Search results for: epoxies
4 Interfacial Reactions between Aromatic Polyamide Fibers and Epoxy Matrix
Authors: Khodzhaberdi Allaberdiev
Abstract:
In order to understand the interactions on the interface polyamide fibers and epoxy matrix in fiber- reinforced composites were investigated industrial aramid fibers: armos, svm, terlon using individual epoxy matrix components, epoxies: diglycidyl ether of bisphenol A (DGEBA), three- and diglycidyl derivatives of m, p-amino-, m, p-oxy-, o, m,p-carboxybenzoic acids, the models: curing agent, aniline and the compound, that depict of the structure the primary addition reaction the amine to the epoxy resin, N-di (oxyethylphenoxy) aniline. The chemical structure of the surface of untreated and treated polyamide fibers analyzed using Fourier transform infrared spectroscopy (FTIR). The impregnation of fibers with epoxy matrix components and N-di (oxyethylphenoxy) aniline has been carried out by heating 150˚C (6h). The optimum fiber loading is at 65%.The result a thermal treatment is the covalent bonds formation , derived from a combined of homopolymerization and crosslinking mechanisms in the interfacial region between the epoxy resin and the surface of fibers. The reactivity of epoxy resins on interface in microcomposites (MC) also depends from processing aids treated on surface of fiber and the absorbance moisture. The influences these factors as evidenced by the conversion of epoxy groups values in impregnated with DGEBA of the terlons: industrial, dried (in vacuum) and purified samples: 5.20 %, 4.65% and 14.10%, respectively. The same tendency for svm and armos fibers is observed. The changes in surface composition of these MC were monitored by X-ray photoelectron spectroscopy (XPS). In the case of the purified fibers, functional groups of fibers act as well as a catalyst and curing agent of epoxy resin. It is found that the value of the epoxy groups conversion for reinforced formulations depends on aromatic polyamides nature and decreases in the order: armos >svm> terlon. This difference is due of the structural characteristics of fibers. The interfacial interactions also examined between polyglycidyl esters substituted benzoic acids and polyamide fibers in the MC. It is found that on interfacial interactions these systems influences as well as the structure and the isomerism of epoxides. The IR-spectrum impregnated fibers with aniline showed that the polyamide fibers appreciably with aniline do not react. FTIR results of treated fibers with N-di (oxyethylphenoxy) aniline fibers revealed dramatically changes IR-characteristic of the OH groups of the amino alcohol. These observations indicated hydrogen bondings and covalent interactions between amino alcohol and functional groups of fibers. This result also confirms appearance of the exo peak on Differential Scanning Calorimetry (DSC) curve of the MC. Finally, the theoretical evaluation non-covalent interactions between individual epoxy matrix components and fibers has been performed using the benzanilide and its derivative contaning the benzimidazole moiety as a models of terlon and svm,armos, respectively. Quantum-topological analysis also demonstrated the existence hydrogen bond between amide group of models and epoxy matrix components.All the results indicated that on the interface polyamide fibers and epoxy matrix exist not only covalent, but and non-covalent the interactions during the preparation of MC.Keywords: epoxies, interface, modeling, polyamide fibers
Procedia PDF Downloads 2673 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents
Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary
Abstract:
Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis
Procedia PDF Downloads 3662 Protection of Steel Bars in Reinforce Concrete with Zinc Based Coverings
Authors: Hamed Rajabzadeh Gatabi, Soroush Dastgheibifard, Mahsa Asnafi
Abstract:
There is no doubt that reinforced concrete is known as one of the most significant materials which is used in construction industry for many years. Although, some natural elements in dealing with environment can contribute to its corrosion or failure. One of which is bar or so-called reinforcement failure. So as to combat this problem, one of the oxidization prevention methods investigated was the barrier protection method implemented over the application of an organic coating, specifically fusion-bonded epoxy. In this study comparative method is prepared on two different kinds of covered bars (zinc-riches epoxy and polyamide epoxy coated bars) and also uncoated bar. With the aim of evaluate these reinforced concretes, the stickiness, toughness, thickness and corrosion performance of coatings were compared by some tools like Cu/CuSo4 electrodes, EIS and etc. Different types of concretes were exposed to the salty environment (NaCl 3.5%) and their durability was measured. As stated by the experiments in research and investigations, thick coatings (named epoxies) have acceptable stickiness and strength. Polyamide epoxy coatings stickiness to the bars was a bit better than that of zinc-rich epoxy coatings; nonetheless it was stiffer than the zinc rich epoxy coatings. Conversely, coated bars with zinc-rich epoxy showed more negative oxidization potentials, which take revenge protection of bars by zinc particles. On the whole, zinc-rich epoxy coverings is more corrosion-proof than polyamide epoxy coatings due to consuming zinc elements and some other parameters, additionally if the epoxy coatings without surface defects are applied on the rebar surface carefully, it can be said that the life of steel structures is subjected to increase dramatically.Keywords: surface coating, epoxy polyamide, reinforce concrete bars, salty environment
Procedia PDF Downloads 2901 Corrosion Behavior of Organic-Inorganic Hybrid Coatings Fabricated by Electrostatic Method
Authors: Mohammed Ahmed, Ziba Nazarlou
Abstract:
Mild steels have a limited alloying content which makes them vulnerable to excessive corrosion rates in the harsh medium. To overcome this issue, some protective coatings are used to prevent corrosion on the steel surface. The use of specialized coatings, mainly organic coatings (such as epoxies, polyurethanes, and acrylics) and inorganic coatings (such as Polysiloxanes) is the most common method of mitigating corrosion of carbon steel. Incorporating the benefits of organic and inorganic hybrid (OIH) compounds for the designing of hybrid protective coatings is still challenging for industrial applications. There are advantages of inorganic coatings have, but purely inorganic siloxane-based coatings are difficult to use on industrial applications unless they are used at extremely low thicknesses (< 1-2 microns). Hence, most industrial applications try to have a combination of Polysiloxanes with organic compounds. A hybrid coating possesses an organic section, which transports flexibility and impact resistance, and an inorganic section, which usually helps in the decreasing of porosity and increasing thermal stability and hardness. A number of polymers including polyethylene glycol and polyvinyl pyrrolidone have been reported to inhibit the corrosion mild steel in acidic media. However, reports on the effect of polyethylene oxide (PEO) or its blends on corrosion inhibition of metals is very scarce. Different composition of OIH coatings was synthesized by using silica sol-gel, epoxy, and PEO. The effect of different coating types on the corrosion behavior of carbon steel in harsh solution has been studied by weight loss and electrochemical measurements using Gamry 1000 Interface Potentiostat. Coating structures were investigated by SEM. İt revealed a considerable reduction in corrosion rate for coated sample. Based on these results, OIH coating prepared by epoxy-silica sol gel-PEO and epoxy-silica sol-gel exhibit had a %99.5 and %98 reduction of (Corrosion rate) CR compares to baseline. Cathodic Tafel constant (βc) shows that coatings change both Tafel constants but had more effect on the cathodic process. The evolution of the Potentiostatic scan with time displays stability in potential, some of them in a high value while the other in a low value which can be attributed to the formation of an oxide film covering substrate surface. The coated samples with the group of epoxy coating have a lower potential along with the time test, while the silica group shows higher in potential with respect to time.Keywords: electrostatic, hybrid coating, corrosion tests, silica sol gel
Procedia PDF Downloads 118