Search results for: soft soil settlement
3764 Effect of Biochar, Farmyard Manure, and Lime on Soil Properties, and on Growth and Nutrient Uptake of Wheat on Acidic Soils in Southern Ethiopia
Authors: Mekdes Lulu
Abstract:
This study assessed the effect of the interactions of biochar (BC), farmyard manure (FYM) and lime on soil chemical properties and on different wheat attributes in Southern Ethiopia. The experimental design was a randomized complete block in three replications. The site significantly (p ≤ 0.05) influenced soil and wheat attributes. Biochar showed a large significant effect (p ≤ 0.05) on soil organic carbon, cation exchange capacity, and exchangeable potassium (K), while lime showed a substantially significant (p ≤ 0.05) effect on exchangeable Calcium (Ca) and acidity. Farmyard manure (10 tonnes ha−1 ) had a significant effect on soil total nitrogen (TN). Biochar and lime showed a large significant effect on soil pH and available phosphorus (P) depending on the site. All amendments showed a significant (p ≤ 0.001) effect on most wheat attributes, but the highest effect was from BC. Biochar produced highly significant (p ≤ 0.001) effects on plant height, total number of tillers and productive tillers, number of seeds per spike, aboveground biomass, grain yield, and P and K content in wheat grain and straw. We accredited the greater effect of BC on wheat attributes to its influence on soil chemical properties. We recommend long-term studies on the impact of BC alone or in combination with FYM on acid soil types.Keywords: grain yield, soil amendments, soil nutrients, soil organic carbon, Triticum aestivum
Procedia PDF Downloads 313763 Experimental Testing of a Synthetic Mulch to Reduce Runoff and Evaporative Water Losses
Authors: Yasmeen Saleem, Pedro Berliner, Nurit Agam
Abstract:
The most severe limitation for plant production in arid areas is water. Rainfall events are rare but can have pulses of high intensity. As a result, crusts are formed, which decreases infiltration into the soil, and results additionally in erosive losses of soil. Direct evaporation of water from the wetted soil can account for large fractions of the water stored in the soil. Different kinds of mulches have been used to decrease the loss of water in arid and semi-arid region. This study aims to evaluate the effect of polystyrene styrofoam pellets mulch on soil infiltration, runoff, and evaporation as a more efficient and economically viable mulch alternative. Polystyrene styrofoam pellets of two sizes (0.5 and 1 cm diameter) will be placed on top of the soil in two mulch layer depths (1 and 2 cm), in addition to the non-mulched treatment. The rainfall simulator will be used as an artificial source of rain. The preliminary results in the prototype experiment indicate that polystyrene styrofoam pellets decreased runoff, increased soil-water infiltration. We are still testing the effect of these pellets on decreasing the soil-water evaporation.Keywords: synthetic mulch, runoff, evaporation, infiltration
Procedia PDF Downloads 1233762 Neutral Sugar Contents of Laurel-leaved and Cryptomeria japonica Forests
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined using the Waksman’s approximation analysis to clarify relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2) trees for analysis. The water and HCl soluble neutral sugars increased microbial biomass of the laurel-leaved forest soil. Arabinose, xylose, and galactose of the HCl soluble fraction were used immediately in comparison with other neutral sugars. Rhamnose, glucose, and fructose of the HCl soluble fraction were re-composed by the microbes.Keywords: forest soil, neutral sugaras, soil organic matter, Waksman’s approximation analysis
Procedia PDF Downloads 3093761 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil
Authors: M. A. Stoian, D. M. Cocarta, A. Badea
Abstract:
The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6.Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution
Procedia PDF Downloads 4223760 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster
Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon
Abstract:
Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil
Procedia PDF Downloads 2933759 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam
Authors: T. M. Agbede, A. O. Adekiya
Abstract:
Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.Keywords: cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam
Procedia PDF Downloads 3243758 Enhanced Degradation of Endosulfan in Soil Using Lycopersicon esculentum L. (Tomato) and Endosulfan Tolerant Bacterium Strains
Authors: Rupa Rani, Vipin Kumar
Abstract:
Endosulfan, an organochlorine pesticide is of environmental concern due to its apparent persistence and toxicity. It has been reported as contaminants in soil, air, and water and is bioaccumulated and magnified in ecosystems. The combined use of microorganisms and plants has great potential for remediating soil contaminated with organic compounds such as pesticides. The objective of this study was to evaluate whether the bacterial inoculation influences plant growth promotion, endosulfan degradation in soil and endosulfan accumulation in different plant parts. Lycopersicon esculentum L. (Tomato) was grown in endosulfan spiked soil and inoculated with endosulfan tolerant bacterial strains. Endosulfan residues from different parts of plants and soil were extracted and estimated by using gas chromatograph equipped with 63Ni electron capture detector (GC-ECD). The inoculation of bacterial strains into the soil with plants showed a beneficial effect on endosulfan degradation and plant biomass production. Maximum endosulfan (90%) degradation was observed after 120 days of bacterial inoculation in the soil. Furthermore, there was significantly less endosulfan accumulation in roots and shoots of bacterial strains inoculated plants as compared to uninoculated plants. The results show the effectiveness of inoculated endosulfan tolerant bacterial strains to increase the remediation of endosulfan contaminated soil.Keywords: organochlorine pesticides, endosulfan, degradation, plant-bacteria partnerships
Procedia PDF Downloads 1513757 Physico-Chemical Analysis of the Reclaimed Land Area of Kasur
Authors: Shiza Zafar
Abstract:
The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities.Keywords: soil toxicity, agriculture, reclaimed land, physico-chemical analysis
Procedia PDF Downloads 3793756 Impact of Climatic Parameters on Soil's Nutritional and Enzymatic Properties
Authors: Kanchan Vishwakarma, Shivesh Sharma, Nitin Kumar
Abstract:
Soil is incoherent matter on Earth’s surface having organic and mineral content. The spatial variation of 4 soil enzyme activities and microbial biomass were assessed for two seasons’ viz. monsoon and winter along the latitudinal gradient in North-central India as the area of this study is fettered with respect to national status. The study was facilitated to encompass the effect of climate change, enzyme activity and biomass on nutrient cycling. Top soils were sampled from 4 sites in North-India. There were significant correlations found between organic C, N & P wrt to latitude gradient in two seasons. This distribution of enzyme activities and microbial biomass was consequence of alterations in temperature and moisture of soil because of which soil properties change along the latitude transect.Keywords: latitude gradient, microbial biomass, moisture, soil, organic carbon, temperature
Procedia PDF Downloads 3963755 Dynamic Soil Structure Interaction in Buildings
Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar
Abstract:
Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.Keywords: soil-structure interaction, response spectrum, analysis, finite element method, multi-storey buildings
Procedia PDF Downloads 4803754 Soil Properties and Crop Productivity of Kiln Sites in the Highlands of North-western Ethiopia
Authors: Hanamariam Mekonnen
Abstract:
Ethiopian farmers traditionally produce charcoal under several kilns on cultivated land: particularly in Kasiry micro-watershed Fagita Lekoma district of Northwestern Ethiopia. However, the effects of such soil heating and remnants of charcoal leftover on soils have not been adequately documented. Hence, this study tried to quantify the effects of such kiln sites on selected soil properties and wheat crop performance. Soils from four kiln sites were thus purposively sampled at depths of 0-20 cm, 20-40 cm and 40-60 cm and were compared with the respective soil layers of none-kiln sites from similar adjacent fields. While soil moisture content was sampled at kiln and none-kiln site in wet and dry seasons from each depth. In addition, a pot experiment was conducted using two sources of biochar (Acacia decurrens and Eucalyptus Camaldulensis) with four rates (0, 10, 20, and 40 t/ha) and compared with crops grown from soils of 1kiln sites without biochar application laid out in a CRD with three replications. The data were analyzed using SAS software Version 9.4.The result revealed notable variations of kiln site soils and along soil depth. The appreciable increased (p<0.05) soil pH (5.5 to 5.74), organic carbon (3.89 to 4.27%), TN (0.30 to 0.32%), CEC (32.59 to 35.23 cmolckg-1), Ca (6.44 to 7.9 cmolckg-1), Mg (4.48 to 5.46 cmolckg-1), and significantly (p<0.01) Av. P (30.25 to 46.4 ppm) and K (2.11 to 2.82 cmolckg-1) were recorded from the none-kiln to kiln soils, respectively. On the other hand, ex. acidity and aluminum, available Fe and Mn were reduced from 2.20 to 1.54, 1.95 to 1.31 cmolckg-1 and 57.46 to 41.40 and 5.65 to 3.86 ppm, respectively, from the control to the kiln. Soil texture was significantly affected by soil heating and along soil depth. The sand content was (p<0.05) varied between the value of 23% to 29% from none-kiln to kiln site, and clay content was (p<0.01) increased from 0-20 cm (32%) soil depth to 40-60 cm (43%) deeper soil. Significantly (p<0.05) higher Soil moisture content was recorded at none-kiln site (45.85%) compared to kiln (40.44%) in wet season, whereas in dry season, lower moisture content was revealed at kiln site (26%) compared to none-kiln (30.7%). As wet to dry season, soil moisture was decreased from 43% to 28% respectively. Bulk density (P<0.01) varied between 0.88 to 0.94 gcm-3 from control to kiln in dry season. Similarly, the value of soil pH (6.10), Av. P (58.12), exchangeable bases (Ca (9.83), Mg (6.19) and K (3.67)) were (p<0.01) higher at the 0-20 cm soil depth as compared to the deeper soils, the result of soil moisture (30 to 42%) and CEC (31 to 36 cmolckg-1) increased down the soil profile. After wheat harvest, soil pH, Av. P, CEC, and exchangeable bases (Mg, K and Na) were significantly higher in the kiln soil, while soil moisture and OC increased by the applied biochar of 20 and 40 ton/ha. High yield 2.28 gpot-1 (p<0.01) was recorded in kiln soil, growth parameters of wheat were significantly increased with increasing biochar rates.Keywords: biochar, kasiry micro-watershed, kiln site, none-kiln site, soil properties
Procedia PDF Downloads 883753 Shear Strength Parameters of an Unsaturated Lateritic Soil
Authors: Jeferson Brito Fernades, Breno Padovezi Rocha, Roger Augusto Rodrigues, Heraldo Luiz Giacheti
Abstract:
The geotechnical projects demand the appropriate knowledge of soil characteristics and parameters. The determination of geotechnical soil parameters can be done by means of laboratory or in situ tests. In countries with tropical weather, like Brazil, unsaturated soils are very usual. In these soils, the soil suction has been recognized as an important stress state variable, which commands the geo-mechanical behavior. Triaxial and direct shear tests on saturated soils samples allow determine only the minimal soil shear strength, in other words, no suction contribution. This paper briefly describes the triaxial test with controlled suction as well as discusses the influence of suction on the shear strength parameters of a lateritic tropical sandy soil from a Brazilian research site. In this site, a sample pit was excavated to retrieve disturbed and undisturbed soil blocks. The samples extracted from these blocks were tested in laboratory to represent the soil from 1.5, 3.0 and 5.0 m depth. The stress curves and shear strength envelopes determined by triaxial tests varying suction and confining pressure are presented and discussed. The water retention characteristics on this soil complement this analysis. In situ CPT tests were also carried out at this site in different seasons of the year. In this case, the soil suction profile was determined by means of the soil water retention. This extra information allowed assessing how soil suction also affected the CPT data and the shear strength parameters estimative via correlation. The major conclusions of this paper are: the undisturbed soil samples contracted before shearing and the soil shear strength increased hyperbolically with suction; and it was possible to assess how soil suction also influenced CPT test data based on the water content soil profile as well as the water retention curve. This study contributed with a better understanding of the shear strength parameters and the soil variability of a typical unsaturated tropical soil.Keywords: site characterization, triaxial test, CPT, suction, variability
Procedia PDF Downloads 4163752 Shock Response Analysis of Soil-Structure Systems Induced by Near-Fault Pulses
Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian
Abstract:
Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by Shock Response Spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear Soil–Structure Interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.Keywords: nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation
Procedia PDF Downloads 3153751 Theoretical Bearing Capacity of Modified Kacapuri Foundation
Authors: Muhammad Afief Maruf
Abstract:
Kacapuri foundation is the traditional shallow foundation of building which has been used since long by traditional communities in Borneo, Indonesia. Kacapuri foundation is a foundation that uses a combination of ironwood (eusideroxylon zwageri) as a column and truss and softwood (Melaleuca leucadendra syn. M. leucadendron) as a raft. In today's modern era, ironwood happened to be a rare item, and it is protected by the Indonesian government. This condition then triggers the idea to maintain the shape of the traditional foundation by modifying the material. The suggestion is replacing the ironwood column with reinforced concrete column. In addition, the number of stem softwood is added to sustain the burden of replacing the column material. Although this modified form of Kacapuri foundation is currently still not been tested in applications in society, some research on the modified Kacapuri foundation has been conducted by some researchers and government unit. This paper will try to give an overview of the theoretical foundation bearing capacity Kacapuri modifications applied to the soft alluvial soil located in Borneo, Indonesia, where the original form of Kacapuri is implemented this whole time. The foundation is modeled buried depth in 2m below the ground surface and also below the ground water level. The calculation of the theoretical bearing capacity and then is calculated based on the bearing capacity equation suggested Skempton, Terzaghi and Ohsuki using the data of soft alluvial soil in Borneo. The result will then compared with the bearing capacity of the Kacapuri foundation original design from some previous research. The results show that the ultimate bearing capacity of the Modified Kacapuri foundation using Skempton equation amounted to 329,26 kN, Terzaghi for 456,804kN, and according Ohsaki amounted to 491,972 kN. The ultimate bearing capacity of the original Kacapuri foundation model based on Skempton equation is 18,23 kN. This result shows that the modification added the ultimate bearing capacity of the foundation, although the replacement of ironwood to reinforced concrete will also add some dead load to the total load itself.Keywords: bearing capacity, Kacapuri, modified foundation, shallow foundation
Procedia PDF Downloads 3693750 Agro-Measures Influence Soil Physical Parameters in Alternative Farming
Authors: Laura Masilionyte, Danute Jablonskyte-Rasce, Kestutis Venslauskas, Zita Kriauciuniene
Abstract:
Alternative farming systems are used to cultivate high-quality food products and sustain the viability and fertility of the soil. Plant nutrition in all ecosystems depends not only on fertilization intensity or soil richness in organic matter but also on soil physical parameters –bulk density, structure, pores with the optimum moisture and air ratio available to plants. The field experiments of alternative (sustainable and organic) farming systems were conducted at Joniskelis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2016. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). In alternative farming systems, farmyard manure, straw and catch crops for green manure were used for fertilization both in the soil with low and moderate humus contents. It had a more significant effect in the 0–20 cm depth layer on soil moisture than on other physical soil properties. In the agricultural systems, where catch crops were grown, soil physical characteristics did not differ significantly before their biomass incorporation, except for the moisture content, which was lower in rainy periods and higher in drier periods than in the soil of farming systems without catch crops. Soil bulk density and porosity in the topsoil layer were more dependent on soil humus content than on agricultural measures used: in the soil with moderate humus content, compared with the soil with low humus content, bulk density was by 1.4% lower, and porosity by 1.8% higher. The research findings allow to make improvements in alternative farming systems by choosing appropriate combinations of organic fertilizers and catch crops that have a sustainable effect on soil and maintain the sustainability of soil productivity parameters. Rational fertilization systems, securing the stability of soil productivity parameters and crop rotation productivity will promote the development of organic agriculture.Keywords: agro-measures, soil physical parameters, organic farming, sustainable farming
Procedia PDF Downloads 1273749 Estimating Soil Erosion Using Universal Soil Loss Equation and Gis in Algash Basin
Authors: Issamaldin Mohammed, Ahmed Abdalla, Hatim Elobied
Abstract:
Soil erosion is globally known for adverse effects on social, environmental and economical aspects which directly or indirectly influence the human life. The area under study suffers from problems like water quality, river and agricultural canals bed rise due to high sediment load brought by Algash River from upstream (Eritrea high land), the current study utilized from remote sensing and Geographical Information System (GIS) to estimate the annual soil loss using Universal Soil Loss Equation (USLE). The USLE is widely used over the world which basically relies on rainfall erosivity factor (R), soil erodibility factor (K), topographic factor (LS), cover management factor (C) and support practice factor (P). The result of the study showed high soil loss in the study area, this result was illustrated in a form of map presenting the spatial distribution of soil loss amounts which classified into seven zones ranging from very slight zone (less than 2 ton/ha.year) to very severe (100-500 ton/ha.year), also the total soil loss from the whole study area was found to be 32,916,840.87 ton/ha.year. These kinds of results will help the experts of land management to give a priority for the severely affected zones to be tackled in an appropriate way.Keywords: Geographical Information System, remote sensing, sedimentation, soil loss
Procedia PDF Downloads 2883748 The Effect of Soil Surface Slope on Splash Distribution under Water Drop Impact
Authors: H. Aissa, L. Mouzai, M. Bouhadef
Abstract:
The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.Keywords: splash distribution, water drop, slope steepness, soil detachment
Procedia PDF Downloads 3383747 Simultaneous Removal of Arsenic and Toxic Metals from Contaminated Soil: a Pilot-Scale Demonstration
Authors: Juan Francisco Morales Arteaga, Simon Gluhar, Anela Kaurin, Domen Lestan
Abstract:
Contaminated soils are recognized as one of the most pressing global environmental problems. As is one of the most hazardous elements: chronic exposure to arsenic has devastating effects on health, cardiovascular diseases, cancer, and eventually death. Pb, Zn and Cd are very highly toxic metals that affect almost every organ in the body. With this in mind, new technologies for soil remediation processes are urgently needed. Calcareous artificially contaminated soil containing 231 mg kg-1 As and historically contaminated with Pb, Zn and Cd was washed with a 1:1.5 solid-liquid ratio of 90 mM EDTA, 100 mM oxalic acid, and 50 mM sodium dithionite to remove 59, 75, 29, and 53% of As, Pb, Zn, and Cd, respectively. To reduce emissions of residual EDTA and chelated metals from the remediated soil, zero valent iron (ZVI) was added (1% w/w) to the slurry of the washed soil immediately prior to rinsing. Experimental controls were conducted without the addition of ZVI after remediation. The use of ZVI reduced metal leachability and minimized toxic emissions 21 days after remediation. After this time, NH4NO3 extraction was performed to determine the mobility of toxic elements in the soil. In addition, Unified Human BioaccessibilityMethod (UBM) was performed to quantify the bioaccessibility levels of metals in stimulated human gastric and gastrointestinal phases.Keywords: soil remediation, soil science, soil washing, toxic metals removal
Procedia PDF Downloads 1753746 The Influence of Different Technologies on the Infiltration Properties and Soil Surface Crusting Processing in the North Bohemia Region
Authors: Miroslav Dumbrovsky, Lucie Larisova
Abstract:
The infiltration characteristic of the soil surface is one of the major factors that determines the potential soil degradation risk. The physical, chemical and biological characteristic of soil is changed by the processing of soil. The infiltration soil ability has an important role in soil and water conservation. The subject of the contribution is the evaluation of the influence of the conventional tillage and reduced tillage technology on soil surface crusting processing and infiltration properties of the soil in the North Bohemia region. Field experimental work at the area was carried out in the years 2013-2016 on Cambisol district medium-heavy clayey soil. The research was conducted on sloping erosion-endangered blocks of compacted arable land. The areas were chosen each year in the way that one of the experimental areas was handled by conventional tillage technologies and the other by reduced tillage technologies. Intact soil samples were taken into Kopecký´s cylinders in the three landscape positions, at a depth of 10 cm (representing topsoil) and 30 cm (representing subsoil). The cumulative infiltration was measured using a mini-disc infiltrometer near the consumption points. The Zhang method (1997), which provides an estimate of the unsaturated hydraulic conductivity K(h), was used for the evaluation of the infiltration tests of the mini-disc infiltrometer. The soil profile processed by conventional tillage showed a higher degree of compaction and soil crusting processing. The bulk density was between 1.10–1.67 g.cm⁻³, compared to the land processed by the reduced tillage technology, where the values were between 0.80–1.29 g.cm⁻³. Unsaturated hydraulic conductivity values were about one-third higher within the reduced tillage technology soil processing.Keywords: soil crusting processing, unsaturated hydraulic conductivity, cumulative infiltration, bulk density, porosity
Procedia PDF Downloads 2473745 Mathematical Model for Flow and Sediment Yield Estimation on Tel River Basin, India
Authors: Santosh Kumar Biswal, Ramakar Jha
Abstract:
Soil erosion is a slow and continuous process and one of the prominent problems across the world leading to many serious problems like loss of soil fertility, loss of soil structure, poor internal drainage, sedimentation deposits etc. In this paper remote sensing and GIS based methods have been applied for the determination of soil erosion and sediment yield. Tel River basin which is the second largest tributary of the river Mahanadi laying between latitude 19° 15' 32.4"N and, 20° 45' 0"N and longitude 82° 3' 36"E and 84° 18' 18"E chosen for the present study. The catchment was discretized into approximately homogeneous sub-areas (grid cells) to overcome the catchment heterogeneity. The gross soil erosion in each cell was computed using Universal Soil Loss Equation (USLE). Various parameters for USLE was determined as a function of land topography, soil texture, land use/land cover, rainfall, erosivity and crop management and practice in the watershed. The concept of transport limited accumulation was formulated and the transport capacity maps were generated. The gross soil erosion was routed to the catchment outlet. This study can help in recognizing critical erosion prone areas of the study basin so that suitable control measures can be implemented.Keywords: Universal Soil Loss Equation (USLE), GIS, land use, sediment yield,
Procedia PDF Downloads 3083744 Agroforestry Practices on Soil Microbial Biomass Carbon and Organic Carbon in Southern Ethiopia
Authors: Nebiyou Masebo
Abstract:
The rapid conversion of an old aged agroforestry (AF) based agricultural system to monocropping farming system in southern Ethiopia is increasing. The consequence of this, combined with climate change, has been impaired biodiversity, soil microbial biomass carbon (MBC), and soil organic carbon (SOC). The AF system could curb such problems due it is an ecologically and economically sustainable strategies. This study was aimed to investigate different agroforestry practices (AFPs) on MBC and SOC in southern Ethiopia. Soil samples were collected from homegarden based agroforestry practice (HAFP), crop land based agroforestry practice (ClAFP), woodlot based agroforestry practice (WlAFP), and trees on soil and water conservation based agroforestry practice (TSWAFP) using two depth layer (0-30 & 30-60 cm) by systematic sampling. Moreover, woody species inventorywas also collected. The chloroform fumigation extraction method was employed to determine MBC from different AFP types. In this study, the value of MBC and SOC decreased significantly with soil depth (p< 0.05). Besides, AFP type, soil depth, woody species diversity, and key soil properties also strongly influenced MBC and SOC (p< 0.05). In this study, the MBC was the highest (786 mg kg⁻¹ soil) in HAFP, followed by WlAFP (592 mg kg⁻¹ soil), TSWAFP (421 mg kg⁻¹ soil), and ClAFP (357 mg kg⁻¹ soil). The highest mean value of SOC (43.5Mg C ha⁻¹) was recorded in HAFP, followed by WlAFP (35.1Mg C ha⁻¹), TSWAFP (22.3 Mg C ha⁻¹), while the lowest (21.8 Mg C ha⁻¹) was recorded in ClAFP. The HAFP had high woody species diversity, and the lowest was recorded in ClAFP. The finding indicated that SOC and MBC were significantly affected by land management practices, and HAFP has the potential to improve MBC and SOC through good management practices of AFP.Keywords: agroforestry practices, microbial biomass carbon, soil carbon, rapid conversion
Procedia PDF Downloads 1023743 Development of 3D Particle Method for Calculating Large Deformation of Soils
Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee
Abstract:
In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.Keywords: particle method, large deformation, soil column, confined compressive stress
Procedia PDF Downloads 5723742 Bearing Capacity Improvement in a Silty Clay Soil with Crushed Polyethylene Terephthalate
Authors: Renzo Palomino, Alessandra Trujillo, Lidia Pacheco
Abstract:
The document presents a study based on the incremental bearing capacity of silty clay soil with the incorporation of crushed PET fibers. For a better understanding of the behavior of soil, it is necessary to know its origin. The analyzed samples came from the subgrade layer of a highway that connects the cities of Muniches and Yurimaguas in Loreto, Peru. The material in this area usually has properties such as low support index, medium to high plasticity, and other characteristics that make it considered a ‘problematic’ soil due to factors such as climate, humidity, and geographical location. In addition, PET fibers are obtained from the decomposition of plastic bottles that are polluting agents with a high production rate in our country; in that sense, their use in a construction process represents a considerable reduction in environmental impact. Moreover, to perform a precise analysis of the behavior of this soil mixed with PET, tests such as the hydrometer test, Proctor and CBR with 15%, 10%, 5%, 4%, 3%, and 1% of PET with respect to the mass of the sample of natural soil were carried out. The results show that when a low percentage of PET is used, the support index increases.Keywords: environmental impact, geotechnics, PET, silty clay soil
Procedia PDF Downloads 2373741 Mapping Soils from Terrain Features: The Case of Nech SAR National Park of Ethiopia
Authors: Shetie Gatew
Abstract:
Current soil maps of Ethiopia do not represent accurately the soils of Nech Sar National Park. In the framework of studies on the ecology of the park, we prepared a soil map based on field observations and a digital terrain model derived from SRTM data with a 30-m resolution. The landscape comprises volcanic cones, lava and basalt outflows, undulating plains, horsts, alluvial plains and river deltas. SOTER-like terrain mapping units were identified. First, the DTM was classified into 128 terrain classes defined by slope gradient (4 classes), relief intensity (4 classes), potential drainage density (2 classes), and hypsometry (4 classes). A soil-landscape relation between the terrain mapping units and WRB soil units was established based on 34 soil profile pits. Based on this relation, the terrain mapping units were either merged or split to represent a comprehensive soil and terrain map. The soil map indicates that Leptosols (30 %), Cambisols (26%), Andosols (21%), Fluvisols (12 %), and Vertisols (9%) are the most widespread Reference Soil Groups of the park. In contrast, the harmonized soil map of Africa derived from the FAO soil map of the world indicates that Luvisols (70%), Vertisols (14%) and Fluvisols (16%) would be the most common Reference Soil Groups. However, these latter mapping units are not consistent with the topography, nor did we find such extensive areas occupied by Luvisols during the field survey. This case study shows that with the now freely available SRTM data, it is possible to improve current soil information layers with relatively limited resources, even in a complex terrain like Nech Sar National Park.Keywords: andosols, cambisols, digital elevation model, leptosols, soil-landscaps relation
Procedia PDF Downloads 1053740 A 5-V to 30-V Current-Mode Boost Converter with Integrated Current Sensor and Power-on Protection
Authors: Jun Yu, Yat-Hei Lam, Boris Grinberg, Kevin Chai Tshun Chuan
Abstract:
This paper presents a 5-V to 30-V current-mode boost converter for powering the drive circuit of a micro-electro-mechanical sensor. The design of a transconductance amplifier and an integrated current sensing circuit are presented. In addition, essential building blocks for power-on protection such as a soft-start and clamp block and supply and clock ready block are discussed in details. The chip is fabricated in a 0.18-μm CMOS process. Measurement results show that the soft-start and clamp block can effectively limit the inrush current during startup and protect the boost converter from startup failure.Keywords: boost converter, current sensing, power-on protection, step-up converter, soft-start
Procedia PDF Downloads 10193739 Effect of Oil Contamination on the Liquefaction Behavior of Sandy Soils
Authors: Seyed Abolhasan Naeini, Mohammad Mahdi Shojaedin
Abstract:
Oil leakage from the pipelines and the tanks carrying them, or during oil extraction, could lead to the changes in the characteristics and properties of the soil. In this paper, conducting a series of experimental cyclic triaxial tests, the effects of oil contamination on the liquefaction potential of sandy soils is investigated. The studied specimens are prepared by mixing the Firoozkuh sand with crude oil in 4, 8 and 12 percent by soil dry weight. The results show that the oil contamination up to 8% causes an increase in the soil liquefaction resistance and then with increase in the contamination, the liquefaction resistance decreases.Keywords: cyclic triaxial test, liquefaction resistance, oil contamination, sandy soil
Procedia PDF Downloads 5293738 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia
Authors: Mohammed Abaoli, Omer Kara
Abstract:
The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam. Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area.Keywords: commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem
Procedia PDF Downloads 1953737 Soil Organic Carbon and Nutrients in Smallholding Land Uses in Southern Ethiopia
Authors: Mekdes Lulu
Abstract:
This study assessed the soil organic C (SOC) and soil nutrients in smallholding home garden, woodlot, grazing land, and cropland at two soil depths and two sites in Wolaita Zone, southern Ethiopia. The results showed that soil properties were significantly influenced by land use. The home garden had significantly higher (p < 0.05) SOC and soil nutrients when compared to the cropland. When the home garden was compared to the woodlot and grazing land uses, it had significantly higher (p < 0.05) values except in SOC, total N (TN), cation exchange capacity (CEC), and exchangeable Ca. Cropland, in comparison with grazing land and woodlot, had a non-significant difference except TN. The SOC stock (0–40 cm) in the home garden, woodlot, grazing land and cropland was 79.5, 68.0, 65.0, and 58.1 Mg ha–1, respectively. Home garden significantly differed (p <0.05) in SOC only from cropland, and this was attributed not only to the relatively higher organic input in the home garden but also to the little organic matter input and frequently tillage of the cropland. The similar SOC among the home garden, woodlot and grazing lands may imply that the balance between inputs and outputs could be nearly similar for the land uses. Soil TN and CEC had a nearly similar pattern of difference as in SOC among the land uses because of their close relationship with SOC. In general, the land use influence on soil nutrients can be in the order: home garden > wood land » grazing land » cropland, with home garden showing the least difference from the woodlot and the greatest from the cropland. In the agroecosystem, in general, the influence of smallholding home garden on SOC and soil nutrient was marginally different from Eucalyptus woodlot and grazing lands but evidently different from cropland.Keywords: cropland, grazing land, home garden, soc stock, soil nutrients, woodlot
Procedia PDF Downloads 263736 Environmental Potential of Biochar from Wood Biomass Thermochemical Conversion
Authors: Cora Bulmău
Abstract:
Soil polluted with hydrocarbons spills is a major global concern today. As a response to this issue, our experimental study tries to put in evidence the option to choose for one environmentally friendly method: use of the biochar, despite to a classical procedure; incineration of contaminated soil. Biochar represents the solid product obtained through the pyrolysis of biomass, its additional use being as an additive intended to improve the quality of the soil. The positive effect of biochar addition to soil is represented by its capacity to adsorb and contain petroleum products within its pores. Taking into consideration the capacity of the biochar to interact with organic contaminants, the purpose of the present study was to experimentally establish the effects of the addition of wooden biomass-derived biochar on a soil contaminated with oil. So, the contaminated soil was amended with biochar (10%) produced by pyrolysis in different operational conditions of the thermochemical process. After 25 days, the concentration of petroleum hydrocarbons from soil treated with biochar was measured. An analytical method as Soxhlet extraction was adopted to estimate the concentrations of total petroleum products (TPH) in the soil samples: This technique was applied to contaminated soil, also to soils remediated by incineration/adding biochar. The treatment of soil using biochar obtained from pyrolysis of the Birchwood led to a considerable decrease in the concentrations of petroleum products. The incineration treatments conducted under experimental stage to clean up the same soil, contaminated with petroleum products, involved specific parameters: temperature of about 600°C, 800°C and 1000°C and treatment time 30 and 60 minutes. The experimental results revealed that the method using biochar has registered values of efficiency up to those of all incineration processes applied for the shortest time.Keywords: biochar, biomass, remediaton, soil, TPH
Procedia PDF Downloads 2353735 Effect of Bacillus Pumilus Strains on Heavy Metal Accumulation in Lettuce Grown on Contaminated Soil
Authors: Sabeen Alam, Mehboob Alam
Abstract:
The research work entitled “Effect of Bacillus pumilus strains on heavy metal accumulation in lettuce grown on contaminated soil” focused on functional role of Bacillus pumilus strains inoculated with lettuce seed in mitigating heavy metal in chromite mining soil. In this experiment, factor A was three Bacillus pumilus strains (sequence C-2PMW-8, C-1 SSK-8 and C-1 PWK-7) while soil used for this experiment was collected from Prang Ghar mining site and lettuce seeds were grown in three levels of chromite mining soil (2.27, 4.65 and 7.14 %). For mining soil minimum days to germinate noted in lettuce grown on garden soil inoculated with sequence. Maximum germination percentage noted was for C-1 SSK-8 grown on garden soil, maximum lettuce height for sequence C-2 PWM-8, fresh leaf weight for C-1 PWK-7 inoculated lettuce, dry weight of lettuce leaf for lettuce inoculated with C-1 SSK-8 and C-1 PWK-7 strains, number of leaves per plant for lettuce inoculated with C-1 SSK-8, leaf area for C-2 PMW-8 inoculated lettuce, survival percentage for C-1 SSK-8 treated lettuce and chlorophyll content for C-2 PMW-8. Results related to heavy metals accumulation showed that minimum chromium was in lettuce and in soil for all three sequences, cadmium (Cd) in lettuce and in soil for all three sequences, manganese (Mn) in lettuce and in soil for three sequences, lead (Pb) in lettuce and in soil for three sequences. It can be concluded that chromite mining soil significantly reduced the growth and survival of lettuce, but when lettuce was inoculated with Bacillus.pumilus strains, it enhances growth and survival. Similarly, minimum heavy metal accumulation in plant and soil, regardless of type of Bacillus pumilus used, all three sequences has same mitigating effect on heavy metal in both soil and lettuce. All the three Bacillus pumilus strains ensured reduction in heavy metals content (Mn, Cd, Cr) in lettuce, below the maximum permissible limits of WHO 2011.Keywords: bacillus pumilus, heavy metals, permissible limits, lettuce, chromite mining soil, mitigating effect
Procedia PDF Downloads 60