Search results for: light gauge steel–concrete hybrid structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14870

Search results for: light gauge steel–concrete hybrid structure

10400 Shape Management Method for Safety Evaluation of Bridge Based on Terrestrial Laser Scanning Using Least Squares

Authors: Gichun Cha, Dongwan Lee, Junkyeong Kim, Aoqi Zhang, Seunghee Park

Abstract:

All the world are studying the construction technology of double deck tunnel in order to respond to the increasing urban traffic demands and environmental changes. Advanced countries have the construction technology of the double deck tunnel structure. but the domestic country began research on it. Construction technologies are important. But Safety evaluation of structure is necessary to prevent possible accidents during construction. Thus, the double deck tunnel was required the shape management of middle slabs. The domestic country is preparing the construction of double deck tunnel for an alternate route and a pleasant urban environment. Shape management of double deck tunnel has been no research because it is a new attempted technology. The present, a similar study is bridge structure for the shape management. Bridge is implemented shape model using terrestrial laser scanning(TLS). Therefore, we proceed research on the bridge slabs because there is a similar structure of double deck tunnel. In the study, we develop shape management method of bridge slabs using TLS. We select the Test-bed for measurement site. This site is bridge located on Sungkyunkwan University Natural Sciences Campus. This bridge has a total length of 34m, the vertical height of 8.7m from the ground. It connects Engineering Building #1 and Engineering Building #2. Point cloud data for shape management is acquired the TLS and We utilized the Leica ScanStation C10/C5 model. We will confirm the Maximum displacement area of middle slabs using Least-Squares Fitting. We expect to raise stability for double deck tunnel through shape management for middle slabs.

Keywords: bridge slabs, least squares, safety evaluation, shape management method, terrestrial laser scanning

Procedia PDF Downloads 238
10399 Comparison of the Thermal Behavior of Different Crystal Forms of Manganese(II) Oxalate

Authors: B. Donkova, M. Nedyalkova, D. Mehandjiev

Abstract:

Sparingly soluble manganese oxalate is an appropriate precursor for the preparation of nanosized manganese oxides, which have a wide range of technological application. During the precipitation of manganese oxalate, three crystal forms could be obtained – α-MnC₂O₄.2H₂O (SG C2/c), γ-MnC₂O₄.2H₂O (SG P212121) and orthorhombic MnC₂O₄.3H₂O (SG Pcca). The thermolysis of α-MnC₂O₄.2H₂O has been extensively studied during the years, while the literature data for the other two forms has been quite scarce. The aim of the present communication is to highlight the influence of the initial crystal structure on the decomposition mechanism of these three forms, their magnetic properties, the structure of the anhydrous oxalates, as well as the nature of the obtained oxides. For the characterization of the samples XRD, SEM, DTA, TG, DSC, nitrogen adsorption, and in situ magnetic measurements were used. The dehydration proceeds in one step with α-MnC₂O₄.2H2O and γ-MnC₂O₄.2H₂O, and in three steps with MnC₂O₄.3H2O. The values of dehydration enthalpy are 97, 149 and 132 kJ/mol, respectively, and the last two were reported for the first time, best to our knowledge. The magnetic measurements show that at room temperature all samples are antiferomagnetic, however during the dehydration of α-MnC₂O₄.2H₂O the exchange interaction is preserved, for MnC₂O₄.3H₂O it changes to ferromagnetic above 35°C, and for γ-MnC₂O₄.2H₂O it changes twice from antiferomagnetic to ferromagnetic above 70°C. The experimental results for magnetic properties are in accordance with the computational results obtained with Wien2k code. The difference in the initial crystal structure of the forms used determines different changes in the specific surface area during dehydration and different extent of Mn(II) oxidation during decomposition in the air; both being highest at α-MnC₂O₄.2H₂O. The isothermal decomposition of the different oxalate forms shows that the type and physicochemical properties of the oxides, obtained at the same annealing temperature depend on the precursor used. Based on the results from the non-isothermal and isothermal experiments, and from different methods used for characterization of the sample, a comparison of the nature, mechanism and peculiarities of the thermolysis of the different crystal forms of manganese oxalate was made, which clearly reveals the influence of the initial crystal structure. Acknowledgment: 'Science and Education for Smart Growth', project BG05M2OP001-2.009-0028, COST Action MP1306 'Modern Tools for Spectroscopy on Advanced Materials', and project DCOST-01/18 (Bulgarian Science Fund).

Keywords: crystal structure, magnetic properties, manganese oxalate, thermal behavior

Procedia PDF Downloads 167
10398 Magnetic Properties of Layered Rare-Earth Oxy-Carbonates Ln2O2CO3 (Ln = Nd, Sm, and Dy)

Authors: U. Arjun, K. Brinda, M. Padmanabhan, R. Nath

Abstract:

Polycrystalline samples of rare-earth oxy-carbonates Ln2O2CO3 (Ln = Nd, Sm, and Dy) are synthesized, and their structural and magnetic properties are investigated. All of them crystallize in a hexagonal structure with space group P6_3/mmc. They form a double layered structure with frustrated triangular arrangement of rare-earth magnetic ions. An antiferromagnetic transition is observed at TN ≈ 1.25 K, 0.61 K, and 1.21 K for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively. From the analysis of magnetic susceptibility, the value of the Curie-Weiss temperature θ_CW is obtained to be ≈ 21.7 K, 18 K, and 10.6 K for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively. The magnetic frustration parameter f ( = |θ_CW|/T_N) is calculated to be ≈ 17.4, 31, and 8.8 for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively which indicates that Sm2O2CO3 is strongly frustrated compared to its Nd and Dy analogues.

Keywords: chemical synthesis, exchange and superexchange, heat capacity, magnetically ordered materials

Procedia PDF Downloads 338
10397 The Syllable Structure and Syllable Processes in Suhwa Arabic: An Autosegmental Analysis

Authors: Muhammad Yaqub Olatunde

Abstract:

Arabic linguistic science is redirecting its focus towards the analysis and description of social, regional, and temporal varieties of social, regional, and temporal varieties in order to show how they vary in pronunciation, vocabulary, and grammar. This is not to say that the traditional Arabic linguists did not mention scores of dialectical variations but such works focused on the geographical boundaries of the Arabic speaking countries. There is need for a comprehensive survey of various Arabic dialects within the boundary of Arabic speaking countries and outside showing both the similarities and differences of linguistic and extra linguistic elements. This study therefore examines the syllable structure and process in noun and verb in the shuwa Arabic dialect speaking in North East Nigeria [mainly in Borno state]. The work seeks to establish the facts about this phenomenon, using auto- segmental analysis. These facts are compared, where necessary; using possible alternative analysis, with what operate in other related dialects within and outside Arabic speaking countries. The interaction between epenthesis and germination in the language also generate an interesting issue. The paper then conclude that syllable structure and process in the language need to recognize the existence of complex onset and a complex rhyme producing a consonant cluster in the former and a closed syllable in the letter. This emerges as result of resyllabification, which is motivated by these processes.

Keywords: Arabic, dialect, linguistics, processes, resyllabification

Procedia PDF Downloads 417
10396 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 127
10395 Integrated Manufacture of Polymer and Conductive Tracks for Functional Objects Fabrication

Authors: Barbara Urasinska-Wojcik, Neil Chilton, Peter Todd, Christopher Elsworthy, Gregory J. Gibbons

Abstract:

The recent increase in the application of Additive Manufacturing (AM) of products has resulted in new demands on capability. The ability to integrate both form and function within printed objects is the next frontier in the 3D printing area. To move beyond prototyping into low volume production, we demonstrate a UK-designed and built AM hybrid system that combines polymer based structural deposition with digital deposition of electrically conductive elements. This hybrid manufacturing system is based on a multi-planar build approach to improve on many of the limitations associated with AM, such as poor surface finish, low geometric tolerance, and poor robustness. Specifically, the approach involves a multi-planar Material Extrusion (ME) process in which separated build stations with up to 5 axes of motion replace traditional horizontally-sliced layer modeling. The construction of multi-material architectures also involved using multiple print systems in order to combine both ME and digital deposition of conductive material. To demonstrate multi-material 3D printing, three thermoplastics, acrylonitrile butadiene styrene (ABS), polyamide 6,6/6 copolymers (CoPA) and polyamide 12 (PA) were used to print specimens, on top of which our high viscosity Ag-particulate ink was printed in a non-contact process, during which drop characteristics such as shape, velocity, and volume were assessed using a drop watching system. Spectroscopic analysis of these 3D printed materials in the IR region helped to determine the optimum in-situ curing system for implementation into the AM system to achieve improved adhesion and surface refinement. Thermal Analyses were performed to determine the printed materials glass transition temperature (Tg), stability and degradation behavior to find the optimum annealing conditions post printing. Electrical analysis of printed conductive tracks on polymer surfaces during mechanical testing (static tensile and 3-point bending and dynamic fatigue) was performed to assess the robustness of the electrical circuits. The tracks on CoPA, ABS, and PA exhibited low electrical resistance, and in case of PA resistance values of tracks remained unchanged across hundreds of repeated tensile cycles up to 0.5% strain amplitude. Our developed AM printer has the ability to fabricate fully functional objects in one build, including complex electronics. It enables product designers and manufacturers to produce functional saleable electronic products from a small format modular platform. It will make 3D printing better, faster and stronger.

Keywords: additive manufacturing, conductive tracks, hybrid 3D printer, integrated manufacture

Procedia PDF Downloads 162
10394 The Disruptive Effect of COVID-19 on the Informativeness of Dividend Increases: Some Evidence from Johannesburg Stock Exchange-Listed Companies

Authors: Faustina Masocha

Abstract:

This study sought to determine if the Covid-19 pandemic played a disruptive role in the signalling effect of dividend increases for the Top 40 companies listed on the Johannesburg Stock Exchange. With the use of Event Study Methodologies, it was found that dividend increases that were announced in the 2018 and 2019 financial years resulted in Cumulative Abnormal Returns (CARs) that were significantly different from zero, as confirmed by a p-value of 0,0300. This resulted in the conclusion that, under normal circumstances, dividend increases follow the precepts outlined in signalling theories which indicate that the announcement of dividend increases sent positive signals about the expected financial performance of a company. To prove the notion that Covid-19 plays a disruptive role on the signalling hypothesis, it was found from both parametric and non-parametric tests of significance that CARs related to dividend increases that were announced during the 2020 and 2021 financial years, when the Covid-19 pandemic was at its peak, were not significantly different from zero. Therefore, although the dividend increases still resulted in some CARs, such CARs were not statistically different from zero to confirm the signalling hypothesis. A p-value of 0.9830 from parametric t-tests and a p-value of 0.8971 from the Wilcoxon signed-rank test were used as a gauge that led to the conclusion that Covid-19 plays a disruptive effect on the signalling process of dividend increases.

Keywords: cumulative abnormal returns, dividend increases, event study methodology, signalling

Procedia PDF Downloads 113
10393 Influence of Laser Excitation on SERS of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

Surface enhanced Raman spectroscopy (SERS) of Silicon nano crystals (SiNCs) were obtained using two different laser excitations: 488 nm and 514.5 nm. Silver nano particles were used as plasmonics metal nano particles due to a robust SERS effect that observed when they mixed with SiNCs. SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. Silver nano particles (AgNPs) of two different sizes were synthesized using photo chemical reduction of AgNO3 with sodium dodecyl sulfate (SDS). The synthesized AgNPs have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement in the SERS intensity was observed for AgNPs100/SiNCs and AgNPs30/SiNCs mixtures increasing up to 9 and 3 times respectively using 488 nm intensity; whereas the intensity of the SERS signal increased up to 7 and 2 times respectively, using 514.5 nm excitation source. The enhancement in SERS intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs. The results provide good consensus between the wavelength of the laser excitation source and surface plasmon resonance absorption band of silver nano particles consider to be an important requirement in SERS experiments.

Keywords: silicon nanocrystals (SiNCs), silver nanoparticles (AgNPs), surface enhanced raman spectroscopy (SERS)

Procedia PDF Downloads 329
10392 Reliability-based Condition Assessment of Offshore Wind Turbines using SHM data

Authors: Caglayan Hizal, Hasan Emre Demirci, Engin Aktas, Alper Sezer

Abstract:

Offshore wind turbines consist of a long slender tower with a heavy fixed mass on the top of the tower (nacelle), together with a heavy rotating mass (blades and hub). They are always subjected to environmental loads including wind and wave loads in their service life. This study presents a three-stage methodology for reliability-based condition assessment of offshore wind-turbines against the seismic, wave and wind induced effects considering the soil-structure interaction. In this context, failure criterions are considered as serviceability limits of a monopile supporting an Offshore Wind Turbine: (a) allowable horizontal displacement at pile head should not exceed 0.2 m, (b) rotations at pile head should not exceed 0.5°. A Bayesian system identification framework is adapted to the classical reliability analysis procedure. Using this framework, a reliability assessment can be directly implemented to the updated finite element model without performing time-consuming methods. For numerical verification, simulation data of the finite model of a real offshore wind-turbine structure is investigated using the three-stage methodology.

Keywords: Offshore wind turbines, SHM, reliability assessment, soil-structure interaction

Procedia PDF Downloads 524
10391 Preservation and Packaging Techniques for Extending the Shelf Life of Cucumbers: A Review of Methods and Factors Affecting Quality

Authors: Abdul Umaro Tholley

Abstract:

The preservation and packaging of cucumbers are essential to maintain their shelf life and quality. Cucumbers are a perishable food item that is highly susceptible to spoilage due to their high-water content and delicate nature. Therefore, proper preservation and packaging techniques are crucial to extend their shelf life and prevent economic loss. There are several methods of preserving cucumbers, including refrigeration, canning, pickling, and dehydration. Refrigeration is the most used preservation method, as it slows down the rate of deterioration and maintains the freshness and quality of the cucumbers. Canning and pickling are also popular preservation methods that use heat treatment and acidic solutions, respectively, to prevent microbial growth and increase shelf life. Dehydration involves removing the water content from cucumbers to increase their shelf life, but it may affect their texture and taste. Packaging also plays a vital role in preserving cucumbers. The packaging materials should be selected based on their ability to maintain the quality and freshness of the cucumbers. The most used packaging materials for cucumbers are polyethylene bags, which prevent moisture loss and protect the cucumbers from physical damage. Other packaging materials, such as corrugated boxes and wooden crates, may also be used, but they offer less protection against moisture loss and damage. The quality of cucumbers is affected by several factors, including storage temperature, humidity, and exposure to light. Cucumbers should be stored at temperatures between 7 and 10 °C, with a relative humidity of 90-95%, to maintain their freshness and quality. Exposure to light should also be minimized to prevent the formation of yellowing and decay. In conclusion, the preservation and packaging of cucumbers are essential to maintain their quality and extend their shelf life. Refrigeration, canning, pickling, and dehydration are common preservation methods that can be used to preserve cucumbers. The packaging materials used should be carefully selected to prevent moisture loss and physical damage. Proper storage conditions, such as temperature, humidity, and light exposure, should also be maintained to ensure the quality and freshness of cucumbers. Overall, proper preservation and packaging techniques can help reduce economic loss and provide consumers with high-quality cucumbers.

Keywords: cucumbers, preservation, packaging, shelf life

Procedia PDF Downloads 90
10390 Human-Elephant Conflict and Mitigation Measures in Buffer Zone of Bardia National Park, Nepal

Authors: Rabin Paudel, Dambar Bahadur Mahato, Prabin Poudel, Bijaya Neupane, Sakar Jha

Abstract:

Understanding Human-Elephant Conflict (HEC) is very important in countries like Nepal, where solutions to escalating conflicts are urgently required. However, most of the HEC mitigation measures implemented so far have been done on an ad hoc basis without the detailed understanding of nature and extent of the damage. This study aims to assess the current scenario of HEC in regards to crop and property damages by Wild Asian Elephant and people’s perception towards existing mitigating measures and elephant conservation in Buffer zone area of Bardia National Park. The methods used were a questionnaire survey (N= 178), key-informant interview (N= 18) and focal group discussions (N= 6). Descriptive statistics were used to determine the nature and extent of damage and to understand people’s perception towards HEC, its mitigation measures and elephant conservation. Chi-square test was applied to determine the significance of crop and property damages with respect to distance from the park boundary. Out of all types of damage, crop damage was found to be the highest (51%), followed by house damage (31%) and damage to stored grains (18%) with winter being the season with the greatest elephant damage. Among 178 respondents, the majority of them (82%) were positive towards elephant conservation despite the increment in HEC incidents as perceived by 88% of total respondents. Among the mitigation measures present, the most applied was electric fence (91%) followed by barbed wire fence (5%), reinforced concrete cement wall (3%) and gabion wall (1%). Most effective mitigation measures were reinforced concrete cement wall and gabion wall. To combat increasing crop damage, the insurance policy should be initiated. The efficiency of the mitigation measures should be timely monitored, and corrective measures should be applied as per the need.

Keywords: crop and property damage, elephant conflict, Asiatic wild elephant, mitigation measures

Procedia PDF Downloads 146
10389 Structural Design of a Relief Valve Considering Strength

Authors: Nam-Hee Kim, Jang-Hoon Ko, Kwon-Hee Lee

Abstract:

A relief valve is a mechanical element to keep safety by controlling high pressure. Usually, the high pressure is relieved by using the spring force and letting the fluid to flow from another way out of system. When its normal pressure is reached, the relief valve can return to initial state. The relief valve in this study has been applied for pressure vessel, evaporator, piping line, etc. The relief valve should be designed for smooth operation and should satisfy the structural safety requirement under operating condition. In general, the structural analysis is performed by following fluid flow analysis. In this process, the FSI (Fluid-Structure Interaction) is required to input the force obtained from the output of the flow analysis. Firstly, this study predicts the velocity profile and the pressure distribution in the given system. In this study, the assumptions for flow analysis are as follows: • The flow is steady-state and three-dimensional. • The fluid is Newtonian and incompressible. • The walls of the pipe and valve are smooth. The flow characteristics in this relief valve does not induce any problem. The commercial software ANSYS/CFX is utilized for flow analysis. On the contrary, very high pressure may cause structural problem due to severe stress. The relief valve is made of body, bonnet, guide, piston and nozzle, and its material is stainless steel. To investigate its structural safety, the worst case loading is considered as the pressure of 700 bar. The load is applied to inside the valve, which is greater than the load obtained from FSI. The maximum stress is calculated as 378 MPa by performing the finite element analysis. However, the value is greater than its allowable value. Thus, an alternative design is suggested to improve the structural performance through case study. We found that the sensitive design variable to the strength is the shape of the nozzle. The case study is to vary the size of the nozzle. Finally, it can be seen that the suggested design satisfy the structural design requirement. The FE analysis is performed by using the commercial software ANSYS/Workbench.

Keywords: relief valve, structural analysis, structural design, strength, safety factor

Procedia PDF Downloads 299
10388 Effect of Needle Diameter on the Morphological Structure of Electrospun n-Bi2O3/Epoxy-PVA Nanofiber Mats

Authors: Bassam M. Abunahel, Nurul Zahirah Noor Azman, Munirah Jamil

Abstract:

The effect of needle diameter on the morphological structure of electrospun n-Bi2O3/epoxy-PVA nanofibers has been investigated using three different types of needle diameters. The results were observed and investigated using two techniques of scanning electron microscope (SEM). The first technique is backscattered SEM while the second is secondary electron SEM. The results demonstrate that there is a correlation between the needle diameter and the morphology of electrospun nanofibers. As the internal needle diameter decreases, the average nanofiber diameter decreases and the fibers get thinner and smoother without agglomeration or beads formation. Moreover, with small needle diameter the nanofibrous porosity get larger compared with large needle diameter.

Keywords: needle diameter, fiber diameter, porosity, agglomeration

Procedia PDF Downloads 169
10387 Development of Cobalt Doped Alumina Hybrids for Adsorption of Textile Effluents

Authors: Uzaira Rafique, Kousar Parveen

Abstract:

The discharge volume and composition of Textile effluents gains scientific concern due to its hazards and biotoxcity of azo dyes. Azo dyes are non-biodegradable due to its complex molecular structure and recalcitrant nature. Serious attempts have been made to synthesize and develop new materials to combat the environmental problems. The present study is designed for removal of a range of azo dyes (Methyl orange, Congo red and Basic fuchsine) from synthetic aqueous solutions and real textile effluents. For this purpose, Metal (cobalt) doped alumina hybrids are synthesized and applied as adsorbents in the batch experiment. Two different aluminium precursor (aluminium nitrate and spent aluminium foil) and glucose are mixed following sol gel method to get hybrids. The synthesized materials are characterized for surface and bulk properties using FTIR, SEM-EDX and XRD techniques. The characterization of materials under FTIR revealed that –OH (3487-3504 cm-1), C-H (2935-2985 cm-1), Al-O (~ 800 cm-1), Al-O-C (~1380 cm-1), Al-O-Al (659-669 cm-1) groups participates in the binding of dyes onto the surface of hybrids. Amorphous shaped particles and elemental composition of carbon (23%-44%), aluminium (29%-395%), and oxygen (11%-20%) is demonstrated in SEM-EDX micrograph. Time-dependent batch-experiments under identical experimental parameters showed 74% congo red, 68% methyl orange and 85% maximum removal of basic fuchsine onto the surface of cobalt doped alumina hybrids probably through the ion-exchange mechanism. The experimental data when treated with adsorption models is found to have good agreement with pseudo second order kinetic and freundlich isotherm for adsorption process. The present study concludes the successful synthesis of novel and efficient cobalt doped alumina hybrids providing environmental friendly and economical alternative to the commercial adsorbents for the treatment of industrial effluents.

Keywords: alumina hybrid, adsorption, dopant, isotherm, kinetic

Procedia PDF Downloads 190
10386 A Model of Sustainability in the Accommodation Sector

Authors: L. S. Zavodna, J. Zavodny Pospisil

Abstract:

The aim of this paper is to identify the factors for sustainability in the accommodation sector. Although sustainability is a current trend in tourism, not many facilities know how to apply the concept in practice. This paper presents a model for the implementation of sustainability in hotels, hostels, campgrounds, or other facilities. First, there are identified sections of each accommodation facility, which can contribute to sustainability. Furthermore, concrete steps are presented to transfer this model into reality.

Keywords: accommodation sector, model, sustainable tourism, sustainability

Procedia PDF Downloads 299
10385 Nano-Immunoassay for Diagnosis of Active Schistosomal Infection

Authors: Manal M. Kame, Hanan G. El-Baz, Zeinab A.Demerdash, Engy M. Abd El-Moneem, Mohamed A. Hendawy, Ibrahim R. Bayoumi

Abstract:

There is a constant need to improve the performance of current diagnostic assays of schistosomiasis as well as develop innovative testing strategies to meet new testing challenges. This study aims at increasing the diagnostic efficiency of monoclonal antibody (MAb)-based antigen detection assays through gold nanoparticles conjugated with specific anti-Schistosoma mansoni monoclonal antibodies. In this study, several hybidoma cell lines secreting MAbs against adult worm tegumental Schistosoma antigen (AWTA) were produced at Immunology Department of Theodor Bilharz Research Institute and preserved in liquid nitrogen. One MAb (6D/6F) was chosen for this study due to its high reactivity to schistosome antigens with highest optical density (OD) values. Gold nanoparticles (AuNPs) were functionalized and conjugated with MAb (6D/6F). The study was conducted on serum samples of 116 subjects: 71 patients with S. mansoni eggs in their stool samples group (gp 1), 25 with other parasites (gp2) and 20 negative healthy controls (gp3). Patients in gp1 were further subdivided according to egg count in their stool samples into Light infection {≤ 50 egg per gram(epg) (n= 17)}, moderate {51-100 epg (n= 33)} and severe infection {>100 epg(n= 21)}. Sandwich ELISA was performed using (AuNPs -MAb) for detection of circulating schistosomal antigen (CSA) levels in serum samples of all groups and the results were compared with that after using MAb/ sandwich ELISA system. Results Gold- MAb/ ELISA system reached a lower detection limit of 10 ng/ml compared to 85 ng/ml on using MAb/ ELISA and the optimal concentrations of AuNPs -MAb were found to be 12 folds less than that of MAb/ ELISA system for detection of CSA. The sensitivity and specificity of sandwich ELISA for detection of CSA levels using AuNPs -MAb were 100% & 97.8 % respectively compared to 87.3% &93.38% respectively on using MAb/ ELISA system. It was found that CSA was detected in 9 out of 71 S.mansoni infected patients on using AuNPs - MAb/ ELISA system and was not detected by MAb/ ELISA system. All those patients (9) was found to have an egg count below 50 epg feces (patients with light infections). ROC curve analyses revealed that sandwich ELISA using gold-MAb was an excellent diagnostic investigator that could differentiate Schistosoma patients from healthy controls, on the other hand it revealed that sandwich ELISA using MAb was not accurate enough as it could not recognize nine out of 71 patients with light infections. Conclusion Our data demonstrated that: Loading gold nanoparticles with MAb (6D/6F) increases the sensitivity and specificity of sandwich ELISA for detection of CSA, thus active (early) and light infections could be easily detected. Moreover this binding will decrease the amount of MAb consumed in the assay and lower the coast. The significant positive correlation that was detected between ova count (intensity of infection) and OD reading in sandwich ELISA using gold- MAb enables its use to detect the severity of infections and follow up patients after treatment for monitoring of cure.

Keywords: Schistosomiasis, nanoparticles, gold, monoclonal antibodies, ELISA

Procedia PDF Downloads 368
10384 Strategic Shear Wall Arrangement in Buildings under Seismic Loads

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range.

Keywords: nonlinear analyses, pushover analysis, shear wall, plastic hinge, performance level

Procedia PDF Downloads 41
10383 Research on the Effect of Coal Ash Slag Structure Evolution on Its Flow Behavior During Co-gasification of Coal and Indirect Coal Liquefaction Residue

Authors: Linmin Zhang

Abstract:

Entrained-flow gasification technology is considered the most promising gasification technology because of its clean and efficient utilization characteristics. The stable fluidity of slag at high temperatures is the key to affecting the long-period operation of the gasifier. The diversity and differences of coal ash-slag systems make it difficult to meet the requirements for stable slagging in entrained-flow gasifiers. Therefore, coal blending or adding fluxes has been used in industry for a long time to improve the flow behavior of coal ash. As a by-product of the indirect coal liquefaction process, indirect coal liquefaction residue (ICLR) is a kind of industrial solid waste that is usually disposed of by stacking or landfilling. However, this disposal method will not only occupy land resources but also cause serious pollution to soil and water bodies by leachate containing toxic and harmful metals. As a carbon-containing matrix, ICLR is not only a kind of waste but also a kind of energy substance. Utilizing existing industrial gasifiers to blend combustion ICLR can not only transform industrial solid waste into fuel but also save coal resources. Moreover, the ICLR usually contains a unique ash chemical composition different from coal, which will affect the slagging performance of the gasifier. Therefore, exploring the effect of the ash addition in ICLR on the coal ash flow behavior can not only improve the slagging performance and gasification efficiency of entrained-flow gasifier by using the unique ash chemical composition of ICLR but also provide some theoretical support for the large-scale consumption of industrial solid waste. Combining molecular dynamics simulation with Raman spectroscopy experiment, the effect of ICLR addition on slag structure and fluidity was explained, and the relationship between the evolution law of slag short/medium range microstructure and macroscopic flow behavior was discussed. The research found that the high silicon and aluminum content in coal ash led to the formation of complex [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron structures at high temperature, and the [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron were connected by oxygen atoms to form a multi-membered ring structure with high polymerization degree. Due to the action of the multi-membered ring structure, the internal friction in the slag increased, and the viscosity value was higher on the macro-level. As a network-modified ion, Fe2+ could replace Si4+ and Al3+ in the multi-membered ring structure and combine with O2-, which will destroy the bridge oxygen (BO) structure and transform more complex tri cluster oxygen (TO) and bridge oxygen (BO) into simple non-bridge oxygen (NBO) structure. As a result, a large number of multi-membered rings with high polymerization degrees were depolymerized into low-membered rings with low polymerization degrees. The evolution of oxygen types and ring structures in slag reduced the structure complexity and polymerization degree of coal ash slag, resulting in a decrease in the viscosity of coal ash slag.

Keywords: ash slag, coal gasification, fluidity, industrial solid waste, slag structure

Procedia PDF Downloads 19
10382 Structural Analysis and Detail Design of APV Module Structure Using Topology Optimization Design

Authors: Hyun Kyu Cho, Jun Soo Kim, Young Hoon Lee, Sang Hoon Kang, Young Chul Park

Abstract:

In the study, structure for one of offshore drilling system APV(Air Pressure Vessle) modules was designed by using topology optimum design and performed structural safety evaluation according to DNV rules. 3D model created base on design area and non-design area separated by using topology optimization for the environmental loads. This model separated 17 types for wind loads and dynamic loads and performed structural analysis evaluation for each model. As a result, the maximum stress occurred 181.25MPa.

Keywords: APV, topology optimum design, DNV, structural analysis, stress

Procedia PDF Downloads 420
10381 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems

Authors: Ramprasad Srinivasan

Abstract:

Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.

Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation

Procedia PDF Downloads 63
10380 Bilingual Gaming Kit to Teach English Language through Collaborative Learning

Authors: Sarayu Agarwal

Abstract:

This paper aims to teach English (secondary language) by bridging the understanding between the Regional language (primary language) and the English Language (secondary language). Here primary language is the one a person has learned from birth or within the critical period, while secondary language would be any other language one learns or speaks. The paper also focuses on evolving old teaching methods to a contemporary participatory model of learning and teaching. Pilot studies were conducted to gauge an understanding of student’s knowledge of the English language. Teachers and students were interviewed and their academic curriculum was assessed as a part of the initial study. Extensive literature study and design thinking principles were used to devise a solution to the problem. The objective is met using a holistic learning kit/card game to teach children word recognition, word pronunciation, word spelling and writing words. Implication of the paper is a noticeable improvement in the understanding and grasping of English language. With increasing usage and applicability of English as a second language (ESL) world over, the paper becomes relevant due to its easy replicability to any other primary or secondary language. Future scope of this paper would be transforming the idea of participatory learning into self-regulated learning methods. With the upcoming govt. learning centres in rural areas and provision of smart devices such as tablets, the development of the card games into digital applications seems very feasible.

Keywords: English as a second language, vocabulary-building card games, learning through gamification, rural education

Procedia PDF Downloads 242
10379 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm

Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi

Abstract:

To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.

Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm

Procedia PDF Downloads 229
10378 A Study on ESD Protection Circuit Applying Silicon Controlled Rectifier-Based Stack Technology with High Holding Voltage

Authors: Hee-Guk Chae, Bo-Bae Song, Kyoung-Il Do, Jeong-Yun Seo, Yong-Seo Koo

Abstract:

In this study, an improved Electrostatic Discharge (ESD) protection circuit with low trigger voltage and high holding voltage is proposed. ESD has become a serious problem in the semiconductor process because the semiconductor density has become very high these days. Therefore, much research has been done to prevent ESD. The proposed circuit is a stacked structure of the new unit structure combined by the Zener Triggering (SCR ZTSCR) and the High Holding Voltage SCR (HHVSCR). The simulation results show that the proposed circuit has low trigger voltage and high holding voltage. And the stack technology is applied to adjust the various operating voltage. As the results, the holding voltage is 7.7 V for 2-stack and 10.7 V for 3-stack.

Keywords: ESD, SCR, latch-up, power clamp, holding voltage

Procedia PDF Downloads 542
10377 Mapping Stress in Submerged Aquatic Vegetation Using Multispectral Imagery and Structure from Motion Photogrammetry

Authors: Amritha Nair, Fleur Visser, Ian Maddock, Jonas Schoelynck

Abstract:

Inland waters such as streams sustain a rich variety of species and are essentially hotspots for biodiversity. Submerged aquatic vegetation, also known as SAV, forms an important part of ecologically healthy river systems. Direct and indirect human influences, such as climate change are putting stress on aquatic plant communities, ranging from the invasion of non-native species and grazing, to changes in the river flow conditions and temperature. There is a need to monitor SAV, because they are in a state of deterioration and their disappearance will greatly impact river ecosystems. Like terrestrial plants, SAV can show visible signs of stress. However, the techniques used to map terrestrial vegetation from its spectral reflectance, are not easily transferable to a submerged environment. Optical remote sensing techniques are employed to detect the stress from remotely sensed images through multispectral imagery and Structure from Motion photogrammetry. The effect of the overlying water column in the form of refraction, attenuation of visible and near infrared bands in water, as well as highly moving targets, are NIR) key challenges that arise when remotely mapping SAV. This study looks into the possibility of mapping the changes in spectral signatures from SAV and their response to certain stresses.

Keywords: submerged aquatic vegetation, structure from motion, photogrammetry, multispectral, spectroscopy

Procedia PDF Downloads 88
10376 Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement

Authors: Camila Parodi, Viviana Letelier, Giacomo Moriconi

Abstract:

The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material.

Keywords: cement replacement, environmental impact, masonry residue, mechanical properties of recycled mortars

Procedia PDF Downloads 384
10375 Balanced Scorecard (BSC) Project : A Methodological Proposal for Decision Support in a Corporate Scenario

Authors: David de Oliveira Costa, Miguel Ângelo Lellis Moreira, Carlos Francisco Simões Gomes, Daniel Augusto de Moura Pereira, Marcos dos Santos

Abstract:

Strategic management is a fundamental process for global companies that intend to remain competitive in an increasingly dynamic and complex market. To do so, it is necessary to maintain alignment with their principles and values. The Balanced Scorecard (BSC) proposes to ensure that the overall business performance is based on different perspectives (financial, customer, internal processes, and learning and growth). However, relying solely on the BSC may not be enough to ensure the success of strategic management. It is essential that companies also evaluate and prioritize strategic projects that need to be implemented to ensure they are aligned with the business vision and contribute to achieving established goals and objectives. In this context, the proposition involves the incorporation of the SAPEVO-M multicriteria method to indicate the degree of relevance between different perspectives. Thus, the strategic objectives linked to these perspectives have greater weight in the classification of structural projects. Additionally, it is proposed to apply the concept of the Impact & Probability Matrix (I&PM) to structure and ensure that strategic projects are evaluated according to their relevance and impact on the business. By structuring the business's strategic management in this way, alignment and prioritization of projects and actions related to strategic planning are ensured. This ensures that resources are directed towards the most relevant and impactful initiatives. Therefore, the objective of this article is to present the proposal for integrating the BSC methodology, the SAPEVO-M multicriteria method, and the prioritization matrix to establish a concrete weighting of strategic planning and obtain coherence in defining strategic projects aligned with the business vision. This ensures a robust decision-making support process.

Keywords: MCDA process, prioritization problematic, corporate strategy, multicriteria method

Procedia PDF Downloads 73
10374 Photocatalytic Degradation of Methylene Blue Dye Using Pure and Ag-Doped SnO₂ Nanoparticles as Catalyst

Authors: M. S. Abd El-Sadek, Mahmoud A. Omar, Gharib M. Taha

Abstract:

Photodegradation of methylene blue in the presence of tin dioxide (SnO₂) nanoparticles under solar light irradiation are known to be an effective photocatalytic process. In this study, pure and silver (Ag) doped tin dioxide (SnO₂) nanoparticles were prepared at calcination temperature (800ºC) by a modified sol-gel method and studied for their photocatalytic activity with methylene blue as a test contaminant. The characterization of undoped and doped SnO₂ photocatalyst was studied by X-rays diffraction patterns (XRD), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Energy Dispersive X-ray Microanalysis (EDX). The catalytic degradation of methylene blue in aqueous media was studied using UV-Vis spectrophotometer to monitor the degradation process by measuring its absorption spectra. The main absorption peak of methylene blue is observed at λ= 664 nm. The change in the percent of silver in the catalyst affects the photoactivity of SnO₂ on the degradation of methylene blue. The photoactivity of pure SnO₂ was found to be a maximum at dose 0.2 gm of the catalyst with 100 ml of 5 ppm methylene blue in the water. Within 210 min of photodegradation (under sunlight) after leaving the reaction for 90 minutes in the dark to avoid the effect of adsorption, the pure SnO₂ at calcination temperature 800ºC exhibited the best photocatalytic degradation with removal percentage of 93.66% on methylene blue degradation under solar light.

Keywords: SnO₂ nanoparticles, methylene blue degradation, photocatalysis, silver doped-SnO₂

Procedia PDF Downloads 137
10373 Synthesis of Rare-Earth Pyrazolate Compounds

Authors: Nazli Eslamirad, Peter C. Junk, Jun Wang, Glen B. Deacon

Abstract:

Since coordination behavior of pyrazoles and pyrazolate ions are widely versatile towards a great range of metals such as d-block, f-block as well as main group elements; they attract interest as ligands for preparing compounds. A variety of rare-earth pyrazolate complexes have been synthesized by redox transmetalation/protolysis (RTP) previously, therefore, a variety of rare-earth pyrazolate complexes using two pyrazoles, 3,5-dimethylpyrazole (Me₂pzH) and 3,5-di-tert -butylpyrazolate (t-Bu₂pzH), in which the structures span the whole La-Lu array beside Sc and Y has been synthesized by RTP reaction. There have been further developments in this study: Synthesizing structure of [Tb(Me₂pz)₃(thf)]₂ which is isomorphous with those of the previously reported [Dy(Me₂pz)₃(thf)]₂ and [Lu(Me₂pz)₃(thf)]₂ analogous that has two µ-1(N):2(Nʹ)-Me2pz ligands (the most common pyrazolate ligation for non-rare-earth complexes). Previously most of the reported compounds using t-Bu2pzH were monomeric compounds however the lanthanum derivative [La(Me₂pz)₃thf₂] ,which has been reported previously without crystal structure, has now been structurally characterized, along with cerium and lutetium analogue. Also a polymeric structure with samarium has now been synthesized which the neodymium analogue has been reported previously and comparing these polymeric structures can support the idea that the geometry of Sm(tBu₂pz)₃ affect the coordination of the solvent. Also, by using 1,2-dimethoxyethane (DME) instead of tetrahydrofuran (THF) new [Er(tBu₂pz)₃ (dme)₂] has now been reported.

Keywords: lanthanoid complexes, pyrazolate, redox transmetalation/protolysis, x-ray crystal structures

Procedia PDF Downloads 213
10372 Kinetics and Thermodynamics Adsorption of Phenolic Compounds on Organic-Inorganic Hybrid Mesoporous Material

Authors: Makhlouf Mourad, Messabih Sidi Mohamed, Bouchher Omar, Houali Farida, Benrachedi Khaled

Abstract:

Mesoporous materials are very commonly used as adsorbent materials for removing phenolic compounds. However, the adsorption mechanism of these compounds is still poorly controlled. However, understanding the interactions mesoporous materials/adsorbed molecules is very important in order to optimize the processes of liquid phase adsorption. The difficulty of synthesis is to keep an orderly and cubic pore structure and achieve a homogeneous surface modification. The grafting of Si(CH3)3 was chosen, to transform hydrophilic surfaces hydrophobic surfaces. The aim of this work is to study the kinetics and thermodynamics of two volatile organic compounds VOC phenol (PhOH) and P hydroxy benzoic acid (4AHB) on a mesoporous material of type MCM-48 grafted with an organosilane of the Trimethylchlorosilane (TMCS) type, the material thus grafted or functionalized (hereinafter referred to as MCM-48-G). In a first step, the kinetic and thermodynamic study of the adsorption isotherms of each of the VOCs in mono-solution was carried out. In a second step, a similar study was carried out on a mixture of these two compounds. Kinetic models (pseudo-first order, pseudo-second order) were used to determine kinetic adsorption parameters. The thermodynamic parameters of the adsorption isotherms were determined by the adsorption models (Langmuir, Freundlich). The comparative study of adsorption of PhOH and 4AHB proved that MCM-48-G had a high adsorption capacity for PhOH and 4AHB; this may be related to the hydrophobicity created by the organic function of TMCS in MCM-48-G. The adsorption results for the two compounds using the Freundlich and Langmuir models show that the adsorption of 4AHB was higher than PhOH. The values ​​obtained by the adsorption thermodynamics show that the adsorption interactions for our sample with the phenol and 4AHB are of a physical nature. The adsorption of our VOCs on the MCM-48 (G) is a spontaneous and exothermic process.

Keywords: adsorption, kinetics, isotherm, mesoporous materials, Phenol, P-hydroxy benzoique acid

Procedia PDF Downloads 203
10371 Experimental and Theoretical Approach, Hirshfeld Surface, Reduced Density Gradient, Molecular Docking of a Thiourea Derivative

Authors: Noureddine Benharkat, Abdelkader Chouaih, Nourdine Boukabcha

Abstract:

A thiourea derivative compound was synthesized and subjected to structural analysis using single-crystal X-ray diffraction (XRD). The crystallographic data unveiled its crystallization in the P21/c space group within the monoclinic system. Examination of the dihedral angles indicated a notable non-planar structure. To support and interpret these resulats, density functional theory (DFT) calculations were conducted utilizing the B3LYP functional along with a 6–311 G (d, p) basis set. Additionally, to assess the contribution of intermolecular interactions, Hirshfeld surface analysis and 2D fingerprint plots were employed. Various types of interactions, whether weak intramolecular or intermolecular, within a molecule can significantly impact its stability. The distinctive signature of non-covalent interactions can be detected solely through electron density analysis. The NCI-RDG analysis was employed to investigate both repulsive and attractive van der Waals interactions while also calculating the energies associated with intermolecular interactions and their characteristics. Additionally, a molecular docking study was studied to explain the structure-activity relationship, revealing that the title compound exhibited an affinity energy of -6.8 kcal/mol when docked with B-DNA (1BNA).

Keywords: computational chemistry, density functional theory, crystallography, molecular docking, molecular structure, powder x-ray diffraction, single crystal x-ray diffraction

Procedia PDF Downloads 52