyle, arduino Uno
Procedia PDF Downloads 60284 An Operational Model for eMarketing Technology Deployment in Higher Education in the UK
Authors: Amitave Banik
Abstract:
The terms “eMarketing,” “online marketing,” and “Internet marketing” are frequently interchanged and can often be considered synonymous. eMarketing technologies, tactics, tools and strategies can help UK universities to achieve potential competitive benefits. In UK universities, the uptake of eMarketing has been relatively limited, and the complexity of managing eMarketing has become more challenging. Many UK universities are only at an early stage of developing their online marketing capabilities and have not yet to identify their core digital marketing tools and techniques. This research investigates eMarketing adoption and deployment initiatives and provides insights into how to successfully develop and implement these initiatives in UK universities. Moreover, this research puts forward a provisional conceptual framework for eMarketing strategy implementation that relates strategy objectives and operational requirements to technology utilization. The research conducted the epistemological assumptions relate to “how things really are” and “how things really work” in an assumed reality. The methodological assumptions relate to the process of building the conceptual framework and assessing what it can provide about the “real” world. Based on the concept, the framework recognizes the various eMarketing channels, eMarketing techniques and eMarketing strategies that are used to reach the widest student base. A qualitative research method, based on narrative in-depth case studies, includes an empirical investigation at the University of Gloucestershire, University of Wales Trinity St David, University of Westminster, and London Metropolitan Business school. The selection of case/ university provides additional value because there is no previous study studied at this level. Questionnaires and semi-structured interviews have been conducted to gather data from selected universities’ academics and professional services staff. Narrative inquiry has been employed as a tool for analysis of conversations and interviews. Framework analysis used to identify common themes to build/ innovate an operational model from the original provisional conceptual framework. The proposed operational model will provide appropriate eMarketing strategies that create and sustain a competitive business development (business expansion and market growth). Besides, it will offer to one or several segments of customers and its network of partners for creating, marketing and building up relationships to generate profitable and sustainable revenue streams. In this context, the operational model will serve as an instructional-technological interactions roadmap, outlining essential components to guide the eMarketing technological deployment in UK universities.Keywords: eMarketing, digital technologies, marketing mix, eMarketing plan, strategies, tactics, conceptual framework, operational model, higher education organizations
Procedia PDF Downloads 8283 Video Analytics on Pedagogy Using Big Data
Authors: Jamuna Loganath
Abstract:
Education is the key to the development of any individual’s personality. Today’s students will be tomorrow’s citizens of the global society. The education of the student is the edifice on which his/her future will be built. Schools therefore should provide an all-round development of students so as to foster a healthy society. The behaviors and the attitude of the students in school play an essential role for the success of the education process. Frequent reports of misbehaviors such as clowning, harassing classmates, verbal insults are becoming common in schools today. If this issue is left unattended, it may develop a negative attitude and increase the delinquent behavior. So, the need of the hour is to find a solution to this problem. To solve this issue, it is important to monitor the students’ behaviors in school and give necessary feedback and mentor them to develop a positive attitude and help them to become a successful grownup. Nevertheless, measuring students’ behavior and attitude is extremely challenging. None of the present technology has proven to be effective in this measurement process because actions, reactions, interactions, response of the students are rarely used in the course of the data due to complexity. The purpose of this proposal is to recommend an effective supervising system after carrying out a feasibility study by measuring the behavior of the Students. This can be achieved by equipping schools with CCTV cameras. These CCTV cameras installed in various schools of the world capture the facial expressions and interactions of the students inside and outside their classroom. The real time raw videos captured from the CCTV can be uploaded to the cloud with the help of a network. The video feeds get scooped into various nodes in the same rack or on the different racks in the same cluster in Hadoop HDFS. The video feeds are converted into small frames and analyzed using various Pattern recognition algorithms and MapReduce algorithm. Then, the video frames are compared with the bench marking database (good behavior). When misbehavior is detected, an alert message can be sent to the counseling department which helps them in mentoring the students. This will help in improving the effectiveness of the education process. As Video feeds come from multiple geographical areas (schools from different parts of the world), BIG DATA helps in real time analysis as it analyzes computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions. It also analyzes data that can’t be analyzed by traditional software applications such as RDBMS, OODBMS. It has also proven successful in handling human reactions with ease. Therefore, BIG DATA could certainly play a vital role in handling this issue. Thus, effectiveness of the education process can be enhanced with the help of video analytics using the latest BIG DATA technology.Keywords: big data, cloud, CCTV, education process
Procedia PDF Downloads 242282 An Adaptive Oversampling Technique for Imbalanced Datasets
Authors: Shaukat Ali Shahee, Usha Ananthakumar
Abstract:
A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling
Procedia PDF Downloads 418281 Anti-Obesity Effects of Pteryxin in Peucedanum japonicum Thunb Leaves through Different Pathways of Adipogenesis In-Vitro
Authors: Ruwani N. Nugara, Masashi Inafuku, Kensaku Takara, Hironori Iwasaki, Hirosuke Oku
Abstract:
Pteryxin from the partially purified hexane phase (HP) of Peucedanum japonicum Thunb (PJT) was identified as the active compound related to anti-obesity. Thus, in this study we investigated the mechanisms related to anti-obesity activity in-vitro. The HP was fractionated, and effect on the triglyceride (TG) content was evaluated in 3T3-L1 and HepG2 cells. Comprehensive spectroscopic analyses were used to identify the structure of the active compound. The dose dependent effect of active constituent on the TG content, and the gene expressions related to adipogenesis, fatty acid catabolism, energy expenditure, lipolysis and lipogenesis (20 μg/mL) were examined in-vitro. Furthermore, higher dosage of pteryxin (50μg/mL) was tested against 20μg/mL in 3T3-L1 adipocytes. The mRNA were subjected to SOLiD next generation sequencer and the obtained data were analyzed by Ingenuity Pathway Analysis (IPA). The active constituent was identified as pteryxin, a known compound in PJT. However, its biological activities against obesity have not been reported previously. Pteryxin dose dependently suppressed TG content in both 3T3-L1 adipocytes and HepG2 hepatocytes (P < 0.05). Sterol regulatory element-binding protein-1 (SREBP1 c), Fatty acid synthase (FASN), and acetyl-CoA carboxylase-1 (ACC1) were downregulated in pteryxin-treated adipocytes (by 18.0, 36.1 and 38.2%; P < 0.05, respectively) and hepatocytes (by 72.3, 62.9 and 38.8%, respectively; P < 0.05) indicating its suppressive effects on fatty acid synthesis. The hormone-sensitive lipase (HSL), a lipid catabolising gene was upregulated (by 15.1%; P < 0.05) in pteryxin-treated adipocytes suggesting improved lipolysis. Concordantly, the adipocyte size marker gene, paternally expressed gene1/mesoderm specific transcript (MEST) was downregulated (by 42.8%; P < 0.05), further accelerating the lipolytic activity. The upregulated trend of uncoupling protein 2 (UCP2; by 77.5%; P < 0.05) reflected the improved energy expenditure due to pteryxin. The 50μg/mL dosage of pteryxin completely suppressed PPARγ, MEST, SREBP 1C, HSL, Adiponectin, Fatty Acid Binding Protein (FABP) 4, and UCP’s in 3T3-L1 adipocytes. The IPA suggested that pteryxin at 20μg/mL and 50μg/mL suppress obesity in two different pathways, whereas the WNT signaling pathway play a key role in the higher dose of pteryxin in preadipocyte stage. Pteryxin in PJT play the key role in regulating lipid metabolism related gene network and improving energy production in vitro. Thus, the results suggests pteryxin as a new natural compound to be used as an anti-obesity drug in pharmaceutical industry.Keywords: obesity, peucedanum japonicum thunb, pteryxin, food science
Procedia PDF Downloads 455280 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 163279 Liquid Food Sterilization Using Pulsed Electric Field
Authors: Tanmaya Pradhan, K. Midhun, M. Joy Thomas
Abstract:
Increasing the shelf life and improving the quality are important objectives for the success of packaged liquid food industry. One of the methods by which this can be achieved is by deactivating the micro-organisms present in the liquid food through pasteurization. Pasteurization is done by heating, but some serious disadvantages such as the reduction in food quality, flavour, taste, colour, etc. were observed because of heat treatment, which leads to the development of newer methods instead of pasteurization such as treatment using UV radiation, high pressure, nuclear irradiation, pulsed electric field, etc. In recent years the use of the pulsed electric field (PEF) for inactivation of the microbial content in the food is gaining popularity. PEF uses a very high electric field for a short time for the inactivation of microorganisms, for which we require a high voltage pulsed power source. Pulsed power sources used for PEF treatments are usually in the range of 5kV to 50kV. Different pulse shapes are used, such as exponentially decaying and square wave pulses. Exponentially decaying pulses are generated by high power switches with only turn-on capacity and, therefore, discharge the total energy stored in the capacitor bank. These pulses have a sudden onset and, therefore, a high rate of rising but have a very slow decay, which yields extra heat, which is ineffective in microbial inactivation. Square pulses can be produced by an incomplete discharge of a capacitor with the help of a switch having both on/off control or by using a pulse forming network. In this work, a pulsed power-based system is designed with the help of high voltage capacitors and solid-state switches (IGBT) for the inactivation of pathogenic micro-organism in liquid food such as fruit juices. The high voltage generator is based on the Marx generator topology, which can produce variable amplitude, frequency, and pulse width according to the requirements. Liquid food is treated in a chamber where pulsed electric field is produced between stainless steel electrodes using the pulsed output voltage of the supply. Preliminary bacterial inactivation tests were performed by subjecting orange juice inoculated with Escherichia Coli bacteria. With the help of the developed pulsed power source and the chamber, the inoculated orange has been PEF treated. The voltage was varied to get a peak electric field up to 15kV/cm. For a total treatment time of 200µs, a 30% reduction in the bacterial count has been observed. The detailed results and analysis will be presented in the final paper.Keywords: Escherichia coli bacteria, high voltage generator, microbial inactivation, pulsed electric field, pulsed forming line, solid-state switch
Procedia PDF Downloads 186278 Adding a Degree of Freedom to Opinion Dynamics Models
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 121277 A Review of How COVID-19 Has Created an Insider Fraud Pandemic and How to Stop It
Authors: Claire Norman-Maillet
Abstract:
Insider fraud, including its various synonyms such as occupational, employee or internal fraud, is a major financial crime threat whereby an employee defrauds (or attempts to defraud) their current, prospective, or past employer. ‘Employee’ covers anyone employed by the company, including contractors, directors, and part time staff; they may be a solo bad actor or working in collusion with others, whether internal or external. Insider fraud is even more of a concern given the impacts of the Coronavirus pandemic, which has generated multiple opportunities to commit insider fraud. Insider fraud is something that is not necessarily thought of as a significant financial crime threat; the focus of most academics and practitioners has historically been on that of ‘external fraud’ against businesses or entities where an individual or group has no professional ties. Without the face-to-face, ‘over the shoulder’ capabilities of staff being able to keep an eye on their employees, there is a heightened reliance on trust and transparency. With this, naturally, comes an increased risk of insider fraud perpetration. The objective of the research is to better understand how companies are impacted by insider fraud, and therefore how to stop it. This research will make both an original contribution and stimulate debate within the financial crime field. The financial crime landscape is never static – criminals are always creating new ways to perpetrate financial crime, and new legislation and regulations are implemented as attempts to strengthen controls, in addition to businesses doing what they can internally to detect and prevent it. By focusing on insider fraud specifically, the research will be more specific and will be of greater use to those in the field. To achieve the aims of the research, semi-structured interviews were conducted with 22 individuals who either work in financial services and deal with insider fraud or work within insider fraud perpetration in a recruitment or advisory capacity. This was to enable the sourcing of information from a wide range of individuals in a setting where they were able to elaborate on their answers. The principal recruitment strategy was engaging with the researcher’s network on LinkedIn. The interviews were then transcribed and analysed thematically. Main findings in the research suggest that insider fraud has been ignored owing to the denial of accepting the possibility that colleagues would defraud their employer. Whilst Coronavirus has led to a significant rise in insider fraud, this type of crime has been a major risk to businesses since their inception, however have never been given the financial or strategic backing required to be mitigated, until it's too late. Furthermore, Coronavirus should have led to companies tightening their access rights, controls and policies to mitigate the insider fraud risk. However, in most cases this has not happened. The research concludes that insider fraud needs to be given a platform upon which to be recognised as a threat to any company and given the same level of weighting and attention by Executive Committees and Boards as other types of economic crime.Keywords: fraud, insider fraud, economic crime, coronavirus, Covid-19
Procedia PDF Downloads 70276 Cloud Based Supply Chain Traceability
Authors: Kedar J. Mahadeshwar
Abstract:
Concept introduction: This paper talks about how an innovative cloud based analytics enabled solution that could address a major industry challenge that is approaching all of us globally faster than what one would think. The world of supply chain for drugs and devices is changing today at a rapid speed. In the US, the Drug Supply Chain Security Act (DSCSA) is a new law for Tracing, Verification and Serialization phasing in starting Jan 1, 2015 for manufacturers, repackagers, wholesalers and pharmacies / clinics. Similarly we are seeing pressures building up in Europe, China and many countries that would require an absolute traceability of every drug and device end to end. Companies (both manufacturers and distributors) can use this opportunity not only to be compliant but to differentiate themselves over competition. And moreover a country such as UAE can be the leader in coming up with a global solution that brings innovation in this industry. Problem definition and timing: The problem of counterfeit drug market, recognized by FDA, causes billions of dollars loss every year. Even in UAE, the concerns over prevalence of counterfeit drugs, which enter through ports such as Dubai remains a big concern, as per UAE pharma and healthcare report, Q1 2015. Distribution of drugs and devices involves multiple processes and systems that do not talk to each other. Consumer confidence is at risk due to this lack of traceability and any leading provider is at risk of losing its reputation. Globally there is an increasing pressure by government and regulatory bodies to trace serial numbers and lot numbers of every drug and medical devices throughout a supply chain. Though many of large corporations use some form of ERP (enterprise resource planning) software, it is far from having a capability to trace a lot and serial number beyond the enterprise and making this information easily available real time. Solution: The solution here talks about a service provider that allows all subscribers to take advantage of this service. The solution allows a service provider regardless of its physical location, to host this cloud based traceability and analytics solution of millions of distribution transactions that capture lots of each drug and device. The solution platform will capture a movement of every medical device and drug end to end from its manufacturer to a hospital or a doctor through a series of distributor or retail network. The platform also provides advanced analytics solution to do some intelligent reporting online. Why Dubai? Opportunity exists with huge investment done in Dubai healthcare city also with using technology and infrastructure to attract more FDI to provide such a service. UAE and countries similar will be facing this pressure from regulators globally in near future. But more interestingly, Dubai can attract such innovators/companies to run and host such a cloud based solution and become a hub of such traceability globally.Keywords: cloud, pharmaceutical, supply chain, tracking
Procedia PDF Downloads 531275 Assessment of Urban Environmental Noise in Urban Habitat: A Spatial Temporal Study
Authors: Neha Pranav Kolhe, Harithapriya Vijaye, Arushi Kamle
Abstract:
The economic growth engines are urban regions. As the economy expands, so does the need for peace and quiet, and noise pollution is one of the important social and environmental issue. Health and wellbeing are at risk from environmental noise pollution. Because of urbanisation, population growth, and the consequent rise in the usage of increasingly potent, diverse, and highly mobile sources of noise, it is now more severe and pervasive than ever before, and it will only become worse. Additionally, it will expand as long as there is an increase in air, train, and highway traffic, which continue to be the main contributors of noise pollution. The current study will be conducted in two zones of class I city of central India (population range: 1 million–4 million). Total 56 measuring points were chosen to assess noise pollution. The first objective evaluates the noise pollution in various urban habitats determined as formal and informal settlement. It identifies the comparison of noise pollution within the settlements using T- Test analysis. The second objective assess the noise pollution in silent zones (as stated in Central Pollution Control Board) in a hierarchical way. It also assesses the noise pollution in the settlements and compares with prescribed permissible limits using class I sound level equipment. As appropriate indices, equivalent noise level on the (A) frequency weighting network, minimum sound pressure level and maximum sound pressure level were computed. The survey is conducted for a period of 1 week. Arc GIS is used to plot and map the temporal and spatial variability in urban settings. It is discovered that noise levels at most stations, particularly at heavily trafficked crossroads and subway stations, were significantly different and higher than acceptable limits and squares. The study highlights the vulnerable areas that should be considered while city planning. The study demands area level planning while preparing a development plan. It also demands attention to noise pollution from the perspective of residential and silent zones. The city planning in urban areas neglects the noise pollution assessment at city level. This contributes to that, irrespective of noise pollution guidelines, the ground reality is far away from its applicability. The result produces incompatible land use on a neighbourhood scale with respect to noise pollution. The study's final results will be useful to policymakers, architects and administrators in developing countries. This will be useful for noise pollution in urban habitat governance by efficient decision making and policy formulation to increase the profitability of these systems.Keywords: noise pollution, formal settlements, informal settlements, built environment, silent zone, residential area
Procedia PDF Downloads 122274 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics
Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima
Abstract:
This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks
Procedia PDF Downloads 169273 Women Empowerment, Joint Income Ownership and Planning for Building Household Resilience on Climate Change: The Case of Kilimanjaro Region, Tanzania
Authors: S. I. Mwasha, Z. Robinson, M. Musgrave
Abstract:
Communities, especially in the global south, have been reported to have low adaptive capacity to cope with climate change impacts. As an attempt to improve adaptive capacity, most studies have focused on understanding the access of the household resources which can contribute to resilience against changes. However, little attention has been shown in uncovering how the household resources could be used and their implications to resilience against weather related shocks. By using a case study qualitative study, this project analyzed the trends in livelihoods practices and their implication to social equity. The study was done in three different villages within Kilimanjaro region. Each in different agro ecological zone. Two focus group discussions in two agro-ecological zones were done, one for women and another one for men except in the third zone where focus group participant were combined together (due to unforeseen circumstances). In the focus group discussion, several participatory rural appraisal tools were used to understand trend in crops and animal production and the use in which it is made: climate trends, soil fertility, trees and other livelihoods resources. Data were analyzed using thematic network analysis. Using an amalgam of magnitude (to note weather comments made were positive or negative) and descriptive coding (to note the topic), six basic themes were identified under social equity: individual ownership, family ownership, love and respect, women no education, women access to education as well as women access to loans. The results implied that despite mum and dad in the family providing labor in the agro pastoral activities, there were separations on who own what, as well as individual obligations in the family. Dad owned mostly income creating crops and mum, food crops. therefore, men controlled the economy which made some of them become arrogant and spend money to meet their interests sometimes not taking care of the family. Separation in ownership was reported to contribute to conflicts in the household as well as causing controversy on the use income is spent. Men were reported to use income to promote matriarchy system. However, as women were capacitated through access to education and loans they become closer to their husband and get access to own and plan the income together for the interest of the family. Joint ownership and planning on the household resources were reported to be important if families have to better adapt to climate change. The aim of this study is not to show women empowerment and joint ownership and planning as only remedy for low adaptive capacity. There is the need to understand other practices that either directly or indirectly impacts environmental integrity, food security and economic development for household resilience against changing climate.Keywords: adaptive capacity, climate change, resilience, women empowerment
Procedia PDF Downloads 170272 Hospital Wastewater Treatment by Ultrafiltration Membrane System
Authors: Selin Top, Raul Marcos, M. Sinan Bilgili
Abstract:
Although there have been several studies related to collection, temporary storage, handling and disposal of solid wastes generated by hospitals, there are only a few studies related to liquid wastes generated by hospitals or hospital wastewaters. There is an important amount of water consumptions in hospitals. While minimum domestic water consumption per person is 100 L/day, water consumption per bed in hospitals is generally ranged between 400-1200 L. This high amount of consumption causes high amount of wastewater. The quantity of wastewater produced in a hospital depends on different factors: bed numbers, hospital age, accessibility to water, general services present inside the structure (kitchen, laundry, laboratory, diagnosis, radiology, and air conditioning), number and type of wards and units, institution management policies and awareness in managing the structure in safeguarding the environment, climate and cultural and geographic factors. In our country, characterization of hospital wastewaters conducted by classical parameters in a very few studies. However, as mentioned above, this type of wastewaters may contain different compounds than domestic wastewaters. Hospital Wastewater (HWW) is wastewater generated from all activities of the hospital, medical and non medical. Nowadays, hospitals are considered as one of the biggest sources of wastewater along with urban sources, agricultural effluents and industrial sources. As a health-care waste, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components due to using disinfectants, pharmaceuticals, radionuclides and solvents making not suitable the connection of hospital wastewater to the municipal sewage network. These characteristics may represent a serious health hazard and children, adults and animals all have the potential to come into contact with this water. Therefore, the treatment of hospital wastewater is an important current interest point to focus on. This paper aims to approach on the investigation of hospital wastewater treatment by membrane systems. This study aim is to determined hospital wastewater’s characterization and also evaluates the efficiency of hospital wastewater treatment by high pressure filtration systems such as ultrafiltration (UF). Hospital wastewater samples were taken directly from sewage system from Şişli Etfal Training and Research Hospital, located in the district of Şişli, in the European part of Istanbul. The hospital is a 784 bed tertiary care center with a daily outpatient department of 3850 patients. Ultrafiltration membrane is used as an experimental treatment and the influence of the pressure exerted on the membranes was examined, ranging from 1 to 3 bar. The permeate flux across the membrane was observed to define the flooding membrane points. The global COD and BOD5 removal efficiencies were 54% and 75% respectively for ultrafiltration, all the SST removal efficiencies were above 90% and a successful removal of the pathological bacteria measured was achieved.Keywords: hospital wastewater, membrane, ultrafiltration, treatment
Procedia PDF Downloads 308271 Mapping the Urban Catalytic Trajectory for 'Convention and Exhibition' Projects: A Case of India International Convention and Expo Centre, New Delhi
Authors: Bhavana Gulaty, Arshia Chaudhri
Abstract:
Great civic projects contribute integrally to a city, and every city undergoes a recurring cycle of urban transformations and regeneration by their insertion. The M.I.C.E. (Meetings, Incentives, Convention and Exhibitions) industry is the forbearer of one category of such catalytic civic projects. Through a specific focus on M.I.C.E. destinations, this paper illustrates the multifarious dimensions that urban catalysts impact the city on S.P.U.R. (Seed. Profile. Urbane. Reflections), the theoretical framework of this paper aims to unearth these dimensions in the realm of the COEX (Convention & Exhibition) biosphere. The ‘COEX Biosphere’ is the filter of such catalysts being ecosystems unto themselves. Like a ripple in water, the impact of these strategic interventions focusing on art, culture, trade, and promotion expands right from the trigger; the immediate context to the region and subsequently impacts the global scale. These ripples are known to bring about significant economic, social, and political and network changes. The COEX inventory in the Asian context has one such prominent addition; the proposed India International Convention and Exhibition Centre (IICC) at New Delhi. It is envisioned to be the largest facility in Asia currently and would position India on the global M.I.C.E map. With the first phase of the project scheduled to open for use in the end of 2019, this flagship project of the Government of India is projected to cater to a peak daily footfall of 3,20,000 visitors and estimated to generate 5,00,000 jobs. While the economic benefits are yet to manifest in real time and ‘Good design is good business’ holds true, for the urban transformation to be meaningful, the benefits have to go beyond just a balance sheet for the city’s exchequer. This aspect has been found relatively unexplored in research on these developments. The methodology for investigation will comprise of two steps. The first will be establishing an inventory of the global success stories and associated benefits of COEX projects over the past decade. The rationale for capping the timeframe is the significant paradigm shift that has been observed in their recent conceptualization; for instance ‘Innovation Districts’ conceptualised in the city of Albuquerque that converges into the global economy. The second step would entail a comparative benchmarking of the projected transformations by IICC through a toolkit of parameters. This is posited to yield a matrix that can form the test bed for mapping the catalytic trajectory for projects in the pipeline globally. As a ready reckoner, it purports to be a catalyst to substantiate decision making in the planning stage itself for future projects in similar contexts.Keywords: catalysts, COEX, M.I.C.E., urban transformations
Procedia PDF Downloads 163270 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 123269 Modern Pilgrimage Narratives and India’s Heterogeneity
Authors: Alan Johnson
Abstract:
This paper focuses on modern pilgrimage narratives about sites affiliated with Indian religious expressions located both within and outside India. The paper uses a multidisciplinary approach to examine poetry, personal essays, and online attestations of pilgrimage to illustrate how non-religious ideas coexist with outwardly religious ones, exemplifying a characteristically Indian form of syncretism that pre-dates Western ideas of pluralism. The paper argues that the syncretism on display in these modern creative works refutes the current exclusionary vision of India as a primordially Hindu-nationalist realm. A crucial premise of this argument is that the narrative’s intrinsic heteroglossia, so evident in India’s historically rich variety of stories and symbols, belies this reactionary version of Hindu nationalism. Equally important to this argument, therefore, is the vibrancy of Hindu sites outside India, such as the Batu Caves temple complex in Kuala Lumpur, Malaysia. The literary texts examined in this paper include, first, Arun Kolatkar’s famous 1976 collection of poems, titled Jejuri, about a visit to the pilgrimage site of the same name in Maharashtra. Here, the modern, secularized visitor from Bombay (Mumbai) contemplates the effect of the temple complex on himself and on the other, more worshipful visitors. Kolatkar’s modernist poems reflect the narrator’s typically modern-Indian ambivalence for holy ruins, for although they do not evoke a conventionally religious feeling in him, they nevertheless possess an aura of timelessness that questions the narrator’s time-conscious sensibility. The paper bookends Kolatkar’s Jejuri with considerations of an early-twentieth-century text, online accounts by visitors to the Batu Caves, and a recent, more conventional Hindu account of pilgrimage. For example, the pioneering graphic artist Mukul Chandra Dey published in 1917, My Pilgrimages to Ajanta and Bagh, in which he devotes an entire chapter to the life of the Buddha as a means of illustrating the layering of stories that is a characteristic feature of sacred sites in India. In a different but still syncretic register, Jawaharlal Nehru, India’s first prime minister, and a committed secularist proffers India’s ancient pilgrimage network as a template for national unity in his classic 1946 autobiography The Discovery of India. Narrative is the perfect vehicle for highlighting this layering of sensibilities, for a single text can juxtapose the pilgrim-narrator’s description with that of a far older pilgrimage, a juxtaposition that establishes an imaginative connection between otherwise distanced actors, and between them and the reader.Keywords: India, literature, narrative, syncretism
Procedia PDF Downloads 158268 CO₂ Recovery from Biogas and Successful Upgrading to Food-Grade Quality: A Case Study
Authors: Elisa Esposito, Johannes C. Jansen, Loredana Dellamuzia, Ugo Moretti, Lidietta Giorno
Abstract:
The reduction of CO₂ emission into the atmosphere as a result of human activity is one of the most important environmental challenges to face in the next decennia. Emission of CO₂, related to the use of fossil fuels, is believed to be one of the main causes of global warming and climate change. In this scenario, the production of biomethane from organic waste, as a renewable energy source, is one of the most promising strategies to reduce fossil fuel consumption and greenhouse gas emission. Unfortunately, biogas upgrading still produces the greenhouse gas CO₂ as a waste product. Therefore, this work presents a case study on biogas upgrading, aimed at the simultaneous purification of methane and CO₂ via different steps, including CO₂/methane separation by polymeric membranes. The original objective of the project was the biogas upgrading to distribution grid quality methane, but the innovative aspect of this case study is the further purification of the captured CO₂, transforming it from a useless by-product to a pure gas with food-grade quality, suitable for commercial application in the food and beverage industry. The study was performed on a pilot plant constructed by Tecno Project Industriale Srl (TPI) Italy. This is a model of one of the largest biogas production and purification plants. The full-scale anaerobic digestion plant (Montello Spa, North Italy), has a digestive capacity of 400.000 ton of biomass/year and can treat 6.250 m3/hour of biogas from FORSU (organic fraction of solid urban waste). The entire upgrading process consists of a number of purifications steps: 1. Dehydration of the raw biogas by condensation. 2. Removal of trace impurities such as H₂S via absorption. 3.Separation of CO₂ and methane via a membrane separation process. 4. Removal of trace impurities from CO₂. The gas separation with polymeric membranes guarantees complete simultaneous removal of microorganisms. The chemical purity of the different process streams was analysed by a certified laboratory and was compared with the guidelines of the European Industrial Gases Association and the International Society of Beverage Technologists (EIGA/ISBT) for CO₂ used in the food industry. The microbiological purity was compared with the limit values defined in the European Collaborative Action. With a purity of 96-99 vol%, the purified methane respects the legal requirements for the household network. At the same time, the CO₂ reaches a purity of > 98.1% before, and 99.9% after the final distillation process. According to the EIGA/ISBT guidelines, the CO₂ proves to be chemically and microbiologically sufficiently pure to be suitable for food-grade applications.Keywords: biogas, CO₂ separation, CO2 utilization, CO₂ food grade
Procedia PDF Downloads 213267 The Effect of Lead(II) Lone Electron Pair and Non-Covalent Interactions on the Supramolecular Assembly and Fluorescence Properties of Pb(II)-Pyrrole-2-Carboxylato Polymer
Authors: M. Kowalik, J. Masternak, K. Kazimierczuk, O. V. Khavryuchenko, B. Kupcewicz, B. Barszcz
Abstract:
Recently, the growing interest of chemists in metal-organic coordination polymers (MOCPs) is primarily derived from their intriguing structures and potential applications in catalysis, gas storage, molecular sensing, ion exchanges, nonlinear optics, luminescence, etc. Currently, we are devoting considerable effort to finding the proper method of synthesizing new coordination polymers containing S- or N-heteroaromatic carboxylates as linkers and characterizing the obtained Pb(II) compounds according to their structural diversity, luminescence, and thermal properties. The choice of Pb(II) as the central ion of MOCPs was motivated by several reasons mentioned in the literature: i) a large ionic radius allowing for a wide range of coordination numbers, ii) the stereoactivity of the 6s2 lone electron pair leading to a hemidirected or holodirected geometry, iii) a flexible coordination environment, and iv) the possibility to form secondary bonds and unusual non-covalent interactions, such as classic hydrogen bonds and π···π stacking interactions, as well as nonconventional hydrogen bonds and rarely reported tetrel bonds, Pb(lone pair)···π interactions, C–H···Pb agostic-type interactions or hydrogen bonds, and chelate ring stacking interactions. Moreover, the construction of coordination polymers requires the selection of proper ligands acting as linkers, because we are looking for materials exhibiting different network topologies and fluorescence properties, which point to potential applications. The reaction of Pb(NO₃)₂ with 1H-pyrrole-2-carboxylic acid (2prCOOH) leads to the formation of a new four-nuclear Pb(II) polymer, [Pb4(2prCOO)₈(H₂O)]ₙ, which has been characterized by CHN, FT-IR, TG, PL and single-crystal X-ray diffraction methods. In view of the primary Pb–O bonds, Pb1 and Pb2 show hemidirected pentagonal pyramidal geometries, while Pb2 and Pb4 display hemidirected octahedral geometries. The topology of the strongest Pb–O bonds was determined as the (4·8²) fes topology. Taking the secondary Pb–O bonds into account, the coordination number of Pb centres increased, Pb1 exhibited a hemidirected monocapped pentagonal pyramidal geometry, Pb2 and Pb4 exhibited a holodirected tricapped trigonal prismatic geometry, and Pb3 exhibited a holodirected bicapped trigonal prismatic geometry. Moreover, the Pb(II) lone pair stereoactivity was confirmed by DFT calculations. The 2D structure was expanded into 3D by the existence of non-covalent O/C–H···π and Pb···π interactions, which was confirmed by the Hirshfeld surface analysis. The above mentioned interactions improve the rigidity of the structure and facilitate the charge and energy transfer between metal centres, making the polymer a promising luminescent compound.Keywords: coordination polymers, fluorescence properties, lead(II), lone electron pair stereoactivity, non-covalent interactions
Procedia PDF Downloads 148266 Formation of the Water Assisted Supramolecular Assembly in the Transition Structure of Organocatalytic Asymmetric Aldol Reaction: A DFT Study
Authors: Kuheli Chakrabarty, Animesh Ghosh, Atanu Roy, Gourab Kanti Das
Abstract:
Aldol reaction is an important class of carbon-carbon bond forming reactions. One of the popular ways to impose asymmetry in aldol reaction is the introduction of chiral auxiliary that binds the approaching reactants and create dissymmetry in the reaction environment, which finally evolves to enantiomeric excess in the aldol products. The last decade witnesses the usage of natural amino acids as chiral auxiliary to control the stereoselectivity in various carbon-carbon bond forming processes. In this context, L-proline was found to be an effective organocatalyst in asymmetric aldol additions. In last few decades the use of water as solvent or co-solvent in asymmetric organocatalytic reaction is increased sharply. Simple amino acids like L-proline does not catalyze asymmetric aldol reaction in aqueous medium not only that, In organic solvent medium high catalytic loading (~30 mol%) is required to achieve moderate to high asymmetric induction. In this context, huge efforts have been made to modify L-proline and 4-hydroxy-L-proline to prepare organocatalyst for aqueous medium asymmetric aldol reaction. Here, we report the result of our DFT calculations on asymmetric aldol reaction of benzaldehyde, p-NO2 benzaldehyde and t-butyraldehyde with a number of ketones using L-proline hydrazide as organocatalyst in wet solvent free condition. Gaussian 09 program package and Gauss View program were used for the present work. Geometry optimizations were performed using B3LYP hybrid functional and 6-31G(d,p) basis set. Transition structures were confirmed by hessian calculation and IRC calculation. As the reactions were carried out in solvent free condition, No solvent effect were studied theoretically. Present study has revealed for the first time, the direct involvement of two water molecules in the aldol transition structures. In the TS, the enamine and the aldehyde is connected through hydrogen bonding by the assistance of two intervening water molecules forming a supramolecular network. Formation of this type of supramolecular assembly is possible due to the presence of protonated -NH2 group in the L-proline hydrazide moiety, which is responsible for the favorable entropy contribution to the aldol reaction. It is also revealed from the present study that, water assisted TS is energetically more favorable than the TS without involving any water molecule. It can be concluded from this study that, insertion of polar group capable of hydrogen bond formation in the L-proline skeleton can lead to a favorable aldol reaction with significantly high enantiomeric excess in wet solvent free condition by reducing the activation barrier of this reaction.Keywords: aldol reaction, DFT, organocatalysis, transition structure
Procedia PDF Downloads 437265 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception
Authors: Gabriel Ugalahi, Dominic S. Nyitamen
Abstract:
This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)
Procedia PDF Downloads 227264 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model
Authors: Subham Ghosh, Arnab Nandi
Abstract:
Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.Keywords: activity recognition, antenna, deep-learning, time-frequency
Procedia PDF Downloads 17263 Glasshouse Experiment to Improve Phytomanagement Solutions for Cu-Polluted Mine Soils
Authors: Marc Romero-Estonllo, Judith Ramos-Castro, Yaiza San Miguel, Beatriz Rodríguez-Garrido, Carmela Monterroso
Abstract:
Mining activity is among the main sources of trace and heavy metal(loid) pollution worldwide, which is a hazard to human and environmental health. That is why several projects have been emerging for the remediation of such polluted places. Phytomanagement strategies draw good performances besides big side benefits. In this work, a glasshouse assay with trace element polluted soils from an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE Project (SOE1/P5/E0189)) was set. The objective was to evaluate improvements induced by the following phytoremediation-related treatments. Three increasingly complex amendments alone or together with plant growth (Populus nigra L. alone and together with Tripholium repens L.) were tested. And three different rhizosphere bioinocula were applied (Plant Growth Promoting Bacteria (PGP), mycorrhiza (MYC), or mixed (PGP+MYC)). After 110 days of growth, plants were collected, biomass was weighed, and tree length was measured. Physical-chemical analyses were carried out to determine pH, effective Cation Exchange Capacity, carbon and nitrogen contents, bioavailable phosphorous (Olsen bicarbonate method), pseudo total element content (microwave acid digested fraction), EDTA extractable metals (complexed fraction), and NH4NO3 extractable metals (easily bioavailable fraction). On plant material, nitrogen content and acid digestion elements were determined. Amendment usage, plant growth, and bioinoculation were demonstrated to improve soil fertility and/or plant health within the time span of this study. Particularly, pH levels increased from 3 (highly acidic) to 5 (acidic) in the worst-case scenario, even reaching 7 (neutrality) in the best plots. Organic matter and pH increments were related to polluting metals’ bioavailability decrements. Plants grew better both with the most complex amendment and the middle one, with few differences due to bioinoculation. Using the less complex amendment (just compost) beneficial effects of bioinoculants were more observable, although plants didn’t thrive very well. On unamended soils, plants neither sprouted nor bloomed. The scheme assayed in this study is suitable for phytomanagement of these kinds of soils affected by mining activity. These findings should be tested now on a larger scale.Keywords: aided phytoremediation, mine pollution, phytostabilization, soil pollution, trace elements
Procedia PDF Downloads 69262 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 97261 Coping with Geological Hazards during Construction of Hydroelectric Projects in Himalaya
Authors: B. D. Patni, Ashwani Jain, Arindom Chakraborty
Abstract:
The world’s highest mountain range has been forming since the collision of Indian Plate with Asian Plate 40-50 million years ago. The Indian subcontinent has been deeper and deeper in to the rest of Asia resulting upliftment of Himalaya & Tibetan Plateau. The complex domain has become a major challenge for construction of hydro electric projects. The Himalayas are geologically complex & seismically active. Shifting of Indian Plate northwardly and increasing the amount of stresses in the fragile domain which leads to deformation in the form of several fold, faults and upliftment. It is difficult to undergo extensive geological investigation to ascertain the geological problems to be encountered during construction. Inaccessibility of the terrain, high rock cover, unpredictable ground water condition etc. are the main constraints. The hydroelectric projects located in Himalayas have faced many geological and geo-hydrological problems while construction of surface and subsurface works. Based on the experience, efforts have been made to identify the expected geological problems during and after construction of the projects. These have been classified into surface and subsurface problems which include existence of inhomogeneous deep overburden in the river bed or buried valley, abrupt change in bed rock profile, Occurrences of fault zones/shear zones/fractured rock in dam foundation and slope instability in the abutments. The tunneling difficulties are many such as squeezing ground condition, popping, rock bursting, high temperature gradient, heavy ingress of water, existence of shear seams/shear zones and emission of obnoxious gases. However, these problems were mitigated by adopting suitable remedial measures as per site requirement. The support system includes shotcrete, wire mesh, rock bolts, steel ribs, fore-poling, pre-grouting, pipe-roofing, MAI anchors, toe wall, retaining walls, reinforced concrete dowels, drainage drifts, anchorage cum drainage shafts, soil nails, concrete cladding and shear keys. Controlled drilling & blasting, heading & benching, proper drainage network and ventilation system are other remedial measures adopted to overcome such adverse situations. The paper highlights the geological uncertainties and its remedial measures in Himalaya, based on the analysis and evaluation of 20 hydroelectric projects during construction.Keywords: geological problems, shear seams, slope, drilling & blasting, shear zones
Procedia PDF Downloads 406260 The Mental Health Policy in the State of EspíRito Santo, Brazil: Judicialization
Authors: Fabiola Xavier Leal, Lara Campanharo, Sueli Aparecida Rodrigues Lucas
Abstract:
The phenomenon of judicialization in health policy brings with it a great deal of problematization, but in general, it means that some issues that were previously solved by traditional political bodies are being decided by the Judiciary bodies. It is, therefore, a controversial topic that has generated many reflections both in the academic and political fields, considering that not only a dispute of public funds is at stake, but also the debate on access to social rights provided for in the Brazilian Federal Constitution of 1988 and in the various public policies, such as healthcare. With regard to the phenomenon in the Mental Health Policy focusing on people who use drugs, the disputes that permeate this scenario are evident: moral, cultural, sanitary, economic, psychological aspects. There are also the individual and collective dimensions of suffering. And in this process, we all question: What is the role of the Brazilian State in this matter? In this context, another question that needs to be answered is the amount spent on this procedure in the state of Espírito Santo (ES), Brazil (in the last 04 years, around R$121,978,591.44 were paid only for compulsory hospitalization of individuals) in the field in question, which is the financing of the services of the Psychosocial Care Network (RAPS). Therefore, this article aims to problematize the phenomenon of judicialization in Mental Health Policy through the compulsory hospitalization of people who use drugs in Espírito Santo (ES). We proposed a study that sought to understand how this has been occurring and making an impact on the provision of RAPS services in the Espírito Santo scenario. Therefore, the general objective of this study is to analyze the expenses with compulsory hospitalizations for drug use carried out by the State Health Department (SESA) between 2014 and 2019, in which we will seek to identify its destination and the impact of these actions on public health policy. For the purposes of this article, we will present the preliminary data of this study, such as the amount spent by the state and the receiving institutions. For data collection, the following data sources were used: documents available publicly on the Transparency Portal (payments made per year, institutions that received, subjects hospitalized, period and the amount of the daily rates paid); as well as the processes generated by SESA through its own system - ONBASE. For qualitative analysis, content analysis was used; and for quantitative analysis, descriptive statistics was used. Thus, we seek to problematize the issue of judicialization for compulsory hospitalizations, considering the current situation in which this resource has been widely requested to legitimize the war on drugs. This scenario highlights the moral-legal discourse, pointing out strategies through the control of bodies and through faith as an alternative.Keywords: compulsory hospitalization, drugs, judicialization, mental health
Procedia PDF Downloads 174