Search results for: soil-blade contact modeling
1040 Relationships between Emotion Regulation Strategies and Well-Being Outcomes among the Elderly and Their Caregivers: A Dyadic Modeling Approach
Authors: Sakkaphat T. Ngamake, Arunya Tuicomepee, Panrapee Suttiwan, Rewadee Watakakosol, Sompoch Iamsupasit
Abstract:
Generally, 'positive' emotion regulation strategies such as cognitive reappraisal have linked to desirable outcomes while 'negative' strategies such as behavioral suppression have linked to undesirable outcomes. These trends have been found in both the elderly and professional practitioners. Hence, this study sought to investigate these trends further by examining the relationship between two dominant emotion regulation strategies in the literature (i.e., cognitive reappraisal and behavioral suppression) and well-being outcomes among the elderly (i.e., successful aging) and their caregivers (i.e., satisfaction with life), using the actor-partner interdependence model. A total of 150 elderly-caregiver dyads participated in the study. The elderly responded to two measures assessing the two emotion regulation strategies and successful aging while their caregivers responded to the same emotion regulation measure and a measure of satisfaction with life. Two criterion variables (i.e., successful aging and satisfaction with life) were specified as latent variables whereas four predictors (i.e., two strategies for the elderly and two strategies for their caregivers) were specified as observed variables in the model. Results have shown that, for the actor effect, the cognitive reappraisal strategy yielded positive relationships with the well-being outcomes for both the elderly and their caregivers. For the partner effect, a positive relationship between caregivers’ cognitive reappraisal strategy and the elderly’s successful aging was observed. The behavioral suppression strategy has not related to any well-being outcomes, within and across individual agents. This study has contributed to the literature by empirically showing that the mental activity of the elderly’s immediate environment such as their family members or close friends could affect their quality of life.Keywords: emotion regulation, caregiver, older adult, well-being
Procedia PDF Downloads 4251039 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome
Authors: Agada N. Ihuoma, Nagata Yasunori
Abstract:
Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.Keywords: artificial Intelligence, backward elimination, linear regression, solar energy
Procedia PDF Downloads 1571038 Multiscale Hub: An Open-Source Framework for Practical Atomistic-To-Continuum Coupling
Authors: Masoud Safdari, Jacob Fish
Abstract:
Despite vast amount of existing theoretical knowledge, the implementation of a universal multiscale modeling, analysis, and simulation software framework remains challenging. Existing multiscale software and solutions are often domain-specific, closed-source and mandate a high-level of experience and skills in both multiscale analysis and programming. Furthermore, tools currently existing for Atomistic-to-Continuum (AtC) multiscaling are developed with the assumptions such as accessibility of high-performance computing facilities to the users. These issues mentioned plus many other challenges have reduced the adoption of multiscale in academia and especially industry. In the current work, we introduce Multiscale Hub (MsHub), an effort towards making AtC more accessible through cloud services. As a joint effort between academia and industry, MsHub provides a universal web-enabled framework for practical multiscaling. Developed on top of universally acclaimed scientific programming language Python, the package currently provides an open-source, comprehensive, easy-to-use framework for AtC coupling. MsHub offers an easy to use interface to prominent molecular dynamics and multiphysics continuum mechanics packages such as LAMMPS and MFEM (a free, lightweight, scalable C++ library for finite element methods). In this work, we first report on the design philosophy of MsHub, challenges identified and issues faced regarding its implementation. MsHub takes the advantage of a comprehensive set of tools and algorithms developed for AtC that can be used for a variety of governing physics. We then briefly report key AtC algorithms implemented in MsHub. Finally, we conclude with a few examples illustrating the capabilities of the package and its future directions.Keywords: atomistic, continuum, coupling, multiscale
Procedia PDF Downloads 1771037 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes
Authors: R. Ziaie Moayed, M. Mortezaee
Abstract:
An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.Keywords: soil nailing, pullout capacity, federal highway administration (FHWA), grout
Procedia PDF Downloads 1521036 Prevalence of Bovine Mastitis and Associated Risk Factors in Selected Dairy Farms in Zoba Anseba, Eritrea
Authors: Redie Kidane Ghebrehawariat, Betiel Habte Hadgu, Filmon Berhane Kahsay, Rim Berhane Fisehaye, Samuel Haile Kahsay, Saron Yemane Yosief, Selemawit Mosazghi Gilazghi
Abstract:
A cross-sectional study was conducted from 22 February to 9 April 2022 on small, medium, and large holder dairy farms to determine the bovine mastitis prevalence and associated risk factors in the Anseba region, Eritrea. A total of 34 dairy farms and 193 dairy cows were randomly selected. Dairy cows were physically examined for any change on the udder and milk; a California mastitis test was performed to check sub-clinical mastitis; a closed-ended semi-structured questionnaire composed of 28 variables/risk factors (21 management risk factors and 7 animal-level risk factors) was used to determine the risk factors responsible for clinical and sub-clinical mastitis in the dairy cows. The overall cow-level prevalence of mastitis was 147 (76.2%). The animal level prevalence rate of clinical and sub-clinical mastitis was found to be 22 (11.4%) and 125 (64.8%), respectively, while herd level prevalence both for clinical and subclinical mastitis was found to be 14 (41.2%) and 26 (76.5%) respectively. Based on the already set P-value, which is <0.05, a number of risk factors were found to have a significant relationship with the occurrence of clinical and sub-clinical mastitis. Generally, animal risk factors such as animal age, parity, injury on the udder or teat, and previous history of mastitis presence of injury on the udder and lactation stage were risk factors with a significant relationship with the occurrence of clinical and sub-clinical mastitis. On the other hand, management risk factors with a significant relationship to the occurrence of clinical and sub-clinical mastitis were herd size, failure to milk mastitic cow, at last, educational level, floor type, failure to use a towel, using one towel for more than one cow and failure to practice mastitis test. From a total of 772 quarters, 280 (36.3%) were found positive for sub-clinical mastitis using the California mastitis test; of these, 70 (9%) were weakly positive, 90 (11.7%) were distinct positive, and 120 (15.5%) were strongly positive. Furthermore, 13 (1.7%) quarters were blocked. Quarter level prevalence was right front 80 (41.5%), left front 64 (33.3%), right hind 69 (35.8%) and left hind 67 (34.7%). The study has shown that mastitis is a major problem for dairy farms and the findings suggested that mastitis is one of the limiting factors in increasing milk production. Subclinical mastitis was found to be a devastating problem, and it occurred in all three breeds of lactating dairy cattle. Therefore, farmers should work hard to avoid the above-mentioned risk factors to minimize the infection of their dairy cattle by mastitis and thereby increase their profit. On the other hand, the Ministry of Agriculture, through the extension unit, should work in close contact with the farmers to increase awareness of the economic importance of the disease and associated risk factors.Keywords: mastitis, prevalence, dairy cattle, Anseba, Eritrea
Procedia PDF Downloads 1281035 The Dark Side of Tourism's Implications: A Structural Equation Modeling Study of the 2016 Earthquake in Central Italy
Authors: B. Kulaga, A. Cinti, F. J. Mazzocchini
Abstract:
Despite the fact that growing academic attention on dark tourism is a fairly recent phenomenon, among the various reasons for travelling death-related ones, are very ancient. Furthermore, the darker side of human nature has always been fascinated and curious regarding death, or at least, man has always tried to learn lessons from death. This study proposes to describe the phenomenon of dark tourism related to the 2016 earthquake in Central Italy, deadly for 302 people and highly destructive for the rural areas of Lazio, Marche, and Umbria Regions. The primary objective is to examine the motivation-experience relationship in a dark tourism site, using the structural equation model, applied for the first time to a dark tourism research in 2016, in a study conducted after the Beichuan earthquake. The findings of the current study are derived from the calculations conducted on primary data compiled from 350 tourists in the areas mostly affected by the 2016 earthquake, including the town of Amatrice, near the epicenter, Castelluccio, Norcia, Ussita and Visso, through conducting a Likert scale survey. Furthermore, we use the structural equation model to examine the motivation behind dark travel and how this experience can influence the motivation and emotional reaction of tourists. Expected findings are in line with the previous study mentioned above, indicating that: not all tourists visit the thanatourism sites for dark tourism purpose, tourists’ emotional reactions influence more heavily the emotional tourist experience than cognitive experiences do, and curious visitors are likely to engage cognitively by learning about the incident or related issues.Keywords: dark tourism, emotional reaction, experience, motivation, structural equation model
Procedia PDF Downloads 1441034 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique
Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method
Procedia PDF Downloads 1791033 Improving Patient-Care Services at an Oncology Center with a Flexible Adaptive Scheduling Procedure
Authors: P. Hooshangitabrizi, I. Contreras, N. Bhuiyan
Abstract:
This work presents an online scheduling problem which accommodates multiple requests of patients for chemotherapy treatments in a cancer center of a major metropolitan hospital in Canada. To solve the problem, an adaptive flexible approach is proposed which systematically combines two optimization models. The first model is intended to dynamically schedule arriving requests in the form of waiting lists whereas the second model is used to reschedule the already booked patients with the goal of finding better resource allocations when new information becomes available. Both models are created as mixed integer programming formulations. Various controllable and flexible parameters such as deviating the prescribed target dates by a pre-determined threshold, changing the start time of already booked appointments and the maximum number of appointments to move in the schedule are included in the proposed approach to have sufficient degrees of flexibility in handling arrival requests and unexpected changes. Several computational experiments are conducted to evaluate the performance of the proposed approach using historical data provided by the oncology clinic. Our approach achieves outstandingly better results as compared to those of the scheduling system being used in practice. Moreover, several analyses are conducted to evaluate the effect of considering different levels of flexibility on the obtained results and to assess the performance of the proposed approach in dealing with last-minute changes. We strongly believe that the proposed flexible adaptive approach is very well-suited for implementation at the clinic to provide better patient-care services and to utilize available resource more efficiently.Keywords: chemotherapy scheduling, multi-appointment modeling, optimization of resources, satisfaction of patients, mixed integer programming
Procedia PDF Downloads 1681032 Developing a Quality Mentor Program: Creating Positive Change for Students in Enabling Programs
Authors: Bianca Price, Jennifer Stokes
Abstract:
Academic and social support systems are critical for students in enabling education; these support systems have the potential to enhance the student experience whilst also serving a vital role for student retention. In the context of international moves toward widening university participation, Australia has developed enabling programs designed to support underrepresented students to access to higher education. The purpose of this study is to examine the effectiveness of a mentor program based within an enabling course. This study evaluates how the mentor program supports new students to develop social networks, improve retention, and increase satisfaction with the student experience. Guided by Social Learning Theory (SLT), this study highlights the benefits that can be achieved when students engage in peer-to-peer based mentoring for both social and learning support. Whilst traditional peer mentoring programs are heavily based on face-to-face contact, the present study explores the difference between mentors who provide face-to-face mentoring, in comparison with mentoring that takes place through the virtual space, specifically via a virtual community in the shape of a Facebook group. This paper explores the differences between these two methods of mentoring within an enabling program. The first method involves traditional face-to-face mentoring that is provided by alumni students who willingly return to the learning community to provide social support and guidance for new students. The second method requires alumni mentor students to voluntarily join a Facebook group that is specifically designed for enabling students. Using this virtual space, alumni students provide advice, support and social commentary on how to be successful within an enabling program. Whilst vastly different methods, both of these mentoring approaches provide students with the support tools needed to enhance their student experience and improve transition into University. To evaluate the impact of each mode, this study uses mixed methods including a focus group with mentors, in-depth interviews, as well as engaging in netnography of the Facebook group ‘Wall’. Netnography is an innovative qualitative research method used to interpret information that is available online to better understand and identify the needs and influences that affect the users of the online space. Through examining the data, this research will reflect upon best practice for engaging students in enabling programs. Findings support the applicability of having both face-to-face and online mentoring available for students to assist enabling students to make a positive transition into University undergraduate studies.Keywords: enabling education, mentoring, netnography, social learning theory
Procedia PDF Downloads 1211031 Factor Influencing Pharmacist Engagement and Turnover Intention in Thai Community Pharmacist: A Structural Equation Modelling Approach
Authors: T. Nakpun, T. Kanjanarach, T. Kittisopee
Abstract:
Turnover of community pharmacist can affect continuity of patient care and most importantly the quality of care and also the costs of a pharmacy. It was hypothesized that organizational resources, job characteristics, and social supports had direct effect on pharmacist turnover intention, and indirect effect on pharmacist turnover intention via pharmacist engagement. This research aimed to study influencing factors on pharmacist engagement and pharmacist turnover intention by testing the proposed structural hypothesized model to explain the relationship among organizational resources, job characteristics, and social supports that effect on pharmacist turnover intention and pharmacist engagement in Thai community pharmacists. A cross sectional study design with self-administered questionnaire was conducted in 209 Thai community pharmacists. Data were analyzed using Structural Equation Modeling technique with analysis of a moment structures AMOS program. The final model showed that only organizational resources had significant negative direct effect on pharmacist turnover intention (β =-0.45). Job characteristics and social supports had significant positive relationship with pharmacist engagement (β = 0.44, and 0.55 respectively). Pharmacist engagement had significant negative relationship with pharmacist turnover intention (β = - 0.24). Thus, job characteristics and social supports had significant negative indirect effect on turnover intention via pharmacist engagement (β =-0.11 and -0.13, respectively). The model fit the data well (χ2/ degree of freedom (DF) = 2.12, the goodness of fit index (GFI)=0.89, comparative fit index (CFI) = 0.94 and root mean square error of approximation (RMSEA) = 0.07). This study can be concluded that organizational resources were the most important factor because it had direct effect on pharmacist turnover intention. Job characteristics and social supports were also help decrease pharmacist turnover intention via pharmacist engagement.Keywords: community pharmacist, influencing factor, turnover intention, work engagement
Procedia PDF Downloads 2041030 Hospital Wastewater Treatment by Ultrafiltration Membrane System
Authors: Selin Top, Raul Marcos, M. Sinan Bilgili
Abstract:
Although there have been several studies related to collection, temporary storage, handling and disposal of solid wastes generated by hospitals, there are only a few studies related to liquid wastes generated by hospitals or hospital wastewaters. There is an important amount of water consumptions in hospitals. While minimum domestic water consumption per person is 100 L/day, water consumption per bed in hospitals is generally ranged between 400-1200 L. This high amount of consumption causes high amount of wastewater. The quantity of wastewater produced in a hospital depends on different factors: bed numbers, hospital age, accessibility to water, general services present inside the structure (kitchen, laundry, laboratory, diagnosis, radiology, and air conditioning), number and type of wards and units, institution management policies and awareness in managing the structure in safeguarding the environment, climate and cultural and geographic factors. In our country, characterization of hospital wastewaters conducted by classical parameters in a very few studies. However, as mentioned above, this type of wastewaters may contain different compounds than domestic wastewaters. Hospital Wastewater (HWW) is wastewater generated from all activities of the hospital, medical and non medical. Nowadays, hospitals are considered as one of the biggest sources of wastewater along with urban sources, agricultural effluents and industrial sources. As a health-care waste, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components due to using disinfectants, pharmaceuticals, radionuclides and solvents making not suitable the connection of hospital wastewater to the municipal sewage network. These characteristics may represent a serious health hazard and children, adults and animals all have the potential to come into contact with this water. Therefore, the treatment of hospital wastewater is an important current interest point to focus on. This paper aims to approach on the investigation of hospital wastewater treatment by membrane systems. This study aim is to determined hospital wastewater’s characterization and also evaluates the efficiency of hospital wastewater treatment by high pressure filtration systems such as ultrafiltration (UF). Hospital wastewater samples were taken directly from sewage system from Şişli Etfal Training and Research Hospital, located in the district of Şişli, in the European part of Istanbul. The hospital is a 784 bed tertiary care center with a daily outpatient department of 3850 patients. Ultrafiltration membrane is used as an experimental treatment and the influence of the pressure exerted on the membranes was examined, ranging from 1 to 3 bar. The permeate flux across the membrane was observed to define the flooding membrane points. The global COD and BOD5 removal efficiencies were 54% and 75% respectively for ultrafiltration, all the SST removal efficiencies were above 90% and a successful removal of the pathological bacteria measured was achieved.Keywords: hospital wastewater, membrane, ultrafiltration, treatment
Procedia PDF Downloads 3041029 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces
Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang
Abstract:
Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide
Procedia PDF Downloads 4351028 Development of National Scale Hydropower Resource Assessment Scheme Using SWAT and Geospatial Techniques
Authors: Rowane May A. Fesalbon, Greyland C. Agno, Jodel L. Cuasay, Dindo A. Malonzo, Ma. Rosario Concepcion O. Ang
Abstract:
The Department of Energy of the Republic of the Philippines estimates that the country’s energy reserves for 2015 are dwindling– observed in the rotating power outages in several localities. To aid in the energy crisis, a national hydropower resource assessment scheme is developed. Hydropower is a resource that is derived from flowing water and difference in elevation. It is a renewable energy resource that is deemed abundant in the Philippines – being an archipelagic country that is rich in bodies of water and water resources. The objectives of this study is to develop a methodology for a national hydropower resource assessment using hydrologic modeling and geospatial techniques in order to generate resource maps for future reference and use of the government and other stakeholders. The methodology developed for this purpose is focused on two models – the implementation of the Soil and Water Assessment Tool (SWAT) for the river discharge and the use of geospatial techniques to analyze the topography and obtain the head, and generate the theoretical hydropower potential sites. The methodology is highly coupled with Geographic Information Systems to maximize the use of geodatabases and the spatial significance of the determined sites. The hydrologic model used in this workflow is SWAT integrated in the GIS software ArcGIS. The head is determined by a developed algorithm that utilizes a Synthetic Aperture Radar (SAR)-derived digital elevation model (DEM) which has a resolution of 10-meters. The initial results of the developed workflow indicate hydropower potential in the river reaches ranging from pico (less than 5 kW) to mini (1-3 MW) theoretical potential.Keywords: ArcSWAT, renewable energy, hydrologic model, hydropower, GIS
Procedia PDF Downloads 3131027 Biophysical Modeling of Anisotropic Brain Tumor Growth
Authors: Mutaz Dwairy
Abstract:
Solid tumors have high interstitial fluid pressure (IFP), high mechanical stress, and low oxygen levels. Solid stresses may induce apoptosis, stimulate the invasiveness and metastasis of cancer cells, and lower their proliferation rate, while oxygen concentration may affect the response of cancer cells to treatment. Although tumors grow in a nonhomogeneous environment, many existing theoretical models assume homogeneous growth and tissue has uniform mechanical properties. For example, the brain consists of three primary materials: white matter, gray matter, and cerebrospinal fluid (CSF). Therefore, tissue inhomogeneity should be considered in the analysis. This study established a physical model based on convection-diffusion equations and continuum mechanics principles. The model considers the geometrical inhomogeneity of the brain by including the three different matters in the analysis: white matter, gray matter, and CSF. The model also considers fluid-solid interaction and explicitly describes the effect of mechanical factors, e.g., solid stresses and IFP, chemical factors, e.g., oxygen concentration, and biological factors, e.g., cancer cell concentration, on growing tumors. In this article, we applied the model on a brain tumor positioned within the white matter, considering the brain inhomogeneity to estimate solid stresses, IFP, the cancer cell concentration, oxygen concentration, and the deformation of the tissues within the neoplasm and the surrounding. Tumor size was estimated at different time points. This model might be clinically crucial for cancer detection and treatment planning by measuring mechanical stresses, IFP, and oxygen levels in the tissue.Keywords: biomechanical model, interstitial fluid pressure, solid stress, tumor microenvironment
Procedia PDF Downloads 461026 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data
Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao
Abstract:
Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing
Procedia PDF Downloads 4401025 Mediation Role of Teachers’ Surface Acting and Deep Acting on the Relationship between Calling Orientation and Work Engagement
Authors: Yohannes Bisa Biramo
Abstract:
This study examined the meditational role of surface acting and deep acting on the relationship between calling orientation and work engagement of teachers in secondary schools of Wolaita Zone, Wolaita, Ethiopia. A predictive non-experimental correlational design was performed among 300 secondary school teachers. Stratified random sampling followed by a systematic random sampling technique was used as the basis for selecting samples from the target population. To analyze the data, Structural Equation Modeling (SEM) was used to test the association between the independent variables and the dependent variables. Furthermore, the goodness of fit of the study variables was tested using SEM to see and explain the path influence of the independent variable on the dependent variable. Confirmatory factor analysis (CFA) was conducted to test the validity of the scales in the study and to assess the measurement model fit indices. The analysis result revealed that calling was significantly and positively correlated with surface acting, deep acting and work engagement. Similarly, surface acting was significantly and positively correlated with deep acting and work engagement. And also, deep acting was significantly and positively correlated with work engagement. With respect to mediation analysis, the result revealed that surface acting mediated the relationship between calling and work engagement and also deep acting mediated the relationship between calling and work engagement. Besides, by using the model of the present study, the school leaders and practitioners can identify a core area to be considered in recruiting and letting teachers teach, in giving induction training for newly employed teachers and in performance appraisal.Keywords: calling, surface acting, deep acting, work engagement, mediation, teachers
Procedia PDF Downloads 831024 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 1071023 Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model
Authors: Can Huang, Xiaoliang Wang, Qingquan Liu
Abstract:
Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics.Keywords: soil‒water coupling, landslide-generated impulse wave, large-scale, SPH
Procedia PDF Downloads 641022 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms
Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager
Abstract:
This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties
Procedia PDF Downloads 541021 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture
Authors: Juan Huang, Hugo Ninanya
Abstract:
Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis
Procedia PDF Downloads 2061020 A Project-Based Learning Approach in the Course of 'Engineering Skills' for Undergraduate Engineering Students
Authors: Armin Eilaghi, Ahmad Sedaghat, Hayder Abdurazzak, Fadi Alkhatib, Shiva Sadeghi, Martin Jaeger
Abstract:
A summary of experiences, recommendations, and lessons learnt in the application of PBL in the course of “Engineering Skills” in the School of Engineering at Australian College of Kuwait in Kuwait is presented. Four projects were introduced as part of the PBL course “Engineering Skills” to 24 students in School of Engineering. These students were grouped in 6 teams to develop their skills in 10 learning outcomes. The learning outcomes targeted skills such as drawing, design, modeling, manufacturing and analysis at a preliminary level; and also some life line learning and teamwork skills as these students were exposed for the first time to the PBL (project based learning). The students were assessed for 10 learning outcomes of the course and students’ feedback was collected using an anonymous survey at the end of the course. Analyzing the students’ feedbacks, it is observed that 67% of students preferred multiple smaller projects than a single big project because it provided them with more time and attention focus to improve their “soft skills” including project management, risk assessment, and failure analysis. Moreover, it is found that 63% of students preferred to work with different team members during the course to improve their professional communication skills. Among all, 62% of students believed that working with team members from other departments helped them to increase the innovative aspect of projects and improved their overall performance. However, 70% of students counted extra time needed to regenerate momentum with the new teams as the major challenge. Project based learning provided a suitable platform for introducing students to professional engineering practice and meeting the needs of students, employers and educators. It was found that students achieved their 10 learning outcomes and gained new skills developed in this PBL unit. This was reflected in their portfolios and assessment survey.Keywords: project-based learning, engineering skills, undergraduate engineering, problem-based learning
Procedia PDF Downloads 1651019 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction
Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan
Abstract:
The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis
Procedia PDF Downloads 901018 Polypyrrole as Bifunctional Materials for Advanced Li-S Batteries
Authors: Fang Li, Jiazhao Wang, Jianmin Ma
Abstract:
The practical application of Li-S batteries is hampered due to poor cycling stability caused by electrolyte-dissolved lithium polysulfides. Dual functionalities such as strong chemical adsorption stability and high conductivity are highly desired for an ideal host material for a sulfur-based cathode. Polypyrrole (PPy), as a conductive polymer, was widely studied as matrixes for sulfur cathode due to its high conductivity and strong chemical interaction with soluble polysulfides. Thus, a novel cathode structure consisting of a free-standing sulfur-polypyrrole cathode and a polypyrrole coated separator was designed for flexible Li-S batteries. The PPy materials show strong interaction with dissoluble polysulfides, which could suppress the shuttle effect and improve the cycling stability. In addition, the synthesized PPy film with a rough surface acts as a current collector, which improves the adhesion of sulfur materials and restrain the volume expansion, enhancing the structural stability during the cycling process. For further enhancing the cycling stability, a PPy coated separator was also applied, which could make polysulfides into the cathode side to alleviate the shuttle effect. Moreover, the PPy layer coated on commercial separator is much lighter than other reported interlayers. A soft-packaged flexible Li-S battery has been designed and fabricated for testing the practical application of the designed cathode and separator, which could power a device consisting of 24 light-emitting diode (LED) lights. Moreover, the soft-packaged flexible battery can still show relatively stable cycling performance after repeated bending, indicating the potential application in flexible batteries. A novel vapor phase deposition method was also applied to prepare uniform polypyrrole layer coated sulfur/graphene aerogel composite. The polypyrrole layer simultaneously acts as host and adsorbent for efficient suppression of polysulfides dissolution through strong chemical interaction. The density functional theory (DFT) calculations reveal that the polypyrrole could trap lithium polysulfides through stronger bonding energy. In addition, the deflation of sulfur/graphene hydrogel during the vapor phase deposition process enhances the contact of sulfur with matrixes, resulting in high sulfur utilization and good rate capability. As a result, the synthesized polypyrrole coated sulfur/graphene aerogel composite delivers a specific discharge capacity of 1167 mAh g⁻¹ and 409.1 mAh g⁻¹ at 0.2 C and 5 C respectively. The capacity can maintain at 698 mAh g⁻¹ at 0.5 C after 500 cycles, showing an ultra-slow decay rate of 0.03% per cycle.Keywords: polypyrrole, strong chemical interaction, long-term stability, Li-S batteries
Procedia PDF Downloads 1401017 In Vitro Assessment of the Genotoxicity of Composite Obtained by Mixture of Natural Rubber and Leather Residues for Textile Application
Authors: Dalita G. S. M. Cavalcante, Elton A. P. dos Reis, Andressa S. Gomes, Caroline S. Danna, Leandra Ernest Kerche-Silva, Eidi Yoshihara, Aldo E. Job
Abstract:
In order to minimize environmental impacts, a composite was developed from mixture of leather shavings (LE) with natural rubber (NR), which patent is already deposited. The new material created can be used in applications such as floors e heels for shoes. Besides these applications, the aim is to use this new material for the production of products for the textile industry, such as boots, gloves and bags. But the question arises, as to biocompatibility of this new material. This is justified because the structure of the leather shavings has chrome. The trivalent chromium is usually not toxic, but the hexavalent chromium can be highly toxic and genotoxic for living beings, causing damage to the DNA molecule and contributing to the formation of cancer. Based on this, the objective of this study is evaluate the possible genotoxic effects of the new composite, using as system - test two cell lines (MRC-5 and CHO-K1) by comet assay. For this, the production of the composite was performed in three proportions: for every 100 grams of NR was added 40 (E40), 50 (E50) or 60 (E60) grams of LE. The latex was collected from the rubber tree (Hevea brasiliensis). For vulcanization of the NR, activators and accelerators were used. The two cell lines were exposed to the new composite in its three proportions using elution method, that is, cells exposed to liquid extracts obtained from the composite for 24 hours. For obtaining the liquid extract, each sample of the composite was crushed into pieces and mixed with an extraction solution. The quantification of total chromium and hexavalent chromium in the extracts were performed by Optical Emission Spectrometry by Inductively Coupled Plasma (ICP-OES). The levels of DNA damage in cells exposed to both extracts were monitored by alkaline version of the comet assay. The results of the quantification of metals in ICP-OES indicated the presence of total chromium in different extracts, but were not detected presence of hexavalent chromium in any extract. Through the comet assay were not found DNA damage of the CHO-K1 cells exposed to both extracts. As for MRC-5, was found a significant increase in DNA damage in cells exposed to E50 and E60. Based on the above data, it can be asserted that the extracts obtained from the composite were highly genotoxic for MRC-5 cells. These biological responses do not appear to be related to chromium metal, since there was a predominance of trivalent chromium in the extracts, indicating that during the production process of the new composite, there was no formation of hexavalent chromium. In conclusion it can infer that the leather shavings containing chromium can be reused, thereby reducing the environmental impacts of this waste. Already on the composite indicates to its incorporation in applications that do not aim at direct contact with the human skin, and it is suggested the chain of composite production be studied, in an attempt to make it biocompatible so that it may be safely used by the textile industry.Keywords: cell line, chrome, genotoxicity, leather, natural rubber
Procedia PDF Downloads 1961016 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm
Authors: Muhammad Umar Kiani, Muhammad Shahbaz
Abstract:
Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process
Procedia PDF Downloads 4051015 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites
Authors: J. R. Büttler, T. Pham
Abstract:
Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite
Procedia PDF Downloads 1291014 Modeling Factors Influencing Online Shopping Intention among Consumers in Nigeria: A Proposed Framework
Authors: Abubakar Mukhtar Yakasai, Muhammad Tahir Jan
Abstract:
Purpose: This paper is aimed at exploring factors influencing online shopping intention among the young consumers in Nigeria. Design/Methodology/approach: The paper adopted and extended Technology Acceptance Model (TAM) as the basis for literature review. Additionally, the paper proposed a framework with the inclusion of culture as a moderating factor of consumer online shopping intention among consumers in Nigeria. Findings: Despite high rate of internet penetration in Nigerian, as well as the rapid advancement of online shopping in the world, little attention was paid to this important revolution specifically among Nigeria’s consumers. Based on the review of extant literature, the TAM extended to include perceived risk and enjoyment (PR and PE) was discovered to be a better alternative framework for predicting Nigeria’s young consumers’ online shopping intention. The moderating effect of culture in the proposed model is shown to help immensely in ascertaining differences, if any, between various cultural groups among online shoppers in Nigeria. Originality/ value: The critical analysis of different factors will assist practitioners (like online retailers, e-marketing managers, website developers, etc.) by signifying which combinations of factors can best predict consumer online shopping behaviour in particular instances, thereby resulting in effective value delivery. Online shopping is a newly adopted technology in Nigeria, hence the paper will give a clear focus for effective e-marketing strategy. In addition, the proposed framework in this paper will guide future researchers by providing a tool for systematic evaluation and testing of real empirical situation of online shopping in Nigeria.Keywords: online shopping, perceived ease of use, perceived usefulness, perceived enjoyment, technology acceptance model, Nigeria
Procedia PDF Downloads 2791013 Exploring the Use of Schoolgrounds for the Integration of Environmental and Sustainability Education in Natural and Social Sciences Pedagogy: A Case Study
Authors: Headman Hebe, Arnold Taringa
Abstract:
Background of the study: The benefits derived from Environmental and Sustainability Education (ESE) go beyond obtaining knowledge about the environment and the impact of human beings on the environment. Hence, it is sensible to expose learners to various resources that could enable meaningful environment-inclined pedagogy. The schoolgrounds, where they are utilised to promote ESE, benefit holistic learner development. However, empirical evidence, globally, suggests that young children’s contact with nature is declining due to urbanization, safety concerns by parents/guardians, and greater dependency on technology. Modern children spend much time on videogames and social media with very little time in the natural environment. Furthermore, national education departments in numerous countries have made tangible efforts to embed environmental and place-based learning to their school curricula. South Africa is one of those countries whose national school education curriculum advocates for ESE in pedagogy. Nevertheless, there is paucity of research conducted in South Africa on schoolgrounds as potential enablers of ESE and tools to foster a connection between youngsters and the natural environment. Accordingly, this study was essential as it seeks to determine the extent to which environmental learning is accommodated in pedagogy. Significantly, it investigates efforts made to use schoolgrounds for pedagogical purposes to connect children with the natural environment. Therefore, this study was conducted to investigate the accessibility and use of schoolgrounds for environment-inclined pedagogy in Natural and Social Sciences in two schools located in the Mpumalanga Province of South Africa. It tries to answer the question: To what extent are schoolgrounds used to promote environmental and sustainability education in the selected schools?The sub-questions: How do teachers and learners perceive the use of schoolgrounds for environmental and sustainability education activities? How does the organization of schoolgrounds offer opportunities for environmental education activities and accessibility for learners? Research method: This qualitative–interpretive case study used purposive and convenient sampling for participant selection. Forty-six respondents: 40 learners (twenty grade 7 learners per school), 2 school principals and 4 grade 7 participated in this study. Data collection tools were observations, interviews, audio-visual recordings and questionnaires while data analysis was done thematically. Major findings: The findings of the study point to: The lack of teacher training and infrastructure in the schoolgrounds and, no administrative support. Unclear curriculum guidelines on the use of schoolgrounds for ESE. The availability various elements in the schoolgrounds that could aid ESE activities. Learners denied access to certain parts of the schoolgrounds. Lack of time and curriculum demands constrain teachers from using schoolgrounds.Keywords: affordances, environment and sustainability education, experiential learning, schoolgrounds
Procedia PDF Downloads 641012 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model
Procedia PDF Downloads 1471011 Unified Theory of Acceptance and Use of Technology in Evaluating Voters' Intention Towards the Adoption of Electronic Forensic Election Audit System
Authors: Sijuade A. A., Oguntoye J. P., Awodoye O. O., Adedapo O. A., Wahab W. B., Okediran O. O., Omidiora E. O., Olabiyisi S. O.
Abstract:
Electronic voting systems have been introduced to improve the efficiency, accuracy, and transparency of the election process in many countries around the world, including Nigeria. However, concerns have been raised about the security and integrity of these systems. One way to address these concerns is through the implementation of electronic forensic election audit systems. This study aims to evaluate voters' intention to the adoption of electronic forensic election audit systems using the Unified Theory of Acceptance and Use of Technology (UTAUT) model. In the study, the UTAUT model which is a widely used model in the field of information systems to explain the factors that influence individuals' intention to use a technology by integrating performance expectancy, effort expectancy, social influence, facilitating conditions, cost factor and privacy factor to voters’ behavioural intention was proposed. A total of 294 sample data were collected from a selected population of electorates who had at one time or the other participated in at least an electioneering process in Nigeria. The data was then analyzed statistically using Partial Least Square Structural Equation Modeling (PLS-SEM). The results obtained show that all variables have a significant effect on the electorates’ behavioral intention to adopt the development and implementation of an electronic forensic election audit system in Nigeria.Keywords: election Audi, voters, UTAUT, performance expectancy, effort expectancy, social influence, facilitating condition social influence, facilitating conditions, cost factor, privacy factor, behavioural intention
Procedia PDF Downloads 73