Search results for: green energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9934

Search results for: green energy

9514 Exploring the Availability and Distribution of Public Green Spaces among Riyadh Residential Neighborhoods

Authors: Abdulwahab Alalyani, Mahbub Rashid

Abstract:

Public green space promotes community health including daily activities, but these resources may not be available enough or may not equitably be distributed. This paper measures and compares the availability of public green spaces (PGS) among low, middle, and high-income neighborhoods in the Riyadh city. Additionally, it compares the total availability of PGS to WHO standard and Dubai availability of PGS per person. All PGS were mapped using geographical information systems, and total area availability of PGS compared to WHO and Dubai standards. To evaluate the significant differences in PGS availability across low, medium, and high-income Riyadh neighborhoods, we used a One-way ANOVA analysis of covariance to test the differences. As a result, by comparing PGS of Riyadh neighborhoods to WHO and Dubai-availability, it was found that Riyadh PGS were lower than the minimum standard of WHO and as well as Dubai. Riyadh has only 1.13 m2 per capita of PGS. The second finding, the availability of PGS, was significantly different among Riyadh neighborhoods based on socioeconomic status. The future development of PGS should be focused on increasing PGS availability and should be given priority to those low-income and unhealthy communities.

Keywords: spatial equity, green space, quality of life, built environment

Procedia PDF Downloads 128
9513 Opportunities and Challenges for Decarbonizing Steel Production by Creating Markets for ‘Green Steel’ Products

Authors: Hasan Muslemani, Xi Liang, Kathi Kaesehage, Francisco Ascui, Jeffrey Wilson

Abstract:

The creation of a market for lower-carbon steel products, here called ‘green steel’, has been identified as an important means to support the introduction of breakthrough emission reduction technologies into the steel sector. However, the definition of what ‘green’ entails in the context of steel production, the implications on the competitiveness of green steel products in local and international markets, and the necessary market mechanisms to support their successful market penetration remain poorly explored. This paper addresses this gap by holding semi-structured interviews with international sustainability experts and commercial managers from leading steel trade associations, research institutes and steelmakers. Our findings show that there is an urgent need to establish a set of standards to define what ‘greenness’ means in the steelmaking context; standards that avoid market disruptions, unintended consequences, and opportunities for greenwashing. We also highlight that the introduction of green steel products will have implications on product competitiveness on three different levels: 1) between primary and secondary steelmaking routes, 2) with traditional, lesser green steel, and 3) with other substitutable materials (e.g. cement and plastics). This paper emphasises the need for steelmakers to adopt a transitional approach in deploying different low-carbon technologies, based on their stage of technological maturity, applicability in certain country contexts, capacity to reduce emissions over time, and the ability of the investment community to support their deployment. We further identify market mechanisms to support green steel production, including carbon border adjustments and public procurement, highlighting a need for implementing a combination of complementary policies to ensure the products’ roll-out. The study further shows that the auto industry is a likely candidate for green steel consumption, where a market would be supported by price premiums paid by willing consumers, such as those of high-end luxury vehicles.

Keywords: green steel, decarbonisation, business model innovation, market analysis

Procedia PDF Downloads 132
9512 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation

Authors: Yongjian Gu

Abstract:

Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.

Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ

Procedia PDF Downloads 195
9511 Building a Parametric Link between Mapping and Planning: A Sunlight-Adaptive Urban Green System Plan Formation Process

Authors: Chenhao Zhu

Abstract:

Quantitative mapping is playing a growing role in guiding urban planning, such as using a heat map created by CFX, CFD2000, or Envi-met, to adjust the master plan. However, there is no effective quantitative link between the mappings and planning formation. So, in many cases, the decision-making is still based on the planner's subjective interpretation and understanding of these mappings, which limits the improvement of scientific and accuracy brought by the quantitative mapping. Therefore, in this paper, an effort has been made to give a methodology of building a parametric link between the mapping and planning formation. A parametric planning process based on radiant mapping has been proposed for creating an urban green system. In the first step, a script is written in Grasshopper to build a road network and form the block, while the Ladybug Plug-in is used to conduct a radiant analysis in the form of mapping. Then, the research creatively transforms the radiant mapping from a polygon into a data point matrix, because polygon is hard to engage in the design formation. Next, another script is created to select the main green spaces from the road network based on the criteria of radiant intensity and connect the green spaces' central points to generate a green corridor. After that, a control parameter is introduced to adjust the corridor's form based on the radiant intensity. Finally, a green system containing greenspace and green corridor is generated under the quantitative control of the data matrix. The designer only needs to modify the control parameter according to the relevant research results and actual conditions to realize the optimization of the green system. This method can also be applied to much other mapping-based analysis, such as wind environment analysis, thermal environment analysis, and even environmental sensitivity analysis. The parameterized link between the mapping and planning will bring about a more accurate, objective, and scientific planning.

Keywords: parametric link, mapping, urban green system, radiant intensity, planning strategy, grasshopper

Procedia PDF Downloads 140
9510 Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives

Authors: Fahim Ullah, Muhammad Usman

Abstract:

Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources.

Keywords: energy deficiency, renewable energy, carbon emission, energy trade, PQL analysis

Procedia PDF Downloads 62
9509 Field Study on Thermal Performance of a Green Office in Bangkok, Thailand: A Possibility of Increasing Temperature Set-Points

Authors: T. Sikram, M. Ichinose, R. Sasaki

Abstract:

In the tropics, indoor thermal environment is usually provided by a cooling mode to maintain comfort all year. Indoor thermal environment performance is sometimes different from the standard or from the first design process because of operation, maintenance, and utilization. The field study of thermal environment in the green building is still limited in this region, while the green building continues to increase. This study aims to clarify thermal performance and subjective perception in the green building by testing the temperature set-points. A Thai green office was investigated twice in October 2018 and in May 2019. Indoor environment variables (temperature, relative humidity, and wind velocity) were collected continuously. The temperature set-point was normally set as 23 °C, and it was changed into 24 °C and 25 °C. The study found that this gap of temperature set-point produced average room temperature from 22.7 to 24.6 °C and average relative humidity from 55% to 62%. Thermal environments slight shifted out of the ASHRAE comfort zone when the set-point was increased. Based on the thermal sensation vote, the feeling-colder vote decreased by 30% and 18% when changing +1 °C and +2 °C, respectively. Predicted mean vote (PMV) shows that most of the calculated median values were negative. The values went close to the optimal neutral value (0) when the set-point was set at 25 °C. The neutral temperature was slightly decreased when changing warmer temperature set-points. Building-related symptom reports were found in this study that the number of votes reduced continuously when the temperature was warmer. The symptoms that occurred by a cooler condition had the number of votes more than ones that occurred by a warmer condition. In sum, for this green office, there is a possibility to adjust a higher temperature set-point to +1 °C (24 °C) in terms of reducing cold sensitivity, discomfort, and symptoms. All results could support the policy of changing a warmer temperature of this office to become “a better green building”.

Keywords: thermal environment, green office, temperature set-point, comfort

Procedia PDF Downloads 118
9508 Determination of Cadmium , Lead, Nickel, and Zinc in Some Green Tea Samples Collected from Libyan Markets

Authors: Jamal A. Mayouf, Hashim Salih Al Bayati

Abstract:

Green tea is one of the most common drinks in all cities of Libyan. Heavy metal contents such as cadmium (Cd), lead (Pb), nickel (Ni) and zinc (Zn) were determined in four green tea samples collected from Libyan market and their tea infusions by using atomic emission spectrophotometry after acid digestion. The results obtained indicate that the concentrations of Cd, Pb, Ni, and Zn in tea infusions samples ranged from 0.07-0.12, 0.19-0.28, 0.09-0.15, 0.18-0.43 mg/l after boiling for 5 min., 0.06-0.08, 0.18-0.23, 0.08-0.14, 0.17-0.27 mg/l after boiling for 10 min., 0.07-0.11, 0.18-0.24, 0.08-0.14, 0.21-0.34 mg/l after boiling for 15 min. respectively. On the other hand, the concentrations of the same element mentioned above obtained in tea leaves ranged from 6.0-18.0, 36.0-42.0, 16.0-20.0, 44.0-132.0 mg/kg respectively. The concentrations of Cd, Pb, Ni and Zn in tea leaves samples were higher than Prevention of Food Adulteration (PFA) limit and World Health Organization(WHO) permissible limit.

Keywords: tea, infusion, metals, Libya

Procedia PDF Downloads 410
9507 Exploring Community Benefits Frameworks as a Tool for Addressing Intersections of Equity and the Green Economy in Toronto's Urban Development

Authors: Cheryl Teelucksingh

Abstract:

Toronto is in the midst of an urban development and infrastructure boom. Population growth and concerns about urban sprawl and carbon emissions have led to pressure on the municipal and the provincial governments to re-think urban development. Toronto’s approach to climate change mitigation and adaptation has positioning of the emerging green economy as part of the solution. However, the emerging green economy many not benefit all Torontonians in terms of jobs, improved infrastructure, and enhanced quality of life. Community benefits agreements (CBAs) are comprehensive, negotiated commitments, in which founders and builders of major infrastructure projects formally agree to work with community interest groups based in the community where the development is taking place, toward mutually beneficial environmental and labor market outcomes. When community groups are equitably represented in the process, they stand not only to benefit from the jobs created from the project itself, but also from the longer-term community benefits related to the quality of the completed work, including advocating for communities’ environmental needs. It is believed that green employment initiatives in Toronto should give greater consideration to best practices learned from community benefits agreements. Drawing on the findings of a funded qualitative study in Toronto (Canada), “The Green Gap: Toward Inclusivity in Toronto’s Green Economy” (2013-2016), this paper examines the emergent CBA in Toronto in relation to the development of a light rail transit project. Theoretical and empirical consideration will be given to the research gaps around CBAs, the role of various stakeholders, and discuss the potential for CBAs to gain traction in the Toronto’s urban development context. The narratives of various stakeholders across Toronto’s green economy will be interwoven with a discussion of the CBA model in Toronto and other jurisdictions.

Keywords: green economy in Toronto, equity, community benefits agreements, environmental justice, community sustainability

Procedia PDF Downloads 341
9506 Energy Efficiency Line Guides for School Buildings in Florence in a Postgraduate Master Course

Authors: Lucia Ceccherini Nelli, Alessandra Donato

Abstract:

The ABITA Master course of the University of Florence offered by the Department of Architecture covers nearly all the energy-relevant issues that can arise in public and private companies and sectors. The main purpose of the Master course, active since 2003, is to analyse the energy consumption of building technologies, components, and structures at the conceptual design stage, so it could be very helpful, for designers, when making decisions related to the selection of the most suitable design alternatives and for the materials choice that will be used in an energy-efficient building. The training course provides a solid basis for increasing the knowledge and skills of energy managers and is developed with an emphasis on practical experiences related to the knowledge through case studies, measurements, and verification of energy-efficient solutions in buildings, in the industry and in the cities. The main objectives are: i)To raise the professional standards of those engaged in energy auditing, ii) To improve the practice of energy auditors by encouraging energy auditing professionals in a continuing education program of professional development, iii) Implement in the use of instrumentations for the typical measurements, iv) To propose an integrated methodology that links energy analysis tools with green building certification systems. This methodology will be applied at the early design stage of a project’s life. The final output of the practical training is to achieve an elevated professionalism in the study of environmental design and Energy management in buildings. The results are the redaction of line guides instruction for the energy refurbishment of Public schools in Florence. The school heritage of the Municipality of Florence requires interventions for the control of energy performance, as old construction buildings are often made without taking into account the necessary envelope performance. For this reason, every year, the Master's course aims to study groups of public schools to enable the Municipality to carry out energy redevelopment interventions on the existing building heritage. The future challenges of the education and training program are related to follow-up activities, the development of interactive tools and the curriculum's customization to meet the constantly growing needs of energy experts from industry.

Keywords: expert in energy, energy auditing, public buildings, thermal analysis

Procedia PDF Downloads 189
9505 Feasibility of Small Autonomous Solar-Powered Water Desalination Units for Arid Regions

Authors: Mohamed Ahmed M. Azab

Abstract:

The shortage of fresh water is a major problem in several areas of the world such as arid regions and coastal zones in several countries of Arabian Gulf. Fortunately, arid regions are exposed to high levels of solar irradiation most the year, which makes the utilization of solar energy a promising solution to such problem with zero harmful emission (Green System). The main objective of this work is to conduct a feasibility study of utilizing small autonomous water desalination units powered by photovoltaic modules as a green renewable energy resource to be employed in different isolated zones as a source of drinking water for some scattered societies where the installation of huge desalination stations are discarded owing to the unavailability of electric grid. Yanbu City is chosen as a case study where the Renewable Energy Center exists and equipped with all sensors to assess the availability of solar energy all over the year. The study included two types of available water: the first type is brackish well water and the second type is seawater of coastal regions. In the case of well water, two versions of desalination units are involved in the study: the first version is based on day operation only. While the second version takes into consideration night operation also, which requires energy storage system as batteries to provide the necessary electric power at night. According to the feasibility study results, it is found that utilization of small autonomous desalinations unit is applicable and economically accepted in the case of brackish well water. While in the case of seawater the capital costs are extremely high and the cost of desalinated water will not be economically feasible unless governmental subsidies are provided. In addition, the study indicated that, for the same water production, the utilization of energy storage version (day-night) adds additional capital cost for batteries, and extra running cost for their replacement, which makes the unit price not only incompetent with day-only unit but also with conventional units powered by diesel generator (fossil fuel) owing to the low prices of fuel in the kingdom. However, the cost analysis shows that the price of the produced water per cubic meter of day-night unit is similar to that produced from the day-only unit provided that the day-night unit operates theoretically for a longer period of 50%.

Keywords: solar energy, water desalination, reverse osmosis, arid regions

Procedia PDF Downloads 452
9504 Chronological Skin System Aging: Improvements in Reversing Markers with Different Routes of Green Tea Extract Administration

Authors: Aliaa Mahmoud Issa

Abstract:

Green tea may provide an alternative treatment for many skin system disorders. Intrinsic or chronological aging represents the structural, functional, and metabolic changes in the skin, which depend on the passage of time per se. The aim of the present study is to compare the effect of green tea extract administration, in drinking water or topically, on the chronological changes of the old Swiss albino mice skin. A total number of forty Swiss albino female mice (Mus musculus) were used; thirty were old females, 50-52 weeks old and the remaining ten young females were about 10 weeks old. The skin of the back of all the studied mice was dehaired with a topical depilatory cream. Treatment with green tea extract was applied in two different ways: in the drinking water (0.5mg/ml/day) or topically, applied to the skin of the dorsal side (6mg/ml water). They were divided into four main groups each of 10 animals: Group I: young untreated, Group II: old untreated groups, Group III: tea-drinking (TD) group, and Group IV: topical tea (TT) group. The animals were euthanized after 3 and 6 weeks from the beginning of green tea extract treatment. The skin was subject to morphometric (epidermal, dermal, and stratum corneum thicknesses; collagen and elastin content) studies. The skin ultrastructure of the groups treated for 6 weeks with the green tea extract was also examined. The old mouse skin was compared to the young one to investigate the chronological changes of the tissue. The results revealed that the skin of mice treated with green tea extract, either topically or to less extent in drinking water, showed a reduction in the aging features manifested by a numerical but statistically insignificant improvement in the morphometric measurements. A remarkable amelioration in the ultrastructure of the old skin was also observed. Generally, green tea extract in the drinking water revealed inconsistent results. The topical application of green tea extract to the skin revealed that the epidermal, dermal and stratum corneum thicknesses and the elastin content, that were statistically significant, approach those of the young group. The ultrastructural study revealed the same observations. The disjunction of the lower epidermal keratinocytes was reduced. It could be concluded that the topical application of green tea extract to the skin of old mice showed improvement in reversing markers of skin system aging more than using the extract in the drinking water.

Keywords: aging, green tea extract, morphometry, skin, ultrastructure

Procedia PDF Downloads 131
9503 Establishment and Aging Process Analysis in Dermal Fibroblast Cell Culture of Green Turtle (Chelonia mydas)

Authors: Yemima Dani Riani, Anggraini Barlian

Abstract:

Green turtle (Chelonia mydas) is one of well known long-lived turtle. Its age can reach 100 years old. Senescence in green turtle is an interesting process to study because until now no clear explanation has been established about senescence at cellular or molecular level in this species. Since 1999, green turtle announced as an endangered species. Hence, establishment of fibroblast skin cell culture of green turtle may be material for future study of senescence. One common marker used for detecting senescence is telomere shortening. Reduced telomerase activity, the reverse transcriptase enzyme which adds TTAGGG DNA sequence to telomere end, may also cause senescence. The purpose of this research are establish and identify green turtle fibroblast skin cell culture and also compare telomere length and telomerase activity from passage 5 and 14. Primary cell culture made with primary explant method then cultured in Leibovitz-15 (Sigma) supplemented by 10% Fetal Bovine Serum (Sigma) and 100 U/mL Penicillin/Streptomycin (Sigma) at 30 ± 1oC. Cells identified with Rabbit Anti-Vimentin Polyclonal Antibody (Abcam) and Goat Polyclonal Antibody (Abcam) using confocal microscope (Zeiss LSM 170). Telomere length obtained using TeloTAGGG Telomere Length Assay (Roche) while telomerase activity obtained using TeloTAGGG Telomerase PCR ElisaPlus (Roche). Primary cell culture from green turtle skin had fibroblastic morphology and immunocytochemistry test with vimentin antibody proved the culture was fibroblast cell. Measurement of telomere length and telomerase activity showed that telomere length and telomerase activity of passage 14 was greater than passage 5. However, based on morphology, green turtle fibroblast skin cell culture showed senescent morphology. Based on the analysis of telomere length and telomerase activity, suspected fibroblast skin cell culture of green turtles is not undergo aging through telomere shortening.

Keywords: cell culture, chelonia mydas, telomerase, telomere, senescence

Procedia PDF Downloads 423
9502 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process

Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre

Abstract:

The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.

Keywords: building materials, ettringite, meta-ettringite, thermal energy storage

Procedia PDF Downloads 211
9501 Comparison Methyl Orange and Malachite Green Dyes Removal by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH as Adsorbents

Authors: Omid Moradi, Mostafa Rajabi

Abstract:

Graphene oxide (GO), reduced graphene oxide (rGO), multi-walled carbon nanotubes MWCNT), multi-walled carbon nanotube functionalized carboxyl (MWCNT-COOH), and multi-walled carbon nanotube functionalized thiol (MWCNT-SH) were used as efficient adsorbents for the rapid removal two dyes methyl orange (MO) and malachite green (MG) from the aqueous phase. The impact of several influential parameters such as initial dye concentrations, contact time, temperature, and initial solution pH was well studied and optimized. The optimize time for adsorption process of methyl orange dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 25, and 60 min, respectively and The optimize time for adsorption process of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 15, and 60 min, respectively. The maximum removal efficiency for methyl orange dye by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were occurred at optimized pH 3, 3, 6, 2, and 6 of aqueous solutions, respectively and for malachite green dye were occurred at optimized pH 3, 3, 6, 9, and 6 of aqueous solutions, respectively. The effect of temperature showed that adsorption process of malachite green dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic and for adsorption process of methyl orange dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic but while adsorption of methyl orange and malachite green dyes on MWCNT-COOH surface were exothermic.On increasing the initial concentration of methyl orange dye adsorption capacity on GO surface was decreased and on rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased and with increasing the initial concentration of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased.

Keywords: adsorption, graphene oxide, reduced graphene oxide, multi-walled carbon nanotubes, methyl orange, malachite green, removal

Procedia PDF Downloads 379
9500 Determination of Lead , Cadmium, Nickel and Zinc in Some Green Tea Samples Collected from Libyan Markets

Authors: Jamal A. Mayouf, Hashim Salih Al Bayati, Eltayeb M. Emmima

Abstract:

Green tea is one of the most common drinks in all cities of Libyan. Heavy metal contents such as cadmium (Cd), lead (Pb), nickel (Ni) and zinc (Zn) were determined in four green tea samples collected from Libyan market and their tea infusions by using atomic emission spectrophotometry after acid digestion. The results obtained indicate that the concentrations of Cd, Pb, Ni and Zn in tea infusions samples ranged from 0.07-0.12, 0.19-0.28, 0.09-0.15, 0.18-0.43 mg/l after boiling for 5 min., 0.06-0.08, 0.18-0.23, 0.08-0.14, 0.17-0.27 mg/l after boiling for 10 min., 0.07-0.11, 0.18-0.24, 0.08-0.14, 0.21-0.34 mg/l after boiling for 15 min. respectively. On the other hand, the concentrations of the same element mentioned above obtained in tea leaves ranged from 6.0-18.0, 36.0-42.0, 16.0-20.0, 44.0-132.0 mg/kg respectively. The concentrations of Cd, Pb, Ni and Zn in tea leaves samples were higher than Prevention of Food Adulteration (PFA) limit and World Health Organization(WHO) permissible limit.

Keywords: boiling, infusion, metals, tea

Procedia PDF Downloads 396
9499 Interaction of Water Stress and VA Mycorrhizal Inoculation on Green Bean under Different P Levels

Authors: Shahram Baghban Cirus, Parisa Alizadeh Oskuie

Abstract:

In a greenhouse experiment, green bean were inoculated with three levels of phosphorus (P1, P2, P3, respectively 0, 50, 100 kgP/h) and four levels of water stress(Fc1, Fc2, Fc3 ,Fc4, respectively 0.8Fc, 0.7Fc, 0.6Fc, 0.5Fc) and one species of VA mycorrhiza (Glomus versiform) or left uninocolated as control plants in the steril soil. AM colonization significantly stimulated plant growth, leaf area, shoot, and pod dry weight but water stress significantly decreased colonization, pod and shoot dry weight, and shoot P. The use P levels significantly increased leaf area, shoot, and pod dry weight, pods length, and colonization.

Keywords: green bean, plant growth, VA mycorrhiza, water-stress

Procedia PDF Downloads 351
9498 Qualitative Analysis of Occupant’s Satisfaction in Green Buildings

Authors: S. Srinivas Rao, Pallavi Chitnis, Himanshu Prajapati

Abstract:

The green building movement in India commenced in 2003. Since then, more than 4,300 projects have adopted green building concepts. For last 15 years, the green building movement has grown strong across the country and has resulted in immense tangible and intangible benefits to the stakeholders. Several success stories have demonstrated the tangible benefit experienced in green buildings. However, extensive data interpretation and qualitative analysis are required to report the intangible benefits in green buildings. The emphasis is now shifting to the concept of people-centric design and productivity, health and wellbeing of occupants are gaining importance. This research was part of World Green Building Council’s initiative on 'Better Places for People' which aims to create a world where buildings support healthier and happier lives. The overarching objective of this study was to understand the perception of users living and working in green buildings. The study was conducted in twenty-five IGBC certified green buildings across India, and a comprehensive questionnaire was designed to capture occupant’s perception and experience in the built environment. The entire research focussed on the eight attributes of healthy buildings. The factors considered for the study include thermal comfort, visual comfort, acoustic comfort, ergonomics, greenery, fitness, green transit and sanitation and hygiene. The occupant’s perception and experience were analysed to understand their satisfaction level. The macro level findings of the study indicate that green buildings have addressed attributes of healthy buildings to a larger extent. Few important findings of the study focussed on the parameters such as visual comfort, fitness, greenery, etc. The study indicated that occupants give tremendous importance to the attributes such as visual comfort, daylight, fitness, greenery, etc. 89% occupants were comfortable with the visual environment, on account of various lighting element incorporated as part of the design. Tremendous importance to fitness related activities is highlighted by the study. 84% occupants had actively utilised sports and meditation facilities provided in their facility. Further, 88% occupants had access to the ample greenery and felt connected to the natural biodiversity. This study aims to focus on the immense advantages gained by users occupying green buildings. This will empower green building movement to achieve new avenues to design and construct healthy buildings. The study will also support towards implementing human-centric measures and in turn, will go a long way in addressing people welfare and wellbeing in the built environment.

Keywords: health and wellbeing, green buildings, Indian green building council, occupant’s satisfaction

Procedia PDF Downloads 182
9497 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities

Authors: Pedro Esteban

Abstract:

Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.

Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities

Procedia PDF Downloads 111
9496 Development of a Mathematical Theoretical Model and Simulation of the Electromechanical System for Wave Energy Harvesting

Authors: P. Valdez, M. Pelissero, A. Haim, F. Muiño, F. Galia, R. Tula

Abstract:

As a result of the studies performed on the wave energy resource worldwide, a research project was set up to harvest wave energy for its conversion into electrical energy. Within this framework, a theoretical model of the electromechanical energy harvesting system, developed with MATLAB’s Simulink software, will be provided. This tool recreates the site conditions where the device will be installed and offers valuable information about the amount of energy that can be harnessed. This research provides a deeper understanding of the utilization of wave energy in order to improve the efficiency of a 1:1 scale prototype of the device.

Keywords: electromechanical device, modeling, renewable energy, sea wave energy, simulation

Procedia PDF Downloads 486
9495 Designing a Pre-Assessment Tool to Support the Achievement of Green Building Certifications

Authors: Jisun Mo, Paola Boarin

Abstract:

The impact of common buildings on climate and environment has prompted people to get involved in the green building standards aimed at implementing rating tools or certifications. Thus, green building rating systems were introduced to the construction industry, and the demand for certified green buildings has increased gradually and succeeded considerably in enhancing people’s environmental awareness. However, the existing certification process has been unsatisfactory in attracting stakeholders and/or professionals who are actively engaged in adopting a rating system. It is because they have faced recurring barriers regarding limited information in understanding the rating process, time-consuming procedures and higher costs, which have a direct influence on pursuing green building rating systems. To promote the achievement of green building certifications within the building industry more successfully, this paper aims at designing a Pre-Assessment Tool (PAT) framework that can help stakeholders and/or professionals engaged in the construction industry to clarify their basic knowledge, timeframe and extra costs needed to activate a green building certification. First, taking the first steps towards the rating tool seems to be complicated because of upfront commitment to understanding the overall rating procedure is required. This conceptual PAT framework can increase basic knowledge of the rating tool and the certification process, mainly in terms of all resources or information of each credit requirements. Second, the assessment process of rating tools is generally known as a “lengthy and time-consuming system”, contributing to unenthusiastic reactions concerning green building projects. The proposed framework can predict the timeframe needed to identify how long it will take for a green project to process each credit requirement and the documentation required from the beginning of the certification process to final approval. Finally, most people often have the initial perception that pursuing green building certification costs more than constructing a non-green building, which makes it more difficult to execute rating tools. To overcome this issue, this PAT will help users to estimate the extra expenses such as certification fees and third-party contributions based on the track of the amount of time it takes to implement the rating tool throughout all the related stages. Also, it can prevent unexpected or hidden costs occurring in the process of assessment. Therefore, this proposed PAT framework can be recommended as an effective method to support the decision-making of inexperienced users and play an important role in promoting green building certification.

Keywords: green building rating tools, Pre-Occupancy Evaluation (PrOE), client’s decision-making, certification

Procedia PDF Downloads 246
9494 Corporate Social Responsibility (CSR) and Energy Efficiency: Empirical Evidence from the Manufacturing Sector of India

Authors: Baikunthanath Sahoo, Santosh Kumar Sahu, Krishna Malakar

Abstract:

With the essence of global environmental sustainability and green business management, the wind of business research moved towards Corporate Social Responsibility. In addition to international and national treaties, businesses have also started realising environmental protection and energy efficiency through CSR as part of business strategy in response to climate change. Considering the ambitious emission reduction target and rapid economic development of India, this study is an attempt to explore the effect of CSR on the energy efficiency management of manufacturing firms in India. By using firm-level data, the panel fixed effect model shows that the CSR dummy variable is negatively influencing the energy intensity or technically, they are energy efficient. The result demonstrates that in the presence of CSR, all the production economic variables are significant. The result also shows that doing environmental expenditure does not improve energy efficiency might be because very few firms are motivated to do such expenditure and also not common to all sectors. The interactive effect model result conforms that without considering CSR dummy as an intervening variable only Manufacturers of Chemical and Chemical products, Manufacturers of Pharmaceutical, medical chemical, and botanical products firms energy intensity low but after considering CSR in their business practices all six sub-sector firms become energy efficient. The empirical result also validate that firms are continuously engaged in CSR activities they are highly energy efficient. It is an important motivational factor for firms to become economically and environmentally sustainable in the corporate world. This analysis would help business practitioners to know how to manage today’s profitability and tomorrow’s sustainability to achieve a comparative advantage in the emerging market economy. The paper concludes that reducing energy consumption as part of their social responsibility to care for the environment, will need collaborative efforts of business society and policy bodies.

Keywords: CSR, Energy Efficiency, Indian manufacturing Sector, Business strategy

Procedia PDF Downloads 82
9493 The Environmental Impact of Geothermal Energy and Opportunities for Its Utilization in Hungary

Authors: András Medve, Katalin Szabad, István Patkó

Abstract:

According to the International Energy Association the previous principles of the energy sector should be reassessed, in which renewable energy sources have a significant role. We might witness the exchange of roles of countries from importer to exporter, which look for the main resources of market needs. According to the World Energy Outlook 2013, the duration of high oil prices is exceptionally long in the history of the energy market. Forecasts also point at the expected great differences between the regional prices of gas and electric energy. The energy need of the world will grow by its third. two thirds of which will appear in China, India, and South-East Asia, while only 4 per cent of which will be related to OECD countries. Current trends also forecast the growth of the price of energy sources and the emission of glasshouse gases. As a reflection of these forecasts alternative energy sources will gain value, of which geothermic energy is one of the cheapest and most economical. Hungary possesses outstanding resources of geothermic energy. The aim of the study is to research the environmental effects of geothermic energy and the opportunities of its exploitation in Hungary, related to „Horizon 2020” project.

Keywords: sustainable energy, renewable energy, development of geothermic energy in Hungary

Procedia PDF Downloads 601
9492 Energy System for Algerian Green Building in Tlemcen, North Africa

Authors: M. A. Boukli Hacene, N. E.Chabane Sari, A. Benzair

Abstract:

This article highlights a method for natural heating and cooling of systems in areas of moderate climate. Movement of air is generated inside a space by an underground piping system. In this paper, we discuss a feasibility study in Algeria of air-conditioning using a ground source heat pump (GSHP) with vertical mounting, coupled with a solar collector. This study consists of modeling ground temperature at different depths, for a clay soil in the city of Tlemcen. Our model is developed from the non-stationary heat equation for a homogeneous medium and takes into consideration the soil thermal diffusivity. It uses the daily ambient temperature during a typical year for the locality of Tlemcen. The study shows the feasibility of using a heating/cooling GSHP in the town of Tlemcen for the particular soil type; and indicates that the duration of air flow in the borehole has a major influence on the outgoing temperature drilling.

Keywords: green building, heat pump, insulation, climate change

Procedia PDF Downloads 218
9491 Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

Authors: Hussain Ali Bekhet, Nor Hamisham Harun

Abstract:

The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.

Keywords: Malaysia, non-renewable energy, renewable energy, sustainable energy

Procedia PDF Downloads 400
9490 CFD Simulations to Study the Cooling Effects of Different Greening Modifications

Authors: An-Shik Yang, Chih-Yung Wen, Chiang-Ho Cheng, Yu-Hsuan Juan

Abstract:

The objective of this study is to conduct computational fluid dynamic (CFD) simulations for evaluating the cooling efficacy from vegetation implanted in a public park in the Taipei, Taiwan. To probe the impacts of park renewal by means of adding three pavilions and supplementary green areas on urban microclimates, the simulated results have revealed that the park having a higher percentage of green coverage ratio (GCR) tended to experience a better cooling effect. These findings can be used to explore the effects of different greening modifications on urban environments for achieving an effective thermal comfort in urban public spaces.

Keywords: CFD simulations, Green Coverage Ratio, Urban heat island, Urban Public Park

Procedia PDF Downloads 489
9489 Synthesis of Green Silver Nanoparticles with Aqueous Extract of Glycyrrhiza glabra and Its Characterization

Authors: Mandeep Kataria, Ankita Thakur

Abstract:

Glycyrrhiza glabra grows in the sub- tropical and warm temperate regions of the world, in Mediterranean countries and China, America, Europe, Asia and Australia. It grows in areas with sunny, dry and hot climates. It has numerous medicinal properties like it is used to cure Peptic Ulcers, Canker sores, Eczema, Indigestion and Upper Respiratory Infections. Biosynthetic methods such as plant extract have emerged as a simple and viable alternative to more complex chemical synthetic procedures to obtain nanomaterials. Extract from plant may act both as reducing and capping agents in silver nanoparticles synthesis. In the present work, Green Silver nanoparticles were successfully formulated from bioreduction of silver nitrate solutions using Glycyrrhiza glabra root extract. These Green Silver nanoparticles have been appropriately characterized using Visible spectroscopy, colour change. The Antimicrobial activity was done by Agar disc diffusion assay. AgNPs were developed by using aqueous root extract of Glycyrrhiza glabra, which acts as a reducing as well as stabilizing agent. The green synthetic method is a fast, low cost and eco-friendly process in the field of nanotechnology. The study revealed that the green-synthesized silver nanoparticle provides a promising approach for antimicrobial activity.

Keywords: Glycyrrhiza glabra, nanoparticles, antimicrobial activity, aqueous extract

Procedia PDF Downloads 124
9488 Design Analysis of Solar Energy Panels for Tropical Nigeria

Authors: Cyril Agochi Okorowo

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man have greatly influenced climate change over the years as a result of a consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discusses solar energy as the abundant renewable energy in the tropical Nigeria, processes of harvesting the energy and recommends solar energy as an alternative means of electric power generation in a time the demand for power in Nigeria supersedes supply.

Keywords: analysis, energy, design, solar

Procedia PDF Downloads 289
9487 Green Spaces in Sustaining Cognitive Behaviour for Treating Anxiety and Depression in Children: A Prospective Study

Authors: Minakshi Jain, I. P. Singh

Abstract:

Due to the era of outstanding technology and modern lifestyle, human beings are debasing their physical, psychological, and mental well-being. The effect of this leads to a trail of chronic diseases like anxiety, loneliness, and depression, especially in children and young adults. This is visible in individuals who suffer from clinical depression, which leads to impaired mood and distortion of cognition, particularly in children. The Members of the WHO European Region made a declaration to provisioning each child with access to healthy and safe environments by 2020, and the decision was taken at the Conference on Environment and Health in 2010 as an initiative to improve access to green spaces in cities which provides universal access for quality spaces for both social interaction and human well-being. In line with this, the paper aims to establish a prospective study on linking green spaces and CBT (Cognitive behavior therapy) in order to treat disorders with reference to children and young adults. A questionnaire was adopted to explore the possibility of green spaces as additive measures for the existing modes of therapy. The results adapted from the questionnaire show that certain species of vegetation have a significant effect in enhancing effective mental well-being.

Keywords: CBT, therapeutic gardens UCLA loneliness scale, anxiety, depression, green spaces, biophilia, environmental psychology

Procedia PDF Downloads 44
9486 Sustainable Agriculture in Nigeria: Integrating Energy Efficiency and Renewables

Authors: Vicx Farm

Abstract:

This paper examines the critical role of energy efficiency management and renewable energy in fostering sustainable agricultural practices in Nigeria. With the growing concerns over energy security, environmental degradation, and climate change, there is an urgent need to transition towards more sustainable energy sources and practices in the agricultural sector. Nigeria, being a significant player in the global agricultural market, stands to benefit immensely from integrating energy efficiency measures and renewable energy solutions into its agricultural activities. This paper discusses the current energy challenges facing Nigerian agriculture, explores the potential benefits of energy efficiency and renewable energy adoption, and proposes strategies for effective implementation. The paper concludes with recommendations for policymakers, stakeholders, and practitioners to accelerate the adoption of energy-efficient and renewable energy technologies in Nigerian agriculture, thereby promoting sustainable development and resilience in the sector.

Keywords: energy, agriculture, sustainability, power

Procedia PDF Downloads 71
9485 Submicron Size of Alumina/Titania Tubes for CO2-CH4 Conversion

Authors: Chien-Wan Hun, Shao-Fu Chang, Jheng-En Yang, Chien-Chon Chen, Wern-Dare Jheng

Abstract:

This research provides a systematic way to study and better understand double nano-tubular structure of alunina (Al2O3) and titania (TiO2). The TiO2 NT was prepared by immersing Al2O3 template in 0.02 M titanium fluoride (TiF4) solution (pH=3) at 25 °C for 120 min, followed by annealing at 450 °C for 1 h to obtain anatase TiO2 NT in the Al2O3 template. Large-scale development of film for nanotube-based CO2 capture and conversion can potentially result in more efficient energy harvesting. In addition, the production process will be relatively environmentally friendly. The knowledge generated by this research will significantly advance research in the area of Al2O3, TiO2, CaO, and Ca2O3 nano-structure film fabrication and applications for CO2 capture and conversion. This green energy source will potentially reduce reliance on carbon-based energy resources and increase interest in science and engineering careers.

Keywords: alumina, titania, nano-tubular, film, CO2

Procedia PDF Downloads 393