Search results for: nucleic acids
462 Formation of the Water Assisted Supramolecular Assembly in the Transition Structure of Organocatalytic Asymmetric Aldol Reaction: A DFT Study
Authors: Kuheli Chakrabarty, Animesh Ghosh, Atanu Roy, Gourab Kanti Das
Abstract:
Aldol reaction is an important class of carbon-carbon bond forming reactions. One of the popular ways to impose asymmetry in aldol reaction is the introduction of chiral auxiliary that binds the approaching reactants and create dissymmetry in the reaction environment, which finally evolves to enantiomeric excess in the aldol products. The last decade witnesses the usage of natural amino acids as chiral auxiliary to control the stereoselectivity in various carbon-carbon bond forming processes. In this context, L-proline was found to be an effective organocatalyst in asymmetric aldol additions. In last few decades the use of water as solvent or co-solvent in asymmetric organocatalytic reaction is increased sharply. Simple amino acids like L-proline does not catalyze asymmetric aldol reaction in aqueous medium not only that, In organic solvent medium high catalytic loading (~30 mol%) is required to achieve moderate to high asymmetric induction. In this context, huge efforts have been made to modify L-proline and 4-hydroxy-L-proline to prepare organocatalyst for aqueous medium asymmetric aldol reaction. Here, we report the result of our DFT calculations on asymmetric aldol reaction of benzaldehyde, p-NO2 benzaldehyde and t-butyraldehyde with a number of ketones using L-proline hydrazide as organocatalyst in wet solvent free condition. Gaussian 09 program package and Gauss View program were used for the present work. Geometry optimizations were performed using B3LYP hybrid functional and 6-31G(d,p) basis set. Transition structures were confirmed by hessian calculation and IRC calculation. As the reactions were carried out in solvent free condition, No solvent effect were studied theoretically. Present study has revealed for the first time, the direct involvement of two water molecules in the aldol transition structures. In the TS, the enamine and the aldehyde is connected through hydrogen bonding by the assistance of two intervening water molecules forming a supramolecular network. Formation of this type of supramolecular assembly is possible due to the presence of protonated -NH2 group in the L-proline hydrazide moiety, which is responsible for the favorable entropy contribution to the aldol reaction. It is also revealed from the present study that, water assisted TS is energetically more favorable than the TS without involving any water molecule. It can be concluded from this study that, insertion of polar group capable of hydrogen bond formation in the L-proline skeleton can lead to a favorable aldol reaction with significantly high enantiomeric excess in wet solvent free condition by reducing the activation barrier of this reaction.Keywords: aldol reaction, DFT, organocatalysis, transition structure
Procedia PDF Downloads 431461 Physico-Chemical, GC-MS Analysis and Cold Saponification of Onion (Allium cepa L) Seed Oil
Authors: A. A Warra, S. Fatima
Abstract:
The experimental investigation revealed that the hexane extract of onion seed oil has acid value, iodine value, peroxide value, saponification value, relative density and refractive index of 0.03±0.01 mgKOH/g, 129.80±0.21 gI2/100g, 3.00± 0.00 meq H2O2 203.00±0.71 mgKOH/g, 0.82±0.01and 1.44±0.00 respectively. The percentage yield was 50.28±0.01%. The colour of the oil was light green. We restricted our GC-MS spectra interpretation to compounds identification, particularly fatty acids and they are identified as palmitic acid, linolelaidic acid, oleic acid, stearic acid, behenic acid, linolenic acid and eicosatetraenoic acid. The pH , foam ability (cm³), total fatty matter, total alkali and percentage chloride of the onion oil soap were 11.03± 0.02, 75.13±0.15 (cm³), 36.66 ± 0.02 %, 0.92 ± 0.02% and 0.53 ± 0.15 % respectively. The texture was soft and the colour was lighter green. The results indicated that the hexane extract of the onion seed oil has potential for cosmetic industries.Keywords: onion seeds, soxhlet extraction, physicochemical, GC-MS, cold saponification
Procedia PDF Downloads 315460 Recent Advances in the Valorization of Goat Milk: Nutritional Properties and Production Sustainability
Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana
Abstract:
Goat dairy products are gaining popularity worldwide. In developing countries, but also in many marginal regions of the Mediterranean area, goats represent a great part of the economy and ensure food security. In fact, these small ruminants are able to convert efficiently poor weedy plants and small trees into traditional products of high nutritional quality, showing great resilience to different climatic and environmental conditions. In developed countries, goat milk is appreciated for the presence of health-promoting compounds, bioactive compounds such as conjugated linoleic acids, oligosaccharides, sphingolipids and polyammines. This paper focuses on the recent advances in literature on the nutritional properties of goat milk and on innovative techniques to improve its quality as to become a promising functional food. The environmental sustainability of different methodologies of production has also been examined. Goat milk is valued today as a food of high nutritional value and functional properties as well as small environmental footprint. It is widely consumed in many countries due to high nutritional value, lower allergenic potential, and better digestibility when compared to bovine milk, that makes this product suitable for infants, elderly or sensitive patients. The main differences in chemical composition between a cow and goat milk rely on fat globules that in goat milk are smaller and in fatty acids that present a smaller chain length, while protein, fat, and lactose concentration are comparable. Milk nutritional properties have demonstrated to be strongly influenced by animal diet, genotype, and welfare, but also by season and production systems. Furthermore, there is a growing interest in the dairy industry in goat milk for its relatively high concentration of prebiotics and a good amount of probiotics, which have recently gained importance for their therapeutic potential. Therefore, goat milk is studied as a promising matrix to develop innovative functional foods. In addition to the economic and nutritional value, goat milk is considered a sustainable product for its small environmental footprint, as they require relatively little water and land, and less medical treatments, compared to cow, these characteristics make its production naturally vocated to organic farming. Organic goat milk production has becoming more and more interesting both for farmers and consumers as it can answer to several concerns like environment protection, animal welfare and economical sustainment of rural populations living in marginal lands. These evidences make goat milk an ancient food with novel properties and advantages to be valorized and exploited.Keywords: goat milk, nutritional quality, bioactive compounds, sustainable production, animal welfare
Procedia PDF Downloads 147459 Oxidation of Alcohols Types Using Nano-Graphene Oxide (NGO) as Heterogeneous Catalyst
Authors: Ali Gharib, Leila Vojdanifard, Nader Noroozi Pesyan, Mina Roshani
Abstract:
We describe an efficient method for oxidation of alcohols to related aldehydes and ketones by hydrogen peroxide as oxidizing agent, under reflux conditions. Nano-graphene oxide (NGO) as a heterogeneous catalyst was used and had their activity compared with other various catalysts. This catalyst was found to be an excellent catalyst for oxidation of alcohols. The effects of various parameters, including catalyst type, nature of the substituent in the alcohols and temperature, on the yield of the carboxylic acids were studied. Nano-graphene oxide was synthesized by the oxidation of graphite powders. This nanocatalyst was found to be highly efficient in this reaction and products were obtained in good to excellent yields. The recovered nano-catalyst was successfully reused for several runs without significant loss in its catalytic activity.Keywords: nano-graphene oxide, oxidation, aldehyde, ketone, catalyst
Procedia PDF Downloads 422458 Synthesis, Characterization, and Glass Fiber Reinforcement of Furan-Maleimide Polyimides
Authors: Yogesh S. Patel
Abstract:
Novel polyimides were synthesized by Diels–Alder polymerization. Bisfuran was reacted with a couple of bismaleimides containing diglycidyl ether of bisphenol-A and F (epoxy) segment to obtain Diels–Alder polyadducts. Polyadducts were then aromatized and imidized (i.e. cyclized) through carboxylic and amide groups to afford polyimides. Synthesized polyadducts and polyimides were characterized by elemental analysis, spectral features, the number of average molecular weight (Mn) and thermal analysis. The ‘in situ’ glass fiber reinforced composites were prepared and characterized by mechanical, electrical, and chemical properties. These properties were compared with the other reported polyimides. All the composites showed good mechanical and electrical properties and good resistance to organic solvents and mineral acids.Keywords: Diels-Alder reaction, bisfuran, bismaleimides, polyimide
Procedia PDF Downloads 371457 Cloning and Characterization of Uridine-5’-Diphosphate -Glucose Pyrophosphorylases from Lactobacillus Kefiranofaciens and Rhodococcus Wratislaviensis
Authors: Mesfin Angaw Tesfay
Abstract:
Uridine-5’-diphosphate (UDP)-glucose is one of the most versatile building blocks within the metabolism of prokaryotes and eukaryotes serving as an activated sugar donor during the glycosylation of natural products. It is formed by the enzyme UDP-glucose pyrophosphorylase (UGPase) using uridine-5′-triphosphate (UTP) and α-d-glucose 1-phosphate as a substrate. Herein two UGPase genes from Lactobacillus kefiranofaciens ZW3 (LkUGPase) and Rhodococcus wratislaviensis IFP 2016 (RwUGPase) were identified through genome mining approaches. The LkUGPase and RwUGPase have 299 and 306 amino acids, respectively. Both UGPase has the conserved UTP binding site (G-X-G-T-R-X-L-P) and the glucose -1-phosphate binding site (V-E-K-P). The LkUGPase and RwUGPase were cloned in E. coli and SDS-PAGE analysis showed the expression of both enzymes forming about 36 KDa of protein band after induction. LkUGPase and RwUGPase have an activity of 1549.95 and 671.53 U/mg respectively. Currently, their kinetic properties are under investigation.Keywords: UGPase, LkUGPase, RwUGPase, UDP-glucose, Glycosylation
Procedia PDF Downloads 18456 Acceptability of ‘Fish Surimi Peptide’ in Under Five Children Suffering from Moderate Acute Malnutrition in Bangladesh
Authors: M. Iqbal Hossain, Azharul Islam Khan, S. M. Rafiqul Islam, Tahmeed Ahmed
Abstract:
Objective: Moderate acute malnutrition (MAM) is a major cause of morbidity and mortality in under-5 children of low-income countries. Approximately 14.6% of all under-5 mortality worldwide is attributed to MAM with >3 times increased risk of death compared to well-nourished peers. Prevalence of MAM among under-5 children in Bangladesh is ~12% (~1.7 million). Providing a diet containing adequate nutrients is the mainstay of treatment of children with MAM. It is now possible to process fish into fish peptides with longer shelf-life without refrigerator, known as ‘Fish Surimi peptide’ and this could be an attractive alternative to supply fish protein in the diet of children in low-income countries like Bangladesh. We conducted this study to assess the acceptability of Fish Surimi peptide given with various foods/meals in 2-5 years old children with MAM. Design/methods: Fish Surimi peptide is broken down from white fish meat using plant-derived enzyme and the ingredient is just fish meat consisted of 20 different kinds of amino acids including nine essential amino acids. In a convenience sample of 34 children we completed the study ward of Dhaka Hospital of icddr,b in Bangladesh during November 2014 through February 2015. For each child the study was for two consecutive days: i.e. direct observation of food intake of two lunches and two suppers. In a randomly and blinded manner and cross over design an individual child received Fish Surimi peptide (5g at lunch and 5g at supper) mixed meal [e.g. 30g rice and 30g dahl (thick lentil soup) or 60g of a vegetables-lentil-rice mixed local dish known as khichuri in one day and the same meal on other day without any Fish Surimi peptide. We observed the completeness and eagerness of eating and any possible side effect (e.g. allergy, vomiting, diarrhea etc.) over these two days. Results: The mean±SD age of the enrolled children was 38.4±9.4 months, weight 11.22±1.41 kg, height 91.0±6.3 cm, and WHZ was -2.13±0.76. Their mean±SD total feeding time (minutes) for lunch was 25.4±13.6 vs. 20.6±11.1 (p=0.130) and supper was 22.3±9.7 vs. 19.7±11.2 (p=0.297), and total amount (g) of food eaten in lunch and supper was found similar 116.1±7.0 vs. 117.7±8.0 (p=3.01) in A (Fish Surimi) and B group respectively. Score in Hedonic scale by mother on test of food given to children at lunch or supper was 3.9±0.2 vs. 4.0±0.2 (p=0.317) and on overall acceptance (including the texture, smell, and appearance) of food at lunch or supper was 3.9±0.2 vs. 4.0±0.2 (p=0.317) for A and B group respectively. No adverse event was observed in any food group during the study period. Conclusions: Fish Surimi peptide may be a cost effective supplementary food, which should be tested by appropriately designed randomized community level intervention trial both in wasted children and stunted children.Keywords: protein-energy malnutrition, moderate acute malnutrition, weight-for-height z-score, mid upper arm circumference, acceptability, fish surimi peptide, under-5 children
Procedia PDF Downloads 408455 Persistent Ribosomal In-Frame Mis-Translation of Stop Codons as Amino Acids in Multiple Open Reading Frames of a Human Long Non-Coding RNA
Authors: Leonard Lipovich, Pattaraporn Thepsuwan, Anton-Scott Goustin, Juan Cai, Donghong Ju, James B. Brown
Abstract:
Two-thirds of human genes do not encode any known proteins. Aside from long non-coding RNA (lncRNA) genes with recently-discovered functions, the ~40,000 non-protein-coding human genes remain poorly understood, and a role for their transcripts as de-facto unconventional messenger RNAs has not been formally excluded. Ribosome profiling (Riboseq) predicts translational potential, but without independent evidence of proteins from lncRNA open reading frames (ORFs), ribosome binding of lncRNAs does not prove translation. Previously, we mass-spectrometrically documented translation of specific lncRNAs in human K562 and GM12878 cells. We now examined lncRNA translation in human MCF7 cells, integrating strand-specific Illumina RNAseq, Riboseq, and deep mass spectrometry in biological quadruplicates performed at two core facilities (BGI, China; City of Hope, USA). We excluded known-protein matches. UCSC Genome Browser-assisted manual annotation of imperfect (tryptic-digest-peptides)-to-(lncRNA-three-frame-translations) alignments revealed three peptides hypothetically explicable by 'stop-to-nonstop' in-frame replacement of stop codons by amino acids in two ORFs of the lncRNA MMP24-AS1. To search for this phenomenon genomewide, we designed and implemented a novel pipeline, matching tryptic-digest spectra to wildcard-instead-of-stop versions of repeat-masked, six-frame, whole-genome translations. Along with singleton putative stop-to-nonstop events affecting four other lncRNAs, we identified 24 additional peptides with stop-to-nonstop in-frame substitutions from multiple positive-strand MMP24-AS1 ORFs. Only UAG and UGA, never UAA, stop codons were impacted. All MMP24-AS1-matching spectra met the same significance thresholds as high-confidence known-protein signatures. Targeted resequencing of MMP24-AS1 genomic DNA and cDNA from the same samples did not reveal any mutations, polymorphisms, or sequencing-detectable RNA editing. This unprecedented apparent gene-specific violation of the genetic code highlights the importance of matching peptides to whole-genome, not known-genes-only, ORFs in mass-spectrometry workflows, and suggests a new mechanism enhancing the combinatorial complexity of the proteome. Funding: NIH Director’s New Innovator Award 1DP2-CA196375 to LL.Keywords: genetic code, lncRNA, long non-coding RNA, mass spectrometry, proteogenomics, ribo-seq, ribosome, RNAseq
Procedia PDF Downloads 233454 Modelling the Anaerobic Digestion of Esparto Paper Industry Wastewater Effluent in a Batch Digester Using IWA Anaerobic Digestion Model No. 1 (ADM1)
Authors: Boubaker Fezzani, Ridha Ben Cheikh, Tarek Rouissi
Abstract:
In this work the original ADM1, implemented in the simulation software package MATLAB/Simulink, was modified and adapted and applied to reproduce the experimental results of the mesophilic anaerobic digestion of Esperto paper industry wastewater in a batch digester. The data set from lab-scale experiment runs were used to calibrate and validate the model. The simulations’ results indicated that the modified ADM1 was able to predict reasonably well the steady state results of gas flows, methane and carbon dioxide contents, pH and total volatile fatty acids (TVFA) observed with all influents concentrations.Keywords: anaerobic digestion, mathematical modelling, Simulation, ADM1, batch digester, esparto paper industry effluent, mesophilic temperature
Procedia PDF Downloads 404453 Isolation and Characterization of Collagen from Chicken Feet
Authors: P. Hashim, M. S. Mohd Ridzwan, J. Bakar
Abstract:
Collagen was isolated from chicken feet by using papain and pepsin enzymes in acetic acid solution at 4°C for 24h with a yield of 18.16% and 22.94% by dry weight, respectively. Chemical composition and characteristics of chicken feet collagen such as amino acid composition, SDS-PAGE patterns, FTIR spectra and thermal properties were evaluated. The chicken feet collagen is rich in the amino acids glycine, glutamic acid, proline and hydroxyproline. Electrophoresis pattern demonstrated two distinct α-chains (α1 and α2) and β chain, indicating that type I collagen is a major component of chicken feet collagen. The thermal stability of collagen isolated by papain and pepsin revealed stable denaturation temperatures of 48.40 and 53.35°C, respectively. The FTIR spectra of both collagens were similar with amide regions in A, B, I, II, and III. The study demonstrated that chicken feet collagen using papain isolation method is possible as commercial alternative ingredient.Keywords: chicken feet, collagen, papain, pepsin
Procedia PDF Downloads 425452 ATR-IR Study of the Mechanism of Aluminum Chloride Induced Alzheimer Disease - Curative and Protective Effect of Lepidium sativum Water Extract on Hippocampus Rats Brain Tissue
Authors: Maha J. Balgoon, Gehan A. Raouf, Safaa Y. Qusti, Soad S. Ali
Abstract:
The main cause of Alzheimer disease (AD) was believed to be mainly due to the accumulation of free radicals owing to oxidative stress (OS) in brain tissue. The mechanism of the neurotoxicity of Aluminum chloride (AlCl3) induced AD in hippocampus Albino wister rat brain tissue, the curative & the protective effects of Lipidium sativum group (LS) water extract were assessed after 8 weeks by attenuated total reflection spectroscopy ATR-IR and histologically by light microscope. ATR-IR results revealed that the membrane phospholipid undergo free radical attacks, mediated by AlCl3, primary affects the polyunsaturated fatty acids indicated by the increased of the olefinic -C=CH sub-band area around 3012 cm-1 from the curve fitting analysis. The narrowing in the half band width(HBW) of the sνCH2 sub-band around 2852 cm-1 due to Al intoxication indicates the presence of trans form fatty acids rather than gauch rotomer. The degradation of hydrocarbon chain to shorter chain length, increasing in membrane fluidity, disorder and decreasing in lipid polarity in AlCl3 group were indicated by the detected changes in certain calculated area ratios compared to the control. Administration of LS was greatly improved these parameters compared to the AlCl3 group. Al influences the Aβ aggregation and plaque formation, which in turn interferes to and disrupts the membrane structure. The results also showed a marked increase in the β-parallel and antiparallel structure, that characterize the Aβ formation in Al-induced AD hippocampal brain tissue, indicated by the detected increase in both amide I sub-bands around 1674, 1692 cm-1. This drastic increase in Aβ formation was greatly reduced in the curative and protective groups compared to the AlCl3 group and approaches nearly the control values. These results were supported too by the light microscope. AlCl3 group showed significant marked degenerative changes in hippocampal neurons. Most cells appeared small, shrieked and deformed. Interestingly, the administration of LS in curative and protective groups markedly decreases the amount of degenerated cells compared to the non-treated group. Also the intensity of congo red stained cells was decreased. Hippocampal neurons looked more/or less similar to those of control. This study showed a promising therapeutic effect of Lipidium sativum group (LS) on AD rat model that seriously overcome the signs of oxidative stress on membrane lipid and restore the protein misfolding.Keywords: aluminum chloride, alzheimer disease, ATR-IR, Lipidium sativum
Procedia PDF Downloads 364451 Synthesis and Characterization of Model Amines for Corrosion Applications
Authors: John Vergara, Giuseppe Palmese
Abstract:
Fundamental studies aimed at elucidating the key contributions to corrosion performance are needed to make progress toward effective and environmentally compliant corrosion control. Epoxy/amine systems are typically employed as barrier coatings for corrosion control. However, the hardening agents used for coating applications can be very complex, making fundamental studies of water and oxygen permeability challenging to carry out. Creating model building blocks for epoxy/amine coatings is the first step in carrying out these studies. We will demonstrate the synthesis and characterization of model amine building blocks from saturated fatty acids and simple amines such as diethylenetriamine (DETA) and Bis(3-aminopropyl)amine. The structure-property relationship of thermosets made from these model amines and Diglycidyl ether of bisphenol A (DGBEA) will be discussed.Keywords: building block, amine, synthesis, characterization
Procedia PDF Downloads 537450 Amino Acid Based Biodegradable Amphiphilic Polymers and Micelles as Drug Delivery Systems: Synthesis and Study
Authors: Sophio Kobauri, Vladimir P. Torchilin, David Tugushi, Ramaz Katsarava
Abstract:
Nanotherapy is an actual newest mode of treatment numerous diseases using nanoparticles (NPs) loading with different pharmaceuticals. NPs of biodegradable polymeric micelles (PMs) are gaining increased attention for their numerous and attractive abilities to be used in a variety of applications in the various fields of medicine. The present paper deals with the synthesis of a class of biodegradable micelle-forming polymers, namely ABA triblock-copolymer in which A-blocks represent amino-poly(ethylene glycol) (H2N-PEG) and B-block is biodegradable amino acid-based poly(ester amide) constituted of α-amino acid – L-phenylalanine. The obtained copolymer formed micelles of 70±4 nm size at 10 mg/mL concentration.Keywords: amino acids, biodegradable poly (ester amide), amphiphilic triblock-copolymer, micelles
Procedia PDF Downloads 190449 Valorisation of Food Waste Residue into Sustainable Bioproducts
Authors: Krishmali N. Ekanayake, Brendan J. Holland, Colin J. Barrow, Rick Wood
Abstract:
Globally, more than one-third of all food produced is lost or wasted, equating to 1.3 billion tonnes per year. Around 31.2 million tonnes of food waste are generated across the production, supply, and consumption chain in Australia. Generally, the food waste management processes adopt environmental-friendly and more sustainable approaches such as composting, anerobic digestion and energy implemented technologies. However, unavoidable, and non-recyclable food waste ends up as landfilling and incineration that involve many undesirable impacts and challenges on the environment. A biorefinery approach contributes to a waste-minimising circular economy by converting food and other organic biomass waste into valuable outputs, including feeds, nutrition, fertilisers, and biomaterials. As a solution, Green Eco Technologies has developed a food waste treatment process using WasteMaster system. The system uses charged oxygen and moderate temperatures to convert food waste, without bacteria, additives, or water, into a virtually odour-free, much reduced quantity of reusable residual material. In the context of a biorefinery, the WasteMaster dries and mills food waste into a form suitable for storage or downstream extraction/separation/concentration to create products. The focus of the study is to determine the nutritional composition of WasteMaster processed residue to potential develop aquafeed ingredients. The global aquafeed industry is projected to reach a high value market in future, which has shown high demand for the aquafeed products. Therefore, food waste can be utilized for aquaculture feed development by reducing landfill. This framework will lessen the requirement of raw crops cultivation for aquafeed development and reduce the aquaculture footprint. In the present study, the nutritional elements of processed residue are consistent with the input food waste type, which has shown that the WasteMaster is not affecting the expected nutritional distribution. The macronutrient retention values of protein, lipid, and nitrogen free extract (NFE) are detected >85%, >80%, and >95% respectively. The sensitive food components including omega 3 and omega 6 fatty acids, amino acids, and phenolic compounds have been found intact in each residue material. Preliminary analysis suggests a price comparability with current aquafeed ingredient cost making the economic feasibility. The results suggest high potentiality of aquafeed development as 5 to 10% of the ingredients to replace/partially substitute other less sustainable ingredients across biorefinery setting. Our aim is to improve the sustainability of aquaculture and reduce the environmental impacts of food waste.Keywords: biorefinery, ffood waste residue, input, wasteMaster
Procedia PDF Downloads 65448 A Galectin from Rock Bream Oplegnathus fasciatus: Molecular Characterization and Immunological Properties
Authors: W. S. Thulasitha, N. Umasuthan, G. I. Godahewa, Jehee Lee
Abstract:
In fish, innate immune defense is the first immune response against microbial pathogens which consists of several antimicrobial components. Galectins are one of the carbohydrate binding lectins that have the ability to identify pathogen by recognition of pathogen associated molecular patterns. Galectins play a vital role in the regulation of innate and adaptive immune responses. Rock bream Oplegnathus fasciatus is one of the most important cultured species in Korea and Japan. Considering the losses due to microbial pathogens, present study was carried out to understand the molecular and functional characteristics of a galectin in normal and pathogenic conditions, which could help to establish an understanding about immunological components of rock bream. Complete cDNA of rock bream galectin like protein B (rbGal like B) was identified from the cDNA library, and the in silico analysis was carried out using bioinformatic tools. Genomic structure was derived from the BAC library by sequencing a specific clone and using Spidey. Full length of rbGal like B (contig14775) cDNA containing 517 nucleotides was identified from the cDNA library which comprised of 435 bp in the open reading frame encoding a deduced protein composed of 145 amino acids. The molecular mass of putative protein was predicted as 16.14 kDa with an isoelectric point of 8.55. A characteristic conserved galactose binding domain was located from 12 to 145 amino acids. Genomic structure of rbGal like B consisted of 4 exons and 3 introns. Moreover, pairwise alignment showed that rock bream rbGal like B shares highest similarity (95.9 %) and identity (91 %) with Takifugu rubripes galectin related protein B like and lowest similarity (55.5 %) and identity (32.4 %) with Homo sapiens. Multiple sequence alignment demonstrated that the galectin related protein B was conserved among vertebrates. A phylogenetic analysis revealed that rbGal like B protein clustered together with other fish homologs in fish clade. It showed closer evolutionary link with Takifugu rubripes. Tissue distribution and expression patterns of rbGal like B upon immune challenges were performed using qRT-PCR assays. Among all tested tissues, level of rbGal like B expression was significantly high in gill tissue followed by kidney, intestine, heart and spleen. Upon immune challenges, it showed an up-regulated pattern of expression with Edwardsiella tarda, rock bream irido virus and poly I:C up to 6 h post injection and up to 24 h with LPS. However, In the presence of Streptococcus iniae rbGal like B showed an up and down pattern of expression with the peak at 6 - 12 h. Results from the present study revealed the phylogenetic position and role of rbGal like B in response to microbial infection in rock bream.Keywords: galectin like protein B, immune response, Oplegnathus fasciatus, molecular characterization
Procedia PDF Downloads 354447 Algal/Bacterial Membrane Bioreactor for Bioremediation of Chemical Industrial Wastewater Containing 1,4 Dioxane
Authors: Ahmed Tawfik
Abstract:
Oxidation of 1,4 dioxane produces metabolites by-products involving glycolaldehyde and acids that have geno- and cytotoxicity impact on microbial degradation. Thereby, the incorporation of algae with bacteria in the treatment system would eliminate and overcome the accumulation of metabolites that are utilized as a carbon source for the build-up of biomass. Therefore, the aim of the present study is to assess the potential of algae/bacteria-based membrane bioreactor (AB-MBR) for biodegradation of 1,4 dioxane-rich wastewater at a high imposed loading rate. Three identical reactors, i.e., AB-MBR1, AB-MBR2, and AB-MBR3, were operated in parallel at 1,4 dioxane loading rates of 641.7, 320.9, and 160.4 mg/L. d., and HRTs of 6.0, 12 and 24 h. respectively. The AB-MBR1 achieved 1,4 dioxane removal rate of 263.7 mg/L.d., where the residual value in the treated effluent amounted to 94.4±22.9 mg/L. Reducing the 1,4 dioxane loading rate (LR) to 320.9 mg/L.d in the AB-MBR2 maximized the removal rate efficiency of 265.9 mg/L.d., with a removal efficiency of 82.8±3.2%. The minimum value of 1,4 dioxane of 17.3±1.8 mg/L in the treated effluent of AB-MBR3 was obtained at an HRT of 24.0 h and loading rate of 160.4 mg/L.d. The mechanism of 1,4 dioxane degradation in AB-MBR was a combination of volatilization (8.03±0.6%), UV oxidation (14.1±0.9%), microbial biodegradation (49.1±3.9%) and absorption/uptake and assimilation by algae (28.8±2.%). Further, the Thioclava, Afipia, and Mycobacterium genera oxidized and produced the required enzymes for hydrolysis and cleavage of the dioxane ring into 2-hydroxy-1,4 dioxane. Moreover, the fungi, i.e., Basidiomycota and Cryptomycota, played a big role in the degradation of the 1,4 dioxane into 2-hydroxy-1,4 dioxane. Xanthobacter and Mesorhizobium were involved in the metabolism process by secreting alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and glycolate oxidase. Bacteria and fungi produced dehydrogenase (DH) for the transformation of 2-hydroxy-1,4 dioxane into 2-hydroxy-ethoxyacetaldehyde. The latter is converted into Ethylene glycol by Aldehyde hydrogenase (ALDH). Ethylene glycol is oxidized into acids using Alcohol hydrogenase (ADH). The Diatomea, Chlorophyta, and Streptophyta utilize the metabolites for biomass assimilation and produce the required oxygen for further oxidation of the dioxane and its metabolites by-products of bacteria and fungi. The major portion of metabolites (ethylene glycol, glycolic acid, and oxalic acid were removed due to uptake and absorption by algae (43±4.3%), followed by adsorption (18.4±0.9%). The volatilization and UV oxidation contribution for the degradation of metabolites were 8.7±0.7% and 12.3±0.8%, respectively. The capabilities of genera Defluviimonas, Thioclava, Luteolibacter, and Afipia. The genera of Defluviimonas, Thioclava, Luteolibacter, and Mycobacterium were grown under a high 1,4 dioxane LR of 641.7 mg/L.d. The Chlorophyta (4.1-43.6%), Streptophyta (2.5-21.7%), and Diatomea (0.8-1.4%) phyla were dominant for degradation of 1,4 dioxane. The results of this study strongly demonstrated that the bioremediation and bioaugmentation process can safely remove 1,4 dioxane from industrial wastewater while minimizing environmental concerns and reducing economic costs.Keywords: wastewater, membrane bioreactor, bacterial community, algal community
Procedia PDF Downloads 41446 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus
Authors: Majid Forghani, Michael Khachay
Abstract:
In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition
Procedia PDF Downloads 151445 Leaching of Copper from Copper Ore Using Sulphuric Acid in the Presence of Hydrogen Peroxide as an Oxidizing Agent: An Optimized Process
Authors: Hilary Rutto
Abstract:
Leaching with acids are the most commonly reagents used to remove copper ions from its copper ores. It is important that the process conditions are optimized to improve the leaching efficiency. In the present study the effects of pH, oxidizing agent (hydrogen peroxide), stirring speed, solid to liquid ratio and acid concentration on the leaching of copper ions from it ore were investigated using a pH Stat apparatus. Copper ions were analyzed at the end of each experiment using Atomic Absorption (AAS) machine. Results showed that leaching efficiency improved with an increase in acid concentration, stirring speed, oxidizing agent, pH and decreased with an increase in the solid to liquid ratio.Keywords: leaching, copper, oxidizing agent, pH stat apparatus
Procedia PDF Downloads 375444 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography
Authors: Sudhanshu Sharma
Abstract:
Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.Keywords: lisnopril, surfactant, chromatography, micellar solutions
Procedia PDF Downloads 366443 Interfacial Reactions between Aromatic Polyamide Fibers and Epoxy Matrix
Authors: Khodzhaberdi Allaberdiev
Abstract:
In order to understand the interactions on the interface polyamide fibers and epoxy matrix in fiber- reinforced composites were investigated industrial aramid fibers: armos, svm, terlon using individual epoxy matrix components, epoxies: diglycidyl ether of bisphenol A (DGEBA), three- and diglycidyl derivatives of m, p-amino-, m, p-oxy-, o, m,p-carboxybenzoic acids, the models: curing agent, aniline and the compound, that depict of the structure the primary addition reaction the amine to the epoxy resin, N-di (oxyethylphenoxy) aniline. The chemical structure of the surface of untreated and treated polyamide fibers analyzed using Fourier transform infrared spectroscopy (FTIR). The impregnation of fibers with epoxy matrix components and N-di (oxyethylphenoxy) aniline has been carried out by heating 150˚C (6h). The optimum fiber loading is at 65%.The result a thermal treatment is the covalent bonds formation , derived from a combined of homopolymerization and crosslinking mechanisms in the interfacial region between the epoxy resin and the surface of fibers. The reactivity of epoxy resins on interface in microcomposites (MC) also depends from processing aids treated on surface of fiber and the absorbance moisture. The influences these factors as evidenced by the conversion of epoxy groups values in impregnated with DGEBA of the terlons: industrial, dried (in vacuum) and purified samples: 5.20 %, 4.65% and 14.10%, respectively. The same tendency for svm and armos fibers is observed. The changes in surface composition of these MC were monitored by X-ray photoelectron spectroscopy (XPS). In the case of the purified fibers, functional groups of fibers act as well as a catalyst and curing agent of epoxy resin. It is found that the value of the epoxy groups conversion for reinforced formulations depends on aromatic polyamides nature and decreases in the order: armos >svm> terlon. This difference is due of the structural characteristics of fibers. The interfacial interactions also examined between polyglycidyl esters substituted benzoic acids and polyamide fibers in the MC. It is found that on interfacial interactions these systems influences as well as the structure and the isomerism of epoxides. The IR-spectrum impregnated fibers with aniline showed that the polyamide fibers appreciably with aniline do not react. FTIR results of treated fibers with N-di (oxyethylphenoxy) aniline fibers revealed dramatically changes IR-characteristic of the OH groups of the amino alcohol. These observations indicated hydrogen bondings and covalent interactions between amino alcohol and functional groups of fibers. This result also confirms appearance of the exo peak on Differential Scanning Calorimetry (DSC) curve of the MC. Finally, the theoretical evaluation non-covalent interactions between individual epoxy matrix components and fibers has been performed using the benzanilide and its derivative contaning the benzimidazole moiety as a models of terlon and svm,armos, respectively. Quantum-topological analysis also demonstrated the existence hydrogen bond between amide group of models and epoxy matrix components.All the results indicated that on the interface polyamide fibers and epoxy matrix exist not only covalent, but and non-covalent the interactions during the preparation of MC.Keywords: epoxies, interface, modeling, polyamide fibers
Procedia PDF Downloads 265442 The Effect of Clover Honey Supplementation on the Anthropometric Measurements and Lipid Profile of Malnourished Infants and Children
Authors: Bassma A. Abdelhaleem, Mamdouh A. Abdulrhman, Nagwa I. Mohamed
Abstract:
Malnutrition in children is an increasing problem worldwide which may result in both short and long-term irreversible negative health outcomes. Severe Acute Malnutrition (SAM) affects more than 18 million children each year, mostly living in low-income settings. SAM contributes to 45% of all deaths in children less than five years of age. Honey is a natural sweetener, containing mainly monosaccharides (up to 80%), disaccharides (3–5%), water (17–20%), and a wide range of minor constituents such as vitamins, minerals, proteins, amino acids, enzymes, and phytochemicals, mainly phenolic acids, and flavonoids. Honey has been used in many cultures around the world due to its known nutritional and medicinal benefits including the treatment of hypercholesterolemia. Despite its use since ancient times yet little is known about its potential benefits for malnourished children. Honey has the potential to be an affordable solution for malnourished low-income children as it is nutrient-dense and calorie dense food, easily absorbed, highly palatable, enhances appetite, and boosts immunity. This study assessed the effect of clover honey supplementation on the anthropometric measurements and lipid profile of malnourished infants and children. A prospective interventional clinical trial was conducted between November 2019 to November 2020, on 40 malnourished infants and children divided into two groups: Group A (20 children; 11 males and 9 females) received honey in a dose of 1.75ml/kg/dose, twice weekly for 12 weeks and Group B (20 children; 6 males and 14 females) received placebo. Written informed consent was obtained for parents/guardians. Patients were recruited from the Pediatric Nutrition Clinic at Ain Shams University. Anthropometric measurements (weight, height, body mass index, head circumference, and mid-arm circumference) and fasting serum cholesterol levels were measured at baseline and after 3 months. The 3-month honey consumption had a statistically highly significant effect on increasing weight, height, and body mass index and lowering fasting serum cholesterol levels in primary malnourished infants and children. Weight, height, body mass index, and fasting serum cholesterol level before honey consumption were (9.49 ± 2.03, 81.45 ± 8.31, 14.24 ± 2.15, 178.00 ± 20.91) and after 3 months of honey consumption were (10.91 ± 2.11, 84.80 ± 8.23, 15.07 ± 2.05, 162.45 ± 19.73) respectively with P-value < 0.01. Our results showed a significant desirable effect of honey consumption on changes in nutritional status based on weight, height, and body mass index, and has a favourable effect on lowering fasting serum cholesterol levels. These results propose the use of honey as an affordable solution to improve malnutrition, particularly in low-income countries. However, further research needs to weigh benefits against potential harms including the risk of botulinum toxin that is historically associated with honey consumption in early childhood.Keywords: clinical trial, dyslipidemia, honey, malnutrition
Procedia PDF Downloads 107441 Bioactive Rare Acetogenins from the Red Alga Laurencia obtusa
Authors: Mohamed A. Ghandourah, Walied M. Alarif, Nahed O. Bawakid
Abstract:
Halogenated cyclic enynes and terpenoids are commonly identified among secondary metabolites of the genus Laurencia. Laurencian acetogenins are entirly C15 non-terpenoid haloethers with different carbocyclic nuclei; a specimen of the Red Sea red alga L. obtusa was investigated for its acetogenin content. The dichloromethane extract of the air-dried red algal material was fractionated on aluminum oxide column preparative thin-layer chromatography. Three new rare C12 acetogenin derivatives (1-3) were isolated from the organic extract obtained from Laurencia obtusa, collected from the territorial Red Sea water of Saudi Arabia. The structures of the isolated metabolites were established by means of spectroscopical data analyses. Examining the isolated compounds in activated human peripheral blood mononuclear cells (PBMC) revealed potent Anti-inflammatory activity as evidenced by inhibition of NFκB and release of other inflammatory mediators like TNF-α, IL-1β and IL-6.Keywords: Red Sea, red algae, fatty acids, spectroscopy, anti-inflammatory
Procedia PDF Downloads 146440 Phenolic Composition of Wines from Cultivar Carménère during Aging with Inserts to Barrels
Authors: E. Obreque-Slier, P. Osorio-Umaña, G. Vidal-Acevedo, A. Peña-Neira, M. Medel-Marabolí
Abstract:
Sensory and nutraceutical characteristics of a wine are determined by different chemical compounds, such as organic acids, sugars, alcohols, polysaccharides, aromas, and polyphenols. The polyphenols correspond to secondary metabolites that are associated with the prevention of several pathologies, and those are responsible for color, aroma, bitterness, and astringency in wines. These compounds come from grapes and wood during aging in barrels, which correspond to the format of wood most widely used in wine production. However, the barrels is a high-cost input with a limited useful life (3-4 years). For this reason, some oenological products have been developed in order to renew the barrels and increase their useful life in some years. These formats are being used slowly because limited information exists about the effect on the wine chemical characteristics. The objective of the study was to evaluate the effect of different laubarrel renewal systems (staves and zigzag) on the polyphenolic characteristics of a Carménère wine (Vitis vinifera), an emblematic cultivar of Chile. For this, a completely randomized experimental design with 5 treatments and three replicates per treatment was used. The treatments were: new barrels (T0), used barrels during 4 years (T1), scraped used barrels (T2), used barrels with staves (T3) and used barrels with zigzag (T4). The study was performed for 12 months, and different spectrophotometric parameters (phenols, anthocyanins, and total tannins) and HPLC-DAD (low molecular weight phenols) were evaluated. The wood inputs were donated by Toneleria Nacional and corresponded to products from the same production batch. The total phenols content increased significantly after 40 days, while the total tannin concentration decreased gradually during the study. The anthocyanin concentration increased after 120 days of the assay in all treatments. Comparatively, it was observed that the wine of T2 presented the lowest values of these polyphenols, while the T0 and T4 presented the highest total phenol contents. Also, T1 presented the highest values of total tannins in relation to the rest of the treatments in some samples. The low molecular weight phenolic compounds identified by HPLC-DAD were 7 flavonoids (epigallocatechin, catechin, procyanidin gallate, epicatechin, quercetin, rutin and myricetin) and 14 non-flavonoids (gallic, protocatechuic, hydroxybenzoic, trans-cutaric, vanillinic, caffeic, syringic, p-coumaric and ellagic acids; tyrosol, vanillin, syringaldehyde, trans-resveratrol and cis-resveratrol). Tyrosol was the most abundant compound, whereas ellagic acid was the lowest in the samples. Comparatively, it was observed that the wines of T2 showed the lowest concentrations of flavonoid and non-flavonoid phenols during the study. In contrast, wines of T1, T3, and T4 presented the highest contents of non-flavonoid polyphenols. In summary, the use of barrel renovators (zig zag and staves) is an interesting alternative which would emulate the contribution of polyphenols from the barrels to the wine.Keywords: barrels, oak wood aging, polyphenols, red wine
Procedia PDF Downloads 199439 Polymer Matrices Based on Natural Compounds: Synthesis and Characterization
Authors: Sonia Kudlacik-Kramarczyk, Anna Drabczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec
Abstract:
Introduction: In the preparation of polymer materials, compounds of natural origin are currently gaining more and more interest. This is particularly noticeable in the case of synthesis of materials considered for biomedical use. Then, selected material has to meet many requirements. It should be characterized by non-toxicity, biodegradability and biocompatibility. Therefore special attention is directed to substances such as polysaccharides, proteins or substances that are the basic building components of proteins, i.e. amino acids. These compounds may be crosslinked with other reagents that leads to the preparation of polymer matrices. Such amino acids as e.g. cysteine or histidine. On the other hand, previously mentioned requirements may be met by polymers obtained as a result of biosynthesis, e.g. polyhydroxybutyrate. This polymer belongs to the group of aliphatic polyesters that is synthesized by microorganisms (selected strain of bacteria) under specific conditions. It is possible to modify matrices based on given polymer with substances of various origin. Such a modification may result in the change of their properties or/and in providing the material with new features desirable in viewpoint of specific application. Described materials are synthesized using UV radiation. Process of photopolymerization is fast, waste-free and enables to obtain final products with favorable properties. Methodology: Polymer matrices have been prepared by means of photopolymerization. First step involved the preparation of solutions of particular reagents and mixing them in the appropriate ratio. Next, crosslinking agent and photoinitiator have been added to the reaction mixture and the whole was poured into the Petri dish and treated with UV radiation. After the synthesis, polymer samples were dried at room temperature and subjected to the numerous analyses aimed at the determining their physicochemical properties. Firstly, sorption properties of obtained polymer matrices have been determined. Next, mechanical properties have been characterized, i.e. tensile strength. The ability to deformation under applied stress of all prepared polymer matrices has been checked. Such a property is important in viewpoint of the application of analyzed materials e.g. as wound dressings. Wound dressings have to be elastic because depending on the location of the wound and its mobility, such a dressing has to adhere properly to the wound. Furthermore, considering the use of the materials for biomedical purposes it is essential to determine its behavior in environments simulating these ones occurring in human body. Therefore incubation studies using selected liquids have also been conducted. Conclusions: As a result of photopolymerization process, polymer matrices based on natural compounds have been prepared. These exhibited favorable mechanical properties and swelling ability. Moreover, biocompatibility in relation to simulated body fluids has been stated. Therefore it can be concluded that analyzed polymer matrices constitute an interesting materials that may be considered for biomedical use and may be subjected to the further more advanced analyses using specific cell lines.Keywords: photopolymerization, polymer matrices, simulated body fluids, swelling properties
Procedia PDF Downloads 125438 Characterization of Extra Virgin Olive Oil from Olive Cultivars Grown in Pothwar, Pakistan
Authors: Abida Mariam, Anwaar Ahmed, Asif Ahmad, Muhammad Sheeraz Ahmad, Muhammad Akram Khan, Muhammad Mazahir
Abstract:
The plant olive (Olea europaea L.) is known for its commercial significance due to nutritional and health benefits. Pakistan is ranked 4th among countries who import olive oil whereas, 70% of edible oil is imported to fulfil the needs of the country. There exists great potential for Olea europaea cultivation in Pakistan. The popularity and cultivation of olive fruit has increased in recent past due to its high socio-economic and health significance. There exist almost negligible data on the chemical composition of extra virgin olive oil extracted from cultivars grown in Pothwar, an area with arid climate conducive for growth of olive trees. Keeping in view these factors a study has been conducted to characterize the olive oil extracted from olive cultivars collected from Pothwar regions of Pakistan for their nutritional potential and value addition. Ten olive cultivars (Gemlik, Coratina, Sevillano, Manzanilla, Leccino, Koroneiki, Frantoio, Arbiquina, Earlik and Ottobratica) were collected from Barani Agriculture Research Institute, Chakwal. Extra Virgin Olive Oil (EVOO) was extracted by cold pressing and centrifuging of olive fruits. The highest amount of oil was yielded in Coratina (23.9%) followed by Frantoio (23.7%), Koroneiki (22.8%), Sevillano (22%), Ottobratica (22%), Leccino (20.5%), Arbiquina (19.2%), Manzanilla (17.2%), Earlik (14.4%) and Gemllik (13.1%). The extracted virgin olive oil was studied for various physico- chemical properties and fatty acid profile. The Physical and chemical properties i.e., characteristic odor and taste, light yellow color with no foreign matter, insoluble impurities (≤0.08), fee fatty acid (0.1 to 0.8), acidity (0.5 to 1.6 mg/g acid), peroxide value (1.5 to 5.2 meqO2/kg), Iodine value (82 to 90), saponification value (186 to 192 mg/g) and unsaponifiable matter (4 to 8g/kg), ultraviolet spectrophotometric analysis (k232 and k270), showed values in the acceptable range, established by PSQCA and IOOC set for extra virgin olive oil. Olive oil was analyzed by Near Infra-Red spectrophotometry (NIR) for fatty acids sin olive oils which were found as: palmitic, palmitoleic, stearic, oleic, linoleic and alpha-linolenic. Major fatty acid was Oleic acid in the highest percentage ranging from (55 to 66.1%), followed by linoleic (10.4 to 20.4%), palmitic (13.8 to 19.5%), stearic (3.9 to 4.4%), palmitoleic (0.3 to 1.7%) and alpha-linolenic (0.9 to 1.7%). The results were significant with differences in parameters analyzed for all ten cultivars which confirm that genetic factors are important contributors in the physico-chemical characteristics of oil. The olive oil showed superior physical and chemical properties and recommended as one of the healthiest forms of edible oil. This study will help consumers to be more aware of and make better choices of healthy oils available locally thus contributing towards their better health.Keywords: characterization, extra virgin olive oil, oil yield, fatty acids
Procedia PDF Downloads 96437 Extraction of Osmolytes from the Halotolerant Fungus Aspergillus oryzae
Abstract:
Salin soils occupy about 7% of land area; they are characterized by unsuitable physical conditions for the growth of living organisms. However, researches showed that some microorganisms especially fungi are able to grow and adapt to such extreme conditions; it is due to their ability to develop different physiological mechanisms in their adaptation. The aim of this study is to identify qualitatively the osmolytes that the biotechnological important fungus A. oryzae accumulated and/or produced in its adaptation, which they were detected by Thin-layer chromatography technique (TLC) using several systems, from different media (Wheat brane, MNM medium and MM medium). The results showed that The moderately halotolerant fungus A. oryzae, accumulates mixture of molecules, containing polyols and sugars , some amino acids in addition to some molecules which were not defined. Wheat bran was the best medium for the extraction of these molecules, where the proportion was 85.71%, followed by MNM medium 64.28%, then the minimum medium MM 14.28%. Properties of osmolytes are becoming increasingly useful in molecular biology, agriculture pharmaceutical, medicinal, and biotechnological interests.Keywords: salinity, aspergillus oryzae, halo tolerance, osmolytes, compatible solutes
Procedia PDF Downloads 412436 Rh(III)-Catalyzed Cross-Coupling Reaction of 8-Methylquinolines with Maleimides
Authors: Sangil Han, In Su Kim
Abstract:
Transition-metal-catalyzed C–H bond activation and its subsequent functionalization has been one of the most attractive topics in organic synthesis because of its remarkable potential for atom economy and environmental sustainability. In this addition, a variety of C(sp2)–H functionalization has been developed under metal catalysis in the past decade. Recently, much attention has been moved towards the C(sp3)–H functionalization events, which continue to be a challenging issue. In this area, directing group assisted sp3 C–H functionalization has been explored by use of amides, carboxylic acids, oximes, N-heterocycles, and etc. In particular, 8-methylquinolines have been found as good substrates for sp3 C–H functionalization due to its ability to form cyclometalated complexes. Succinimides have been recognized as privileged structural cores found in a number of bioactive natural products, pharmaceuticals, and functional materials. Furthermore, the reduced derivatives such as pyrrolidines and γ-lactams have been also found in a large number of pharmaceutical relevant molecules, thus making them one of the most important and promising compounds. We herein describe the first C(sp3)–H activation of 8-methylquinolines and subsequent functionalization with maleimides to afford various succinimide derivatives.Keywords: C(sp3)–H activation, 8-methylquinolines, maleimides, succinimides
Procedia PDF Downloads 220435 Proteolysis in Serbian Traditional Dry Fermented Sausage Petrovská Klobása as Influenced by Different Ripening Processes
Authors: P. M. Ikonić, T. A. Tasić, L. S. Petrović, S. B. Škaljac, M. R. Jokanović, V. M. Tomović, B. V. Šojić, N. R. Džinić, A. M. Torbica, B. B. Ikonić
Abstract:
The aim of the study was to determine how different ripening processes (traditional vs. industrial) influenced the proteolysis in traditional Serbian dry-fermented sausage Petrovská klobása. The obtained results indicated more intensive pH decline (0.7 units after 9 days) in industrially ripened products (I), what had a positive impact on drying process and proteolytic changes in these samples. Thus, moisture content in I sausages was lower at each sampling time, amounting 24.7% at the end of production period (90 days). Likewise, the process of proteolysis was more pronounced in I samples, resulting in higher contents of non-protein nitrogen (NPN) and free amino acids nitrogen (FAAN), as well as in faster and more intensive degradation of myosin (≈220 kDa), actin (≈45 kDa) and other polypeptides during processing. Consequently, the appearance and accumulation of several protein fragments were registered.Keywords: dry-fermented sausage, Petrovská klobása, proteolysis, ripening process
Procedia PDF Downloads 330434 Potency of Some Dietary Acidifiers on Productive Performance and Controlling Salmonella enteritidis in Broilers
Authors: Mohamed M. Zaki, Maha M. Hady
Abstract:
Salmonella spp. have been categorized as the world’s biggest threats to human health and poultry products are mostly incriminated sources. In Egypt, it was found that S. enteritidis and S. typhimurium are the most prevalent ones in poultry farms. It is recommended to eliminate salmonella from living bird by competing for salmonella contamination in feed in order to establish a healthy gut. The Feed acidifiers are the group of feed additives containing low-molecular-weight organic acids and/ or their salts which act as performance promoters by lowering the pH in the gut, optimizes digestion and inhibit bacterial growth. The inclusion of organic acid in pure form nonetheless effective in feed, yet, it is difficult to handle in feed mills as it is corrosive and produce more losses during pelleting process. The current study aimed at to evaluate the impact of incorporation of sodium diformate (SDF) and a commercial acidifier, CA (a mixture of butyric and propionic acids and their ammonium salts) at 0.4% dietary levels on broilers performance and the control S. enteritidis infection. Two hundreds and seventy unsexed cobb chickens were allotted in one of three treatments (90/ group) which were, the control (no acidifier, C- &C+), the 0.4% SDF (SDF- & SDF +) and the 0.4% CA (CA- & CA +) dietary levels for 35 days. Before the allocation of the groups, ten extra birds and a diet sample were bacteriologically examined to ensure negative contamination with salmonella. The birds were raised on deep-litter separated pens and had free access to feed and water all the time. The experimentally formulated diets were kept at 40C. After 24h access to the different dietary treatments, all the birds in the positive groups (n=15/ replicate) were inoculated intra-crop with 0.2 ml of 24 h broth culture of S. entertidis containing 1X 107 organisms while the negative-treated groups were inoculated with the same amount of the negative broth and second inoculation was done at 22 d of age. Colocal swabs were collected individually from all birds 2 h pre-inoculation to assure the absence of salmonella, then 1, 3, 5, 7, 21 days post-inoculation to recover salmonella. Performance parameter (body weight gain and feed efficiency) were calculated. Mortalities were recorded and reisolation of the salmonella was adopted to ensure it was the inoculated ones. The results revealed that the dietary acidification with sodium diformate significantly improved broilers performance and tends to produce heavier birds as compared to the negative control and CA groups. Moreover, the dietary inclusion of both acidifiers at level of 0.4% was able to eliminate mortalities completely at the relevant inoculation time. Regarding the shedding of S. enteritidius in positive groups, the SDF treatment resulted in significant (p<0.05) cessation of the shedding at 3 days post-inoculation compared to 7 days post-inoculation for the CA-group. In conclusion, sodium diformate at 0.4% dietary level in broiler diets has a valuable effect not only on broilers performance but also by eliminating S. enteritidis the main source of salmonella contamination in poultry farms which is feed.Keywords: acidifier, broilers, Salmonalla spp, sodium diformate
Procedia PDF Downloads 284433 Glyco-Biosensing as a Novel Tool for Prostate Cancer Early-Stage Diagnosis
Authors: Pavel Damborsky, Martina Zamorova, Jaroslav Katrlik
Abstract:
Prostate cancer is annually the most common newly diagnosed cancer among men. An extensive number of evidence suggests that traditional serum Prostate-specific antigen (PSA) assay still suffers from a lack of sufficient specificity and sensitivity resulting in vast over-diagnosis and overtreatment. Thus, the early-stage detection of prostate cancer (PCa) plays undisputedly a critical role for successful treatment and improved quality of life. Over the last decade, particular altered glycans have been described that are associated with a range of chronic diseases, including cancer and inflammation. These glycans differences enable a distinction to be made between physiological and pathological state and suggest a valuable biosensing tool for diagnosis and follow-up purposes. Aberrant glycosylation is one of the major characteristics of disease progression. Consequently, the aim of this study was to develop a more reliable tool for early-stage PCa diagnosis employing lectins as glyco-recognition elements. Biosensor and biochip technology putting to use lectin-based glyco-profiling is one of the most promising strategies aimed at providing fast and efficient analysis of glycoproteins. The proof-of-concept experiments based on sandwich assay employing anti-PSA antibody and an aptamer as a capture molecules followed by lectin glycoprofiling were performed. We present a lectin-based biosensing assay for glycoprofiling of serum biomarker PSA using different biosensor and biochip platforms such as label-free surface plasmon resonance (SPR) and microarray with fluorescent label. The results suggest significant differences in interaction of particular lectins with PSA. The antibody-based assay is frequently associated with the sensitivity, reproducibility, and cross-reactivity issues. Aptamers provide remarkable advantages over antibodies due to the nucleic acid origin, stability and no glycosylation. All these data are further step for construction of highly selective, sensitive and reliable sensors for early-stage diagnosis. The experimental set-up also holds promise for the development of comparable assays with other glycosylated disease biomarkers.Keywords: biomarker, glycosylation, lectin, prostate cancer
Procedia PDF Downloads 404