Search results for: particle size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6440

Search results for: particle size

6020 Phase Transition in Iron Storage Protein Ferritin

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Ferritin is a protein which present in the blood of mammals. It maintains the need of iron inside the body. It has an antiferromagnetic iron core, 7-8 nm in size, which is encapsulated inside a protein cage. The thickness of this protein shell is about 2-3 nm. This protein shell reduces the interaction among particles and make ferritin a model superparamagnet. The major composition of ferritin core is mineral ferrihydrite. The molecular formula of ferritin core is (FeOOH)8[FeOOPO3H2]. In this study, we discuss the phase transition of ferritin. We characterized ferritin using x-ray diffractometer, transmission electron micrograph, thermogravimetric analyzer and vibrating sample magnetometer. It is found that ferritin core is amorphous in nature with average particle size of 8 nm. The thermogravimetric and differential thermogravimetric analysis curves shows mass loss at different temperatures. We heated ferritin at these temperatures. It is found that ferritin core starts decomposing after 390^o C. At 1020^o C, the ferritin core is finally converted to alpha phase of iron oxide. Magnetization behavior of final sample clearly shows the iron oxyhydroxide core is completely converted to alpha iron oxide.

Keywords: Antiferromagnetic, Ferritin, Phase, Superparamagnetic

Procedia PDF Downloads 89
6019 A Comparative Study on the Synthesis, Characterizations and Biological (Antibacterial and Antifungal) Activities of Zinc Doped Silica Oxide Nanoparticles Based on Various Solvents

Authors: Muhammad Arshad, Ghulam Hussain Bhatti, Abdul Qayyum

Abstract:

Zinc-doped silica oxide nanoparticles having size 7.93nm were synthesized by the deposition precipitation method by using different solvents (acetonitrile, n-hexane, isoamylalchol). Biological potential such as antibacterial activities against Bacillussubtilusand Escherichia coli, and antifungal activities against Candida parapsilosis and Aspergilusniger were also investigated by Disc diffusion method. Different characterizations techniques including Fournier Transmission Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Thermo-gravimeteric Analysis (TGA), Atomic forced microscopy (AFM), and Dynamic Light Scattering (DLS) were used. FT-IR characterization confirmed the presence of metal oxide bond (SiO2) while XRD showed the hexagonal structure. SEM and TEM characterization showed the morphology of nanoparticles. AFM study showed good particle size distribution as depicted by a histogram. DLS study showed the gradual decease in the size of nanoparticles from 24.86nm to 13.24 nm. Highest antibacterial activities revealed by acetonitrile solvents (6%and 4.5%) followed by isoamylalchol (3% and 2.4%) while n-hexane solvent showed the lowest activity (2%and 1%) respectively. Higher antifungal activities exhibited by n-hexane (0.34 % and 0.43%) followed by isoamylalchol (0.27% and 0.19%) solvent while acetonitrile (0.21% and 0.17%) showed least activity respectively. Statistical analysis by using one-way ANOVA also indicated the significant results of both biological activities.

Keywords: nanoparticles, precipitation methods, antibacterial, antifungal, characterizations

Procedia PDF Downloads 181
6018 Implementation of Inference Fuzzy System as a Valuation Subsidiary is Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

Nowadays, there is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Additionally, robotics system recommended RoboCup factor as a provider of some standardization and testing method in case of computer discussion widely. The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. In addition, decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidently. Consequences, shows method of our discussion is the best way for Particle Swarm Optimization and Fuzzy system compare to other decision of robotics algorithmic.

Keywords: PSO algorithm, inference fuzzy system, chaos theory, soccer robot league

Procedia PDF Downloads 379
6017 Investigating Kinetics and Mathematical Modeling of Batch Clarification Process for Non-Centrifugal Sugar Production

Authors: Divya Vats, Sanjay Mahajani

Abstract:

The clarification of sugarcane juice plays a pivotal role in the production of non-centrifugal sugar (NCS), profoundly influencing the quality of the final NCS product. In this study, we have investigated the kinetics and mathematical modeling of the batch clarification process. The turbidity of the clarified cane juice (NTU) emerges as the determinant of the end product’s color. Moreover, this parameter underscores the significance of considering other variables as performance indicators for accessing the efficacy of the clarification process. Temperature-controlled experiments were meticulously conducted in a laboratory-scale batch mode. The primary objective was to discern the essential and optimized parameters crucial for augmenting the clarity of cane juice. Additionally, we explored the impact of pH and flocculant loading on the kinetics. Particle Image Velocimetry (PIV) is employed to comprehend the particle-particle and fluid-particle interaction. This technique facilitated a comprehensive understanding, paving the way for the subsequent multiphase computational fluid dynamics (CFD) simulations using the Eulerian-Lagrangian approach in the Ansys fluent. Impressively, these simulations accurately replicated comparable velocity profiles. The final mechanism of this study helps to make a mathematical model and presents a valuable framework for transitioning from the traditional batch process to a continuous process. The ultimate aim is to attain heightened productivity and unwavering consistency in product quality.

Keywords: non-centrifugal sugar, particle image velocimetry, computational fluid dynamics, mathematical modeling, turbidity

Procedia PDF Downloads 44
6016 Particle Gradient Generation in a Microchannel Using a Single IDT

Authors: Florian Kiebert, Hagen Schmidt

Abstract:

Standing surface acoustic waves (sSAWs) have already been used to manipulate particles in a microfluidic channel made of polydimethylsiloxan (PDMS). Usually two identical facing interdigital transducers (IDTs) are exploited to form an sSAW. Further, it has been reported that an sSAW can be generated by a single IDT using a superstrate resonating cavity or a PDMS post. Nevertheless, both setups utilising a traveling surface acoustic wave (tSAW) to create an sSAW for particle manipulation are costly. We present a simplified setup with a tSAW and a PDMS channel to form an sSAW. The incident tSAW is reflected at the rear PDMS channel wall and superimposed with the reflected tSAW. This superpositioned waves generates an sSAW but only at regions where the distance to the rear channel wall is smaller as the attenuation length of the tSAW minus the channel width. Therefore in a channel of 500µm width a tSAW with a wavelength λ = 120 µm causes a sSAW over the whole channel, whereas a tSAW with λ = 60 µm only forms an sSAW next to the rear wall of the channel, taken into account the attenuation length of a tSAW in water. Hence, it is possible to concentrate and trap particles in a defined region of the channel by adjusting the relation between the channel width and tSAW wavelength. Moreover, it is possible to generate a particle gradient over the channel width by picking the right ratio between channel wall and wavelength. The particles are moved towards the rear wall by the acoustic streaming force (ASF) and the acoustic radiation force (ARF) caused by the tSAW generated bulk acoustic wave (BAW). At regions in the channel were the sSAW is dominating the ARF focuses the particles in the pressure nodes formed by the sSAW caused BAW. On the one side the ARF generated by the sSAW traps the particle at the center of the tSAW beam, i. e. of the IDT aperture. On the other side, the ASF leads to two vortices, one on the left and on the right side of the focus region, deflecting the particles out of it. Through variation of the applied power it is possible to vary the number of particles trapped in the focus points, because near to the rear wall the amplitude of the reflected tSAW is higher and, therefore, the ARF of the sSAW is stronger. So in the vicinity of the rear wall the concentration of particles is higher but decreases with increasing distance to the wall, forming a gradient of particles. The particle gradient depends on the applied power as well as on the flow rate. Thus by variation of these two parameters it is possible to change the particle gradient. Furthermore, we show that the particle gradient can be modified by changing the relation between the channel width and tSAW wavelength. Concluding a single IDT generates an sSAW in a PDMS microchannel enables particle gradient generation in a well-defined microfluidic flow system utilising the ARF and ASF of a tSAW and an sSAW.

Keywords: ARF, ASF, particle manipulation, sSAW, tSAW

Procedia PDF Downloads 310
6015 Comparison of ANFIS Update Methods Using Genetic Algorithm, Particle Swarm Optimization, and Artificial Bee Colony

Authors: Michael R. Phangtriastu, Herriyandi Herriyandi, Diaz D. Santika

Abstract:

This paper presents a comparison of the implementation of metaheuristic algorithms to train the antecedent parameters and consequence parameters in the adaptive network-based fuzzy inference system (ANFIS). The algorithms compared are genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC). The objective of this paper is to benchmark well-known metaheuristic algorithms. The algorithms are applied to several data set with different nature. The combinations of the algorithms' parameters are tested. In all algorithms, a different number of populations are tested. In PSO, combinations of velocity are tested. In ABC, a different number of limit abandonment are tested. Experiments find out that ABC is more reliable than other algorithms, ABC manages to get better mean square error (MSE) than other algorithms in all data set.

Keywords: ANFIS, artificial bee colony, genetic algorithm, metaheuristic algorithm, particle swarm optimization

Procedia PDF Downloads 327
6014 Effect of Capillary Forces on Wet Granular Avalanches

Authors: Ahmed Jarray, Vanessa Magnanimo, Stefan Luding

Abstract:

Granular avalanches are ubiquitous in nature and occur in numerous industrial processes associated with particulate systems. When a small amount of liquid is added to a pile of particles, pendular bridges form and the particles are attracted by capillary forces, creating complex structure and flow behavior. We have performed an extensive series of experiments to investigate the effect of capillary force and particle size on wet granular avalanches, and we established a methodology that ensures the control of the granular flow in a rotating drum. The velocity of the free surface and the angle of repose of the particles in the rotating drum are determined using particle tracking method. The capillary force between the particles is significantly reduced by making the glass beads hydrophobic via chemical silanization. We show that the strength of the capillary forces between two adjacent particles can be deliberately manipulated through surface modification of the glass beads, thus, under the right conditions; we demonstrate that the avalanche dynamics can be controlled. The results show that the avalanche amplitude decreases when increasing the capillary force. We also find that liquid-induced cohesion increases the width of the gliding layer and the dynamic angle of repose, however, it decreases the velocity of the free surface.

Keywords: avalanche dynamics, capillary force, granular material, granular flow

Procedia PDF Downloads 246
6013 A Gene Selection Algorithm for Microarray Cancer Classification Using an Improved Particle Swarm Optimization

Authors: Arfan Ali Nagra, Tariq Shahzad, Meshal Alharbi, Khalid Masood Khan, Muhammad Mugees Asif, Taher M. Ghazal, Khmaies Ouahada

Abstract:

Gene selection is an essential step for the classification of microarray cancer data. Gene expression cancer data (DNA microarray) facilitates computing the robust and concurrent expression of various genes. Particle swarm optimization (PSO) requires simple operators and less number of parameters for tuning the model in gene selection. The selection of a prognostic gene with small redundancy is a great challenge for the researcher as there are a few complications in PSO based selection method. In this research, a new variant of PSO (Self-inertia weight adaptive PSO) has been proposed. In the proposed algorithm, SIW-APSO-ELM is explored to achieve gene selection prediction accuracies. This new algorithm balances the exploration capabilities of the improved inertia weight adaptive particle swarm optimization and the exploitation. The self-inertia weight adaptive particle swarm optimization (SIW-APSO) is used to search the solution. The SIW-APSO is updated with an evolutionary process in such a way that each particle iteratively improves its velocities and positions. The extreme learning machine (ELM) has been designed for the selection procedure. The proposed method has been to identify a number of genes in the cancer dataset. The classification algorithm contains ELM, K- centroid nearest neighbor (KCNN), and support vector machine (SVM) to attain high forecast accuracy as compared to the start-of-the-art methods on microarray cancer datasets that show the effectiveness of the proposed method.

Keywords: microarray cancer, improved PSO, ELM, SVM, evolutionary algorithms

Procedia PDF Downloads 59
6012 Adsorption of Bovine Serum Albumine on CeO2

Authors: Roman Marsalek

Abstract:

Preparation of nano-particles of cerium oxide and adsorption of bovine serum albumine on them were studied. Particle size distribution and influence of pH on zeta potential of prepared CeO2 were determined. Average size of prepared cerium oxide nano-particles was 9 nm. The simultaneous measurements of the bovine serum albumine adsorption and zeta potential determination of the (adsorption) suspensions were carried out. The adsorption isotherms were found to be of typical Langmuir type; values of the bovine serum albumin adsorption capacities were calculated. Increasing of pH led to decrease of zeta potential and decrease of adsorption capacity of cerium oxide nano-particles. The maximum adsorption capacity was found for strongly acid suspension (am=118 mg/g). The samples of nanoceria with positive zeta potential adsorbed more bovine serum albumine on the other hand, the samples with negative zeta potential showed little or no protein adsorption. Surface charge or better say zeta potential of CeO2 nano-particles plays the key role in adsorption of proteins on such type of materials.

Keywords: adsorption, BSA, cerium oxide nanoparticles, zeta potential, albumin

Procedia PDF Downloads 344
6011 Particle Swarm Optimization Based Method for Minimum Initial Marking in Labeled Petri Nets

Authors: Hichem Kmimech, Achref Jabeur Telmoudi, Lotfi Nabli

Abstract:

The estimation of the initial marking minimum (MIM) is a crucial problem in labeled Petri nets. In the case of multiple choices, the search for the initial marking leads to a problem of optimization of the minimum allocation of resources with two constraints. The first concerns the firing sequence that could be legal on the initial marking with respect to the firing vector. The second deals with the total number of tokens that can be minimal. In this article, the MIM problem is solved by the meta-heuristic particle swarm optimization (PSO). The proposed approach presents the advantages of PSO to satisfy the two previous constraints and find all possible combinations of minimum initial marking with the best computing time. This method, more efficient than conventional ones, has an excellent impact on the resolution of the MIM problem. We prove through a set of definitions, lemmas, and examples, the effectiveness of our approach.

Keywords: marking, production system, labeled Petri nets, particle swarm optimization

Procedia PDF Downloads 150
6010 Surface Defect-engineered Ceo₂−x by Ultrasound Treatment for Superior Photocatalytic H₂ Production and Water Treatment

Authors: Nabil Al-Zaqri

Abstract:

Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth, and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2₋ₓ nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsiccrystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO₂₋ₓ revealed higher crystallinity, as well as morphological optimization, and the presence of oxygen vacancies is verified through Raman, X-rayphotoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spinresonance analyses. Oxygen vacancies accelerate the redox cycle between Ce₄+ and Ce₃+ by prolongingphotogenerated charge recombination. The ultrasound-treated pristine CeO₂ sample achieved excellenthydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Ourpromising findings demonstrated that ultrasonic treatment causes the formation of surface oxygenvacancies and improves photocatalytic hydrogen evolution and pollution degradation. Conclusion: Defect engineering of the ceria nanoparticles with oxygen vacancies was achieved for the first time using low-frequency ultrasound treatment. The U-CeO₂₋ₓsample showed high crystallinity, and morphological changes were observed. Due to the acoustic cavitation effect, a larger surface area and small particle size were observed. The ultrasound treatment causes particle aggregation and surface defects leading to oxygen vacancy formation. The XPS, Raman spectroscopy, PL spectroscopy, and ESR results confirm the presence of oxygen vacancies. The ultrasound-treated sample was also examined for pollutant degradation, where 1O₂was found to be the major active species. Hence, the ultrasound treatment influences efficient photocatalysts for superior hydrogen evolution and an excellent photocatalytic degradation of contaminants. The prepared nanostructure showed excellent stability and recyclability. This work could pave the way for a unique post-synthesis strategy intended for efficient photocatalytic nanostructures.

Keywords: surface defect, CeO₂₋ₓ, photocatalytic, water treatment, H₂ production

Procedia PDF Downloads 115
6009 Green Approach towards Synthesis of Chitosan Nanoparticles for in vitro Release of Quercetin

Authors: Dipali Nagaonkar, Mahendra Rai

Abstract:

Chitosan, a carbohydrate polymer at nanoscale level has gained considerable momentum in drug delivery applications due to its inherent biocompatibility and non-toxicity. However, conventional synthetic strategies for chitosan nanoparticles mainly rely upon physicochemical techniques, which often yield chitosan microparticles. Hence, there is an emergent need for development of controlled synthetic protocols for chitosan nanoparticles within the nanometer range. In this context, we report the green synthesis of size controlled chitosan nanoparticles by using Pongamia pinnata (L.) leaf extract. Nanoparticle tracking analysis confirmed formation of nanoparticles with mean particle size of 85 nm. The stability of chitosan nanoparticles was investigated by zetasizer analysis, which revealed positive surface charged nanoparticles with zeta potential 20.1 mV. The green synthesized chitosan nanoparticles were further explored for encapsulation and controlled release of antioxidant biomolecule, quercetin. The resulting drug loaded chitosan nanoparticles showed drug entrapment efficiency of 93.50% with drug-loading capacity of 42.44%. The cumulative in vitro drug release up to 15 hrs was achieved suggesting towards efficacy of green synthesized chitosan nanoparticles for drug delivery applications.

Keywords: Chitosan nanoparticles, green synthesis, Pongamia pinnata, quercetin

Procedia PDF Downloads 554
6008 Preparation of Biodegradable Methacrylic Nanoparticles by Semicontinuous Heterophase Polymerization for Drugs Loading: The Case of Acetylsalicylic Acid

Authors: J. Roberto Lopez, Hened Saade, Graciela Morales, Javier Enriquez, Raul G. Lopez

Abstract:

Implementation of systems based on nanostructures for drug delivery applications have taken relevance in recent studies focused on biomedical applications. Although there are several nanostructures as drugs carriers, the use of polymeric nanoparticles (PNP) has been widely studied for this purpose, however, the main issue for these nanostructures is the size control below 50 nm with a narrow distribution size, due to they must go through different physiological barriers and avoid to be filtered by kidneys (< 10 nm) or the spleen (> 100 nm). Thus, considering these and other factors, it can be mentioned that drug-loaded nanostructures with sizes varying between 10 and 50 nm are preferred in the development and study of PNP/drugs systems. In this sense, the Semicontinuous Heterophase Polymerization (SHP) offers the possibility to obtain PNP in the desired size range. Considering the above explained, methacrylic copolymer nanoparticles were obtained under SHP. The reactions were carried out in a jacketed glass reactor with the required quantities of water, ammonium persulfate as initiator, sodium dodecyl sulfate/sodium dioctyl sulfosuccinate as surfactants, methyl methacrylate and methacrylic acid as monomers with molar ratio of 2/1, respectively. The monomer solution was dosed dropwise during reaction at 70 °C with a mechanical stirring of 650 rpm. Nanoparticles of poly(methyl methacrylate-co-methacrylic acid) were loaded with acetylsalicylic acid (ASA, aspirin) by a chemical adsorption technique. The purified latex was put in contact with a solution of ASA in dichloromethane (DCM) at 0.1, 0.2, 0.4 or 0.6 wt-%, at 35°C during 12 hours. According to the boiling point of DCM, as well as DCM and water densities, the loading process is completed when the whole DCM is evaporated. The hydrodynamic diameter was measured after polymerization by quasi-elastic light scattering and transmission electron microscopy, before and after loading procedures with ASA. The quantitative and qualitative analyses of PNP loaded with ASA were measured by infrared spectroscopy, differential scattering calorimetry and thermogravimetric analysis. Also, the molar mass distributions of polymers were determined in a gel permeation chromatograph apparatus. The load capacity and efficiency were determined by gravimetric analysis. The hydrodynamic diameter results for methacrylic PNP without ASA showed a narrow distribution with an average particle size around 10 nm and a composition methyl methacrylate/methacrylic acid molar ratio equal to 2/1, same composition of Eudragit S100, which is a commercial compound widely used as excipient. Moreover, the latex was stabilized in a relative high solids content (around 11 %), a monomer conversion almost 95 % and a number molecular weight around 400 Kg/mol. The average particle size in the PNP/aspirin systems fluctuated between 18 and 24 nm depending on the initial percentage of aspirin in the loading process, being the drug content as high as 24 % with an efficiency loading of 36 %. These average sizes results have not been reported in the literature, thus, the methacrylic nanoparticles here reported are capable to be loaded with a considerable amount of ASA and be used as a drug carrier.

Keywords: aspirin, biocompatibility, biodegradable, Eudragit S100, methacrylic nanoparticles

Procedia PDF Downloads 116
6007 The Role of Microbe-Microplastics Associations in Marine Nematode Feeding Behaviors

Authors: A. Ridall, J. Ingels

Abstract:

Microplastics (MPs; < 5 mm) have been cited as exceptionally detrimental to marine organisms and ocean health. They can carry other pollutants and abundant microbes that can serve as food for other organisms. Their small particle size and high abundance means that non-discriminatory feeders may ingest MPs involuntarily and microbial colonization of the particles (a niche coined ‘Plastisphere’) could facilitate particle ingestion. To assess how marine nematodes, the most abundant member of the meiofauna (32-500 um), are affected by microbe-MP associations, an experiment was conducted with three MP concentrations (low, medium, and expected high values of MPs in a local bay system), and two levels of microbe-MP associations (absence or presence). MPs were introduced into sediment microcosms and treatments were removed at three distinct time points (0, 3, and 7 days) to measure mean MP consumption/individual nematode. The quantitative results from this work should inform on microbial facilitation of MP ingestion and MP effects on seafloor ecology. As most MP feeding experiments use straight-from-package or sterile MPs, this work represents an important step in realizing the effects of MPs and their plastispheres in coastal sediments where they likely accumulate microbial biofilms prior to their ingestion by marine metazoans. Furthermore, the results here convey realistic effects of MPs on faunal behaviors, as the MP concentrations used are based on field measurements rather than artificially high levels.

Keywords: ecosystem function, microbeads, plastisphere, pollution, polyethylene

Procedia PDF Downloads 69
6006 A Novel Geometrical Approach toward the Mechanical Properties of Particle Reinforced Composites

Authors: Hamed Khezrzadeh

Abstract:

Many investigations on the micromechanical structure of materials indicate that there exist fractal patterns at the micro scale in some of the main construction and industrial materials. A recently presented micro-fractal theory brings together the well-known periodic homogenization and the fractal geometry to construct an appropriate model for determination of the mechanical properties of particle reinforced composite materials. The proposed multi-step homogenization scheme considers the mechanical properties of different constituent phases in the composite together with the interaction between these phases throughout a step-by-step homogenization technique. In the proposed model the interaction of different phases is also investigated. By using this method the effect of fibers grading on the mechanical properties also could be studied. The theory outcomes are compared to the experimental data for different types of particle-reinforced composites which very good agreement with the experimental data is observed.

Keywords: fractal geometry, homogenization, micromehcanics, particulate composites

Procedia PDF Downloads 266
6005 Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy

Authors: D. Deepak, N. Yagnesh Sharma

Abstract:

Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide.

Keywords: abrasive water jet machining, jet kinetic energy, operating pressure, wall shear stress, Garnet abrasive

Procedia PDF Downloads 354
6004 Determination Power and Sample Size Zero-Inflated Negative Binomial Dependent Death Rate of Age Model (ZINBD): Regression Analysis Mortality Acquired Immune Deficiency De ciency Syndrome (AIDS)

Authors: Mohd Asrul Affendi Bin Abdullah

Abstract:

Sample size calculation is especially important for zero inflated models because a large sample size is required to detect a significant effect with this model. This paper verify how to present percentage of power approximation for categorical and then extended to zero inflated models. Wald test was chosen to determine power sample size of AIDS death rate because it is frequently used due to its approachability and its natural for several major recent contribution in sample size calculation for this test. Power calculation can be conducted when covariates are used in the modeling ‘excessing zero’ data and assist categorical covariate. Analysis of AIDS death rate study is used for this paper. Aims of this study to determine the power of sample size (N = 945) categorical death rate based on parameter estimate in the simulation of the study.

Keywords: power sample size, Wald test, standardize rate, ZINBDR

Procedia PDF Downloads 412
6003 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur Nidhi

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67 % at magnetic field 2-5kG, respectively at particle concentration 0.6 mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44 % by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67 % by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: capture efficiency, implant assisted-Magnetic drug targeting (IA-MDT), magnetic nanoparticles, In-vitro study

Procedia PDF Downloads 283
6002 Possible Sulfur Induced Superconductivity in Nano-Diamond

Authors: J. Mona, R. R. da Silva, C.-L.Cheng, Y. Kopelevich

Abstract:

We report on a possible occurrence of superconductivity in 5 nm particle size diamond powders treated with sulfur (S) at 500 o C for 10 hours in ~10-2 Torr vacuum. Superconducting-like magnetization hysteresis loops M(H) have been measured up to ~ 50 K by means of the SQUID magnetometer (Quantum Design). Both X-ray (Θ-2Θ geometry) and Raman spectroscopy analyses revealed no impurity or additional phases. Nevertheless, the measured Raman spectra are characteristic to the diamond with embedded disordered carbon and/or graphitic fragments suggesting a link to the previous reports of the local or surface superconductivity in graphite- and amorphous carbon–sulfur composites.

Keywords: nanodiamond, sulfur, superconductivity, Raman spectroscopy

Procedia PDF Downloads 465
6001 Bioinspired Green Synthesis of Magnetite Nanoparticles Using Room-Temperature Co-Precipitation: A Study of the Effect of Amine Additives on Particle Morphology in Fluidic Systems

Authors: Laura Norfolk, Georgina Zimbitas, Jan Sefcik, Sarah Staniland

Abstract:

Magnetite nanoparticles (MNP) have been an area of increasing research interest due to their extensive applications in industry, such as in carbon capture, water purification, and crucially, the biomedical industry. The use of MNP in the biomedical industry is rising, with studies on their effect as Magnetic resonance imaging contrast agents, drug delivery systems, and as hyperthermic cancer treatments becoming prevalent in the nanomaterial research community. Particles used for biomedical purposes must meet stringent criteria; the particles must have consistent shape and size between particles. Variation between particle morphology can drastically alter the effective surface area of the material, making it difficult to correctly dose particles that are not homogeneous. Particles of defined shape such as octahedral and cubic have been shown to outperform irregular shaped particles in some applications, leading to the need to synthesize particles of defined shape. In nature, highly homogeneous MNP are found within magnetotactic bacteria, a unique bacteria capable of producing magnetite nanoparticles internally under ambient conditions. Biomineralisation proteins control the properties of the MNPs, enhancing their homogeneity. One of these proteins, Mms6, has been successfully isolated and used in vitro as an additive in room-temperature co-precipitation reactions (RTCP) to produce particles of defined mono-dispersed size & morphology. When considering future industrial scale-up it is crucial to consider the costs and feasibility of an additive, as an additive that is not readily available or easily synthesized at a competitive price will not be sustainable. As such, additives selected for this research are inspired by the functional groups of biomineralisation proteins, but cost-effective, environmentally friendly, and compatible with scale-up. Diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA) have been successfully used in RTCP to modulate the properties of particles synthesized, leading to the formation of octahedral nanoparticles with no use of organic solvents, heating, or toxic precursors. By extending this principle to a fluidic system, ongoing research will reveal whether the amine additives can also exert morphological control in an environment which is suited toward higher particle yield. Two fluidic systems have been employed; a peristaltic turbulent flow mixing system suitable for the rapid production of MNP, and a macrofluidic system for the synthesis of tailored nanomaterials under a laminar flow regime. The presence of the amine additives in the turbulent flow system in initial results appears to offer similar morphological control as observed under RTCP conditions, with higher proportions of octahedral particles formed. This is a proof of concept which may pave the way to green synthesis of tailored MNP on an industrial scale. Mms6 and amine additives have been used in the macrofluidic system, with Mms6 allowing magnetite to be synthesized at unfavourable ferric ratios, but no longer influencing particle size. This suggests this synthetic technique while still benefiting from the addition of additives, may not allow additives to fully influence the particles formed due to the faster timescale of reaction. The amine additives have been tested at various concentrations, the results of which will be discussed in this paper.

Keywords: bioinspired, green synthesis, fluidic, magnetite, morphological control, scale-up

Procedia PDF Downloads 99
6000 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin

Abstract:

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.

Keywords: the Bouc-Wen hysteresis model, particle swarm optimization, Prandtl-Ishlinskii model, automation engineering

Procedia PDF Downloads 493
5999 Eco-Fashion Dyeing of Denim and Knitwear with Particle-Dyes

Authors: Adriana Duarte, Sandra Sampaio, Catia Ferreira, Jaime I. N. R. Gomes

Abstract:

With the fashion of faded worn garments the textile industry has moved from indigo and pigments to dyes that are fixed by cationization, with products that can be toxic, and that can show this effect after washing down the dye with friction and/or treating with enzymes in a subsequent operation. Increasingly they are treated with bleaches, such as hypochlorite and permanganate, both toxic substances. An alternative process is presented in this work for both garment and jet dyeing processes, without the use of pre-cationization and the alternative use of “particle-dyes”. These are hybrid products, made up by an inorganic particle and an organic dye. With standard soluble dyes, it is not possible to avoid diffusion into the inside of the fiber unless using previous cationization. Only in this way can diffusion be avoided keeping the centre of the fibres undyed so as to produce the faded effect by removing the surface dye and showing the white fiber beneath. With “particle-dyes”, previous cationization is avoided. By applying low temperatures, the dye does not diffuse completely into the inside of the fiber, since it is a particle and not a soluble dye, being then able to give the faded effect. Even though bleaching can be used it can also be avoided, by the use of friction and enzymes they can be used just as for other dyes. This fashion brought about new ways of applying reactive dyes by the use of previous cationization of cotton, lowering the salt, and temperatures that reactive dyes usually need for reacting and as a side effect the application of a more environmental process. However, cationization is a process that can be problematic in applying it outside garment dyeing, such as jet dyeing, being difficult to obtain level dyeings. It also should be applied by a pad-fix or Pad-batch process due to the low affinity of the pre-cationization products making it a more expensive process, and the risk of unlevelness in processes such as jet dyeing. Wit particle-dyes, since no pre-cationizartion is necessary, they can be applied in jet dyeing. The excess dye is fixed by a fixing agent, fixing the insoluble dye onto the surface of the fibers. By applying the fixing agent only one to 1-3 rinses in water at room temperature are necessary, saving water and improving the washfastness.

Keywords: denim, garment dyeing, worn look, eco-fashion

Procedia PDF Downloads 514
5998 Fabrication of Wollastonite/Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process

Authors: Jong Kook Lee, Sangcheol Eum, Jaehong Kim

Abstract:

Wollastonite/hydroxyapatite composite coatings on zirconia were obtained by room temperature spray process. Wollastonite powder was synthesized by solid-state reaction between calcite and silica powder. Hydroxyapatite powder was prepared from bovine bone by the calcination at 1200oC 1h. From two starting raw powders, three kinds of powder mixture were obtained by the ball milling for 24h. By using these powders, wollastonite/hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process, and their microstructure and biological behavior were investigated and compared with pure wollastonite and hydroxyapatite coatings. Wollastonite/hydroxyapatite coatings on zirconia substrates were homogeneously formed in microstructure and had a nanoscaled grain size. The phase composition of the resultant wollastonite/hydroxyapatite coatings was similar to that of the starting powders, however, the grain size of the wollastonite or hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. The wollastonite/hydroxyapatite coating layer exhibited bioactivity in a stimulated body fluid and forming ability of new hydroxyapatite precipitates of 25 nm during in vitro test in SBF solution, which was enhanced by the increasing wollastonite content.

Keywords: wollastonite, hydroxyapatite composite coatings, room temperature spay process, zirconia

Procedia PDF Downloads 455
5997 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Authors: M. S. Khurram, S. A. Memon, S. Khan

Abstract:

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Keywords: axial voidage, circulating fluidized bed, splash zone, static bed

Procedia PDF Downloads 259
5996 Size and Content of the Doped Silver Affected the Pulmonary Toxicity of Silver-Doped Nano-Titanium Dioxide Photocatalysts and the Optimization of These Two Parameters

Authors: Xiaoquan Huang, Congcong Li, Tingting Wei, Changcun Bai, Na Liu, Meng Tang

Abstract:

Silver is often doped on nano-titanium dioxide photocatalysts (Ag-TiO₂) by photodeposition method to improve their utilization of visible-light while increasing the toxicity of TiO₂。 However, it is not known what factors influence this toxicity and how to reduce toxicity while maintaining the maximum catalytic activity. In this study, Ag-TiO₂ photocatalysts were synthesized by the photodeposition method with different silver content (AgC) and photodeposition time (PDT). Characterization and catalytic experiments demonstrated that silver was well assembled on TiO₂ with excellent visible-light catalytic activity, and the size of silver increased with PDT. In vitro, the cell viability of lung epithelial cells A549 and BEAS-2B showed that the higher content and smaller size of silver doping caused higher toxicity. In vivo, Ag-TiO₂ catalysts with lower AgC or larger silver particle size obviously caused less pulmonary pro-inflammatory and pro-fibrosis responses. However, the visible light catalytic activity decreased with the increase in silver size. Therefore, in order to optimize the Ag-TiO₂ photocatalyst with the lowest pulmonary toxicity and highest catalytic performance, response surface methodology (RSM) was further performed to optimize the two independent variables of AgC and PDT. Visible-light catalytic activity was evaluated by the degradation rate of Rhodamine B, the antibacterial property was evaluated by killing log value for Escherichia coli, and cytotoxicity was evaluated by IC50 to BEAS-2B cells. As a result, the RSM model showed that AgC and PDT exhibited an interaction effect on catalytic activity in the quadratic model. AgC was positively correlated with antibacterial activity. Cytotoxicity was proportional to AgC while inversely proportional to PDT. Finally, the optimization values were AgC 3.08 w/w% and PDT 28 min. Under this optimal condition, the relatively high silver proportion ensured the visible-light catalytic and antibacterial activity, while the longer PDT effectively reduced the cytotoxicity. This study is of significance for the safe and efficient application of silver-doped TiO₂ photocatalysts.

Keywords: Ag-doped TiO₂, cytotoxicity, inflammtion, fibrosis, response surface methodology

Procedia PDF Downloads 44
5995 Physicochemical Properties of Soy Protein Isolate (SPI): Starch Conjugates Treated by Sonication

Authors: Gulcin Yildiz, Hao Feng

Abstract:

In recent years there is growing interested in using soy protein because of several advantages compared to other protein sources, such as high nutritional value, steady supply, and low cost. Soy protein isolate (SPI) is the most refined soy protein product. It contains 90% protein in a moisture-free form and has some desirable functionalities. Creating a protein-polysaccharide conjugate to be the emulsifying agent rather than the protein alone can markedly enhance its stability. This study was undertaken to examine the effects of ultrasound treatments on the physicochemical properties of SPI-starch conjugates. The soy protein isolate (SPI, Pro-Fam® 955) samples were obtained from the Archer Daniels Midland Company. Protein concentrations were analyzed by the Bardford method using BSA as the standard. The volume-weighted mean diameters D [4,3] of protein–polysaccharide conjugates were measured by dynamic light scattering (DLS). Surface hydrophobicity of the conjugates was measured by using 1-anilino-8-naphthalenesulfonate (ANS) (Sigma-Aldrich, St. Louis, MO, USA). Increasing the pH from 2 to 12 resulted in increased protein solubility. The highest solubility was 69.2% for the sample treated with ultrasonication at pH 12, while the lowest (9.13%) was observed in the Control. For the other pH conditions, the protein solubility values ranged from 40.53 to 49.65%. The ultrasound treatment significantly decreased the particle sizes of the SPI-modified starch conjugates. While the D [4,3] for the Control was 731.6 nm, it was 293.7 nm for the samples treated by sonication at pH 12. The surface hydrophobicity (H0) of SPI-starch at all pH conditions were significantly higher than those in the Control. Ultrasonication was proven to be effective in improving the solubility and emulsifying properties of soy protein isolate-starch conjugates.

Keywords: particle size, solubility, soy protein isolate, ultrasonication

Procedia PDF Downloads 395
5994 The Utilization of Particle Swarm Optimization Method to Solve Nurse Scheduling Problem

Authors: Norhayati Mohd Rasip, Abd. Samad Hasan Basari , Nuzulha Khilwani Ibrahim, Burairah Hussin

Abstract:

The allocation of working schedule especially for shift environment is hard to fulfill its fairness among them. In the case of nurse scheduling, to set up the working time table for them is time consuming and complicated, which consider many factors including rules, regulation and human factor. The scenario is more complicated since most nurses are women which have personnel constraints and maternity leave factors. The undesirable schedule can affect the nurse productivity, social life and the absenteeism can significantly as well affect patient's life. This paper aimed to enhance the scheduling process by utilizing the particle swarm optimization in order to solve nurse scheduling problem. The result shows that the generated multiple initial schedule is fulfilled the requirements and produces the lowest cost of constraint violation.

Keywords: nurse scheduling, particle swarm optimisation, nurse rostering, hard and soft constraint

Procedia PDF Downloads 345
5993 Thermochemical Conversion: Jatropha Curcus in Fixed Bed Reactor Using Slow Pyrolysis

Authors: Vipan Kumar Sohpal, Rajesh Kumar Sharma

Abstract:

Thermo-chemical conversion of non-edible biomass offers an efficient and economically process to provide valuable fuels and prepare chemicals derived from biomass in the context of developing countries. Pyrolysis has advantages over other thermochemical conversion techniques because it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in the absence of oxygen. The present paper aims to focus on the slow thermochemical conversion processes for non-edible Jatropha curcus seed cake. The present discussion focuses on the effect of nitrogen gas flow rate on products composition (wt %). In addition, comparative analysis has been performed for different mesh size for product composition. Result shows that, slow pyrolysis experiments of Jatropha curcus seed cake in fixed bed reactor yield the bio-oil 18.42 wt % at a pyrolysis temperature of 500°C, particle size of -6+8 mesh number and nitrogen gas flow rate of 150 ml/min.

Keywords: Jatropha curcus, thermo-chemical, pyrolysis, product composition, yield

Procedia PDF Downloads 408
5992 Investigating the Minimum RVE Size to Simulate Poly (Propylene carbonate) Composites Reinforced with Cellulose Nanocrystals as a Bio-Nanocomposite

Authors: Hamed Nazeri, Pierre Mertiny, Yongsheng Ma, Kajsa Duke

Abstract:

The background of the present study is the use of environment-friendly biopolymer and biocomposite materials. Among the recently introduced biopolymers, poly (propylene carbonate) (PPC) has been gaining attention. This study focuses on the size of representative volume elements (RVE) in order to simulate PPC composites reinforced by cellulose nanocrystals (CNCs) as a bio-nanocomposite. Before manufacturing nanocomposites, numerical modeling should be implemented to explore and predict mechanical properties, which may be accomplished by creating and studying a suitable RVE. In other studies, modeling of composites with rod shaped fillers has been reported assuming that fillers are unidirectionally aligned. But, modeling of non-aligned filler dispersions is considerably more difficult. This study investigates the minimum RVE size to enable subsequent FEA modeling. The matrix and nano-fillers were modeled using the finite element software ABAQUS, assuming randomly dispersed fillers with a filler mass fraction of 1.5%. To simulate filler dispersion, a Monte Carlo technique was employed. The numerical simulation was implemented to find composite elastic moduli. After commencing the simulation with a single filler particle, the number of particles was increased to assess the minimum number of filler particles that satisfies the requirements for an RVE, providing the composite elastic modulus in a reliable fashion.

Keywords: biocomposite, Monte Carlo method, nanocomposite, representative volume element

Procedia PDF Downloads 423
5991 A Comparison of Sequential Quadratic Programming, Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization for the Design and Optimization of a Beam Column

Authors: Nima Khosravi

Abstract:

This paper describes an integrated optimization technique with concurrent use of sequential quadratic programming, genetic algorithm, and simulated annealing particle swarm optimization for the design and optimization of a beam column. In this research, the comparison between 4 different types of optimization methods. The comparison is done and it is found out that all the methods meet the required constraints and the lowest value of the objective function is achieved by SQP, which was also the fastest optimizer to produce the results. SQP is a gradient based optimizer hence its results are usually the same after every run. The only thing which affects the results is the initial conditions given. The initial conditions given in the various test run were very large as compared. Hence, the value converged at a different point. Rest of the methods is a heuristic method which provides different values for different runs even if every parameter is kept constant.

Keywords: beam column, genetic algorithm, particle swarm optimization, sequential quadratic programming, simulated annealing

Procedia PDF Downloads 363