Search results for: distinctive features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4167

Search results for: distinctive features

3747 A New Measurement for Assessing Constructivist Learning Features in Higher Education: Lifelong Learning in Applied Fields (LLAF) Tempus Project

Authors: Dorit Alt, Nirit Raichel

Abstract:

Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities.This form of instruction is criticized for encouraging students to acquire inert knowledge that can be used in instructional settings at best, however cannot be transferred into real-life complex problem settings. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools, based on the constructivist approach for learning that put a premium on adaptability to the emerging requirements of present society. This presentation will be limited to teachers' education only and to the contribution of the project in providing a scale designed to measure the extent to which the constructivist activities are efficiently applied in the learning environment. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.

Keywords: constructivist learning, higher education, mix-methodology, structural equation modeling

Procedia PDF Downloads 315
3746 Clinical and Radiological Features of Radicular Cysts: Case Series

Authors: Recep Duzsoz, Elif Bilgir, Derya Yildirim, Ozlem Gormez

Abstract:

Radicular cysts develop in the root apex of tooth that is devitalized. Cysts are pathologic lesions with an epithelial lining encapsulated by connective tissue. Radicular cysts originate from epithelial remnants of the periodontal ligament in the root apex as a result of inflammation. They are most commonly observed in the maxillary anterior region, among men and in the third decade of life. Radiographically, they are seen as ovoid radiolucent lesions surrounded by a thin radioopaque margin. In this case, series was carried out in 15 radicular cysts of the jaws diagnosed in individuals. The cysts were evaluated age, sex, and localization. 12 of the cysts were localized in the maxillae, 3 of them were localised in the mandible. The female/male ratio of the lesions was 1/2. In conclusion, we evaluated age, localization and sex distribution of radicular cysts in this study. The knowledge of the features of the jaw cysts is a basic aspect to achieve diagnosis, complications and proper treatment.

Keywords: radicular cyst, jaws, CBCT, treatment

Procedia PDF Downloads 289
3745 Voice Liveness Detection Using Kolmogorov Arnold Networks

Authors: Arth J. Shah, Madhu R. Kamble

Abstract:

Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.

Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection

Procedia PDF Downloads 44
3744 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria

Authors: Mairo Musa Galadima, Phoebe Mshelia

Abstract:

In Nigeria, the national policy of education stipulates that the kindergarten primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5(five) selected secondary school in Bauchi. It was discover that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequate qualified teachers and relevant materials including text-books. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.

Keywords: kindergarten, stress, phonetic and intonation, Nigeria

Procedia PDF Downloads 300
3743 The Prospective Assessment of Zero-Energy Dwellings

Authors: Jovana Dj. Jovanovic, Svetlana M. Stevovic

Abstract:

The highest priority of so called, projected passive houses is to meet the appropriate energy demand. Every single material and layer which is injected into a dwelling has a certain energy quantity stored. The passive houses include optimized insulation levels with minimal thermal bridges, minimum of air leakage through the building, utilization of passive solar and internal gains, and good circulation of air which leans on mechanical ventilation system. The focus of this paper is on passive house features, benefits and targets, their feasibility and energy demands which are set up during each project. Numerous passive house-standards outline the very significant role of zero-energy dwellings towards the modern label of sustainable development. It is clear that the performance of both built and existing housing stock must be addressed if the population across the world sets out the energy objectives. This scientific article examines passive house features since the many passive house cases are launched.

Keywords: benefits, energy demands, passive houses, sustainable development

Procedia PDF Downloads 339
3742 Testing the Impact of the Nature of Services Offered on Travel Sites and Links on Traffic Generated: A Longitudinal Survey

Authors: Rania S. Hussein

Abstract:

Background: This study aims to determine the evolution of service provision by Egyptian travel sites and how these services change in terms of their level of sophistication over the period of the study which is ten years. To the author’s best knowledge, this is the first longitudinal study that focuses on an extended time frame of ten years. Additionally, the study attempts to determine the popularity of these websites through the number of links to these sites. Links maybe viewed as the equivalent of a referral or word of mouth but in an online context. Both popularity and the nature of the services provided by these websites are used to determine the traffic on these sites. In examining the nature of services provided, the website itself is viewed as an overall service offering that is composed of different travel products and services. Method: This study uses content analysis in the form of a small scale survey done on 30 Egyptian travel agents’ websites to examine whether Egyptian travel websites are static or dynamic in terms of the services that they provide and whether they provide simple or sophisticated travel services. To determine the level of sophistication of these travel sites, the nature and composition of products and services offered by these sites were first examined. A framework adapted from Kotler (1997) 'Five levels of a product' was used. The target group for this study consists of companies that do inbound tourism. Four rounds of data collection were conducted over a period of 10 years. Two rounds of data collection were made in 2004 and two rounds were made in 2014. Data from the travel agents’ sites were collected over a two weeks period in each of the four rounds. Besides collecting data on features of websites, data was also collected on the popularity of these websites through a software program called Alexa that showed the traffic rank and number of links of each site. Regression analysis was used to test the effect of links and services on websites as independent variables on traffic as the dependent variable of this study. Findings: Results indicate that as companies moved from having simple websites with basic travel information to being more interactive, the number of visitors illustrated by traffic and the popularity of those sites increase as shown by the number of links. Results also show that travel companies use the web much more for promotion rather than for distribution since most travel agents are using it basically for information provision. The results of this content analysis study taps on an unexplored area and provide useful insights for marketers on how they can generate more traffic to their websites by focusing on developing a distinctive content on these sites and also by focusing on the visibility of their sites thus enhancing the popularity or links to their sites.

Keywords: levels of a product, popularity, travel, website evolution

Procedia PDF Downloads 321
3741 The Research of Hand-Grip Strength for Adults with Intellectual Disability

Authors: Haiu-Lan Chin, Yu-Fen Hsiao, Hua-Ying Chuang, Wei Lee

Abstract:

An adult with intellectual disability generally has insufficient physical activity which is an important factor leading to premature weakness. Studies in recent years on frailty syndrome have accumulated substantial data about indicators of human aging, including unintentional weight loss, self-reported exhaustion, weakness, slow walking speed, and low physical activity. Of these indicators, hand-grip strength can be seen as a predictor of mortality, disability, complications, and increased length of hospital stay. Hand-grip strength in fact provides a comprehensive overview of one’s vitality. The research is about the investigation on hand-grip strength of adults with intellectual disabilities in facilities, institutions and workshops. The participants are 197 male adults (M=39.09±12.85 years old), and 114 female ones (M=35.80±8.2 years old) so far. The aim of the study is to figure out the performance of their hand-grip strength, and initiate the setting of training on hand-grip strength in their daily life which will decrease the weakening on their physical condition. Test items include weight, bone density, basal metabolic rate (BMR), static body balance except hand-grip strength. Hand-grip strength was measured by a hand dynamometer and classified as normal group ( ≧ 30 kg for male and ≧ 20 kg for female) and weak group ( < 30 kg for male, < 20 kg for female)The analysis includes descriptive statistics, and the indicators of grip strength fo the adults with intellectual disability. Though the research is still ongoing and the participants are increasing, the data indicates: (1) The correlation between hand-grip strength and degree of the intellectual disability (p ≦. 001), basal metabolic rate (p ≦ .001), and static body balance (p ≦ .01) as well. Nevertheless, there is no significant correlation between grip strength and basal metabolic rate which had been having significant correlation with hand-grip strength. (2) The difference between male and female subjects in hand-grip strength is significant, the hand-grip strength of male subjects (25.70±12.81 Kg) is much higher than female ones (16.30±8.89 Kg). Compared to the female counterparts, male participants indicate greater individual differences. And the proportion of weakness between male and female subjects is also different. (3) The regression indicates the main factors related to grip strength performance include degree of the intellectual disability, height, static body balance, training and weight sequentially. (4) There is significant difference on both hand-grip and static body balance between participants in facilities and workshops. The study supports the truth about the sex and gender differences in health. Nevertheless, the average hand-grip strength of left hand is higher than right hand in both male and female subjects. Moreover, 71.3% of male subjects and 64.2% of female subjects have better performance in their left hand-grip which is distinctive features especially in low degree of the intellectual disability.

Keywords: adult with intellectual disability, frailty syndrome, grip strength, physical condition

Procedia PDF Downloads 179
3740 Digital Forensics Showdown: Encase and FTK Head-to-Head

Authors: Rida Nasir, Waseem Iqbal

Abstract:

Due to the constant revolution in technology and the increase in anti-forensic techniques used by attackers to remove their traces, professionals often struggle to choose the best tool to be used in digital forensic investigations. This paper compares two of the most well-known and widely used licensed commercial tools, i.e., Encase & FTK. The comparison was drawn on various parameters and features to provide an authentic evaluation of licensed versions of these well-known commercial tools against various real-world scenarios. In order to discover the popularity of these tools within the digital forensic community, a survey was conducted publicly to determine the preferred choice. The dataset used is the Computer Forensics Reference Dataset (CFReDS). A total of 70 features were selected from various categories. Upon comparison, both FTK and EnCase produce remarkable results. However, each tool has some limitations, and none of the tools is declared best. The comparison drawn is completely unbiased, based on factual data.

Keywords: digital forensics, commercial tools, investigation, forensic evaluation

Procedia PDF Downloads 23
3739 Using Assessment Criteria as a Pedagogic Tool to Develop Argumentative Essay Writing

Authors: Sruti Akula

Abstract:

Assessment criteria are mostly used for assessing skills like writing and speaking. However, they could be used as a pedagogic tool to develop writing skills. A study was conducted with higher secondary learners (Class XII Kendriya Vidyalaya) to investigate the effectiveness of assessment criteria to develop argumentative essay writing. In order to raise awareness about the features of argumentative essay, assessment criteria were shared with the learners. Along with that, self-evaluation checklists were given to the learners to guide them through the writing process. During the study learners wrote multiple drafts with the help of assessment criteria, self-evaluation checklists and teacher feedback at different stages of their writing. It was observed that learners became more aware of the features of argumentative essay which in turn improved their argumentative essay writing. In addition the self evaluation checklists imporved their ability to reflect on their work there by increasing learner autonomy in the class. Hence, it can be claimed that both assessment criteria and self evaluation checklists are effective pedagogic tools to develop argumentative essay writing. Thus, teachers can be trained to create and use tools like assessment criteria and self-evaluation checklists to develop learners’ writing skills in an effective way. The presentation would discuss the approach adopted in the study to teach argumentative essay writing along with the rationale. The tools used in the study would be shared and the data collected in the form of written scripts, self-evaluation checklists and student interviews will be analyzed to validate the claims. Finally, the practical implication of the study like the ways of using assessment criteria and checklists to raise learner awareness and autonomy, using such tools to keep the learners informed about the task requirements and genre features, and the like will be put forward.

Keywords: argumentative essay writing, assessment criteria, self evaluation checklists, pedagogic

Procedia PDF Downloads 513
3738 Function of Fractals: Application of Non-Linear Geometry in Continental Architecture

Authors: Mohammadsadegh Zanganehfar

Abstract:

Since the introduction of fractal geometry in 1970, numerous efforts have been made by architects and researchers to transfer this area of mathematical knowledge in the discipline of architecture and postmodernist discourse. The discourse of complexity and architecture is one of the most significant ongoing discourses in the discipline of architecture from the '70s until today and has generated significant styles such as deconstructivism and parametrism in architecture. During these years, several projects were designed and presented by designers and architects using fractal geometry, but due to the lack of sufficient knowledge and appropriate comprehension of the features and characteristics of this nonlinear geometry, none of the fractal-based designs have been successful and satisfying. Fractal geometry as a geometric technology has a long presence in the history of architecture. The current research attempts to identify and discover the characteristics, features, potentials, and functionality of fractals despite their aesthetic aspect by examining case studies of pre-modern architecture in Asia and investigating the function of fractals.

Keywords: Asian architecture, fractal geometry, fractal technique, geometric properties

Procedia PDF Downloads 258
3737 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction

Authors: Mohammad Ghahramani, Fahimeh Saei Manesh

Abstract:

Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.

Keywords: soccer, analytics, machine learning, database

Procedia PDF Downloads 239
3736 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier

Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui

Abstract:

Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.

Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM

Procedia PDF Downloads 393
3735 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails

Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali

Abstract:

When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.

Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis

Procedia PDF Downloads 50
3734 The Integration of Iranian Traditional Architecture in the Contemporary Housing Design: A Case Study

Authors: H. Nejadriahi

Abstract:

Traditional architecture is a valuable source of inspiration, which needs to be studied and integrated in the contemporary designs for achieving an identifiable contemporary architecture. Traditional architecture of Iran is among the distinguished examples of being contextually responsive, not only by considering the environmental conditions of a region, but also in terms of respecting the socio-cultural values of its context. In order to apply these valuable features to the current designs, they need to be adapted to today's condition, needs and desires. In this paper, the main features of the traditional architecture of Iran are explained to interrogate them in the formation of a contemporary house in Tehran, Iran. Also a table is provided to compare the utilization of the traditional design concepts in the traditional houses and the contemporary example of it. It is believed that such study would increase the awareness of contemporary designers by providing them some clues on maintaining the traditional values in the current design layouts particularly in the residential sector that would ultimately improve the quality of space in the contemporary architecture.

Keywords: contemporary housing design, Iran, Tehran, traditional architecture

Procedia PDF Downloads 471
3733 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique

Authors: Jaturong Som-ard

Abstract:

The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.

Keywords: flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings

Procedia PDF Downloads 193
3732 Using Blockchain Technology to Promote Sustainable Supply Chains: A Survey of Previous Studies

Authors: Saleh Abu Hashanah, Abirami Radhakrishnan, Dessa David

Abstract:

Sustainable practices in the supply chain have been an area of focus that require consideration of environmental, economic, and social sustainability practices. This paper aims to examine the use of blockchain as a disruptive technology to promote sustainable supply chains. Content analysis was used to analyze the uses of blockchain technology in sustainable supply chains. The results showed that blockchain technology features such as traceability, transparency, smart contracts, accountability, trust, immutability, anti-fraud, and decentralization promote sustainable supply chains. It is found that these features have impacted organizational efficiency in operations, transportation, and production, minimizing costs and reducing carbon emissions. In addition, blockchain technology has been found to elicit customer trust in the products.

Keywords: blockchain technology, sustainability, supply chains, economic sustainability, environmental sustainability, social sustainability

Procedia PDF Downloads 107
3731 The Sociology of the Facebook: An Exploratory Study

Authors: Liana Melissa E. de la Rosa, Jayson P. Ada

Abstract:

This exploratory study was conducted to determine the sociology of the Facebook. Specifically, it aimed to know the socio-demographic profile of the respondents in terms of age, sex, year level and monthly allowance; find out the common usage of Facebook to the respondents; identify the features of Facebook that are commonly used by the respondents; understand the benefits and risks of using the Facebook; determine how frequent the respondents use the Facebook; and find out if there is a significant relationship between socio-demographic profile of the respondents and their Facebook usage. This study used the exploratory research design and correlational design employing research survey questionnaire as its main data gathering instrument. Students of the University of Eastern Philippines were selected as the respondents of this study through quota sampling. Ten (10) students were randomly selected from each college of the university. Based on the findings of this study, the following conclusion were drawn: The majority of the respondents are aged 18 and 21 old, female, are third year students, and have monthly allowance of P 2,000 above. On the respondents’ usage of Facebook, the majority of use the Facebook on a daily basis for one to two (1-2) hours everyday. And most users used Facebook by renting a computer in an internet cafe. On the use of Facebook, most users have created their profiles mainly to connect with people and gain new friends. The most commonly used features of Facebook, are: photos application, like button, wall, notification, friend, chat, network, groups and “like” pages status updates, messages and inbox and events. While the other Facebook features that are seldom used by the respondents are games, news feed, user name, video sharing and notes. And the least used Facebook features are questions, poke feature, credits and the market place. The respondents stated that the major benefit that the Facebook has given to its users is its ability to keep in touch with family members or friends while the main risk identified is that the users can become addicted to the Internet. On the tests of relationships between the respondents’ use of Facebook and the four (4) socio-demographic profile variables: age, sex, year level, and month allowance, were found to be not significantly related to the respondents’ use of the Facebook. While the variable found to be significantly related was gender.

Keywords: Facebook, sociology, social networking, exploratory study

Procedia PDF Downloads 290
3730 Narrative Identity Predicts Borderline Personality Disorder Features in Inpatient Adolescents up to Six Months after Admission

Authors: Majse Lind, Carla Sharp, Salome Vanwoerden

Abstract:

Narrative identity is the dynamic and evolving story individuals create about their personal pasts, presents, and presumed futures. This storied sense of self develops in adolescence and is crucial for fostering a sense of self-unity and purpose in life. A growing body of work has shown that several characteristics of narrative identity are disturbed in adults suffering from borderline personality disorder (BPD). Very little research, however, has explored the stories told by adolescents with BPD features. Investigating narrative identity early in the lifespan and in relation to personality pathology is crucial; BPD is a developmental disorder with early signs appearing already in adolescence. In the current study, we examine narrative identity (focusing on themes of agency and communion) coded from self-defining memories derived from the child attachment interview in 174 inpatient adolescents (M = 15.12, SD = 1.52) at the time of admission. The adolescents’ social cognition was further assessed on the basis of their reactions to movie scenes (i.e., the MASC movie task). They also completed a trauma checklist and self-reported BPD features at three different time points (i.e., at admission, at discharge, and 6 months after admission). Preliminary results show that adolescents who told stories containing themes of agency and communion evinced better social cognition, and lower emotional abuse on the trauma checklist. In addition, adolescents who disclosed stories containing lower levels of agency and communion demonstrated more BPD symptoms at all three time points, even when controlling for the occurrence of traumatic life events. Surprisingly, social cognitive abilities were not significantly associated with BPD features. These preliminary results underscore the importance of narrative identity as an indicator, and potential cause, of incipient personality pathology. Thus, focusing on diminished themes of narrative-based agency and communion in early adolescence could be crucial in preventing the development of personality pathology over time.

Keywords: borderline personality disorder, inpatient adolescents, narrative identity, follow-ups

Procedia PDF Downloads 157
3729 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa

Abstract:

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring

Procedia PDF Downloads 555
3728 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics

Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni

Abstract:

The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.

Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection

Procedia PDF Downloads 290
3727 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 138
3726 Lifelong Learning in Applied Fields (LLAF) Tempus Funded Project: Assessing Constructivist Learning Features in Higher Education Settings

Authors: Dorit Alt, Nirit Raichel

Abstract:

Educational practice is continually subjected to renewal needs, due mainly to the growing proportion of information communication technology, globalization of education, and the pursuit of quality. These types of renewal needs require developing updated instructional and assessment practices that put a premium on adaptability to the emerging requirements of present society. However, university instruction is criticized for not coping with these new challenges while continuing to exemplify the traditional instruction. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is collaborating to create a curricular reform for lifelong learning (LLL) in teachers' education, health care and other applied fields. This project aims to achieve its objectives by developing, and piloting models for training students in LLL and promoting meaningful learning activities that could integrate knowledge with the personal transferable skills. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools based on the constructivist approach for learning. This presentation will be limited to teachers' education only and to the contribution of a pre-pilot research aimed at providing a scale designed to measure constructivist activities in higher education learning environments. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.

Keywords: constructivist learning, higher education, mix-methodology, lifelong learning

Procedia PDF Downloads 334
3725 Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique

Authors: S. Zhuiykov, Zh. Hai, H. Xu, C. Xue

Abstract:

Unique and distinctive properties could be obtained on such two-dimensional (2D) semiconductor as tungsten trioxide (WO3) when the reduction from multi-layer to one fundamental layer thickness takes place. This transition without damaging single-layer on a large spatial resolution remained elusive until the atomic layer deposition (ALD) technique was utilized. Here we report the ALD-enabled atomic-layer-precision development of a single layer WO3 with thickness of 0.77±0.07 nm on a large spatial resolution by using (tBuN)2W(NMe2)2 as tungsten precursor and H2O as oxygen precursor, without affecting the underlying SiO2/Si substrate. Versatility of ALD is in tuning recipe in order to achieve the complete WO3 with desired number of WO3 layers including monolayer. Governed by self-limiting surface reactions, the ALD-enabled approach is versatile, scalable and applicable for a broader range of 2D semiconductors and various device applications.

Keywords: Atomic Layer Deposition (ALD), tungsten oxide, WO₃, two-dimensional semiconductors, single fundamental layer

Procedia PDF Downloads 242
3724 Event Related Brain Potentials Evoked by Carmen in Musicians and Dancers

Authors: Hanna Poikonen, Petri Toiviainen, Mari Tervaniemi

Abstract:

Event-related potentials (ERPs) evoked by simple tones in the brain have been extensively studied. However, in reality the music surrounding us is spectrally and temporally complex and dynamic. Thus, the research using natural sounds is crucial in understanding the operation of the brain in its natural environment. Music is an excellent example of natural stimulation, which, in various forms, has always been an essential part of different cultures. In addition to sensory responses, music elicits vast cognitive and emotional processes in the brain. When compared to laymen, professional musicians have stronger ERP responses in processing individual musical features in simple tone sequences, such as changes in pitch, timbre and harmony. Here we show that the ERP responses evoked by rapid changes in individual musical features are more intense in musicians than in laymen, also while listening to long excerpts of the composition Carmen. Interestingly, for professional dancers, the amplitudes of the cognitive P300 response are weaker than for musicians but still stronger than for laymen. Also, the cognitive P300 latencies of musicians are significantly shorter whereas the latencies of laymen are significantly longer. In contrast, sensory N100 do not differ in amplitude or latency between musicians and laymen. These results, acquired from a novel ERP methodology for natural music, suggest that we can take the leap of studying the brain with long pieces of natural music also with the ERP method of electroencephalography (EEG), as has already been made with functional magnetic resonance (fMRI), as these two brain imaging devices complement each other.

Keywords: electroencephalography, expertise, musical features, real-life music

Procedia PDF Downloads 484
3723 The Traveling Business Websites Quality that Effect to Overall Impression of the Tourist in Thailand

Authors: Preecha Phongpeng

Abstract:

The objectives of this research are to assess the prevalence of travel businesses websites in Thailand, investigate and evaluate the quality of travel business websites in Thailand. The sample size includes 323 websites from the population of 1,458 websites. The study covers 4 types of travel business websites including: 78 general travel agents, 30 online reservation travel agents, 205 hotels, 7 airlines, and 3 car-rental companies with nation-wide operation. The findings indicated that e-tourism in Thailand is at its growth stage, with only 13% of travel businesses having websites, 28% of them providing e-mail and the quality of travel business websites in Thailand was at the average level. Seven common problems were found in websites: lack of travel essential information, insufficient transportation information, lack of navigation tools, lack of link pages to other organizations, lack of safety features, unclear online booking functions, and lack of special features also as well.

Keywords: traveling business, website evaluation, e-commerce, e-tourism

Procedia PDF Downloads 302
3722 Corpus Linguistics as a Tool for Translation Studies Analysis: A Bilingual Parallel Corpus of Students’ Translations

Authors: Juan-Pedro Rica-Peromingo

Abstract:

Nowadays, corpus linguistics has become a key research methodology for Translation Studies, which broadens the scope of cross-linguistic studies. In the case of the study presented here, the approach used focuses on learners with little or no experience to study, at an early stage, general mistakes and errors, the correct or incorrect use of translation strategies, and to improve the translational competence of the students. Led by Sylviane Granger and Marie-Aude Lefer of the Centre for English Corpus Linguistics of the University of Louvain, the MUST corpus (MUltilingual Student Translation Corpus) is an international project which brings together partners from Europe and worldwide universities and connects Learner Corpus Research (LCR) and Translation Studies (TS). It aims to build a corpus of translations carried out by students including both direct (L2 > L1) an indirect (L1 > L2) translations, from a great variety of text types, genres, and registers in a wide variety of languages: audiovisual translations (including dubbing, subtitling for hearing population and for deaf population), scientific, humanistic, literary, economic and legal translation texts. This paper focuses on the work carried out by the Spanish team from the Complutense University (UCMA), which is part of the MUST project, and it describes the specific features of the corpus built by its members. All the texts used by UCMA are either direct or indirect translations between English and Spanish. Students’ profiles comprise translation trainees, foreign language students with a major in English, engineers studying EFL and MA students, all of them with different English levels (from B1 to C1); for some of the students, this would be their first experience with translation. The MUST corpus is searchable via Hypal4MUST, a web-based interface developed by Adam Obrusnik from Masaryk University (Czech Republic), which includes a translation-oriented annotation system (TAS). A distinctive feature of the interface is that it allows source texts and target texts to be aligned, so we can be able to observe and compare in detail both language structures and study translation strategies used by students. The initial data obtained point out the kind of difficulties encountered by the students and reveal the most frequent strategies implemented by the learners according to their level of English, their translation experience and the text genres. We have also found common errors in the graduate and postgraduate university students’ translations: transfer errors, lexical errors, grammatical errors, text-specific translation errors, and cultural-related errors have been identified. Analyzing all these parameters will provide more material to bring better solutions to improve the quality of teaching and the translations produced by the students.

Keywords: corpus studies, students’ corpus, the MUST corpus, translation studies

Procedia PDF Downloads 148
3721 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 411
3720 Modelling of Heating and Evaporation of Biodiesel Fuel Droplets

Authors: Mansour Al Qubeissi, Sergei S. Sazhin, Cyril Crua, Morgan R. Heikal

Abstract:

This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius.

Keywords: heat/mass transfer, biodiesel, multi-component fuel, droplet

Procedia PDF Downloads 569
3719 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria

Authors: Mairo Musa Galadima, Phoebe Mshelia

Abstract:

In Nigeria, the national policy of education stipulates that the kindergarten-primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo, and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5 (five) selected secondary school in Bauchi. It was discovered that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequately qualified teachers and relevant materials including textbooks. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.

Keywords: stress and intonation, phonetic and challenges, teaching and learning English, secondary schools

Procedia PDF Downloads 353
3718 The Impact of Scientific Content of National Geographic Channel on Drawing Style of Kindergarten Children

Authors: Ahmed Amin Mousa, Mona Yacoub

Abstract:

This study depends on tracking children style through what they have drawn after being introduced to 16 visual content through National Geographic Abu Dhabi Channel programs and the study of the changing features in their drawings before applying the visual act with them. The researchers used Goodenough-Harris Test to analyse children drawings and to extract the features which changed in their drawing before and after the visual content. The results showed a positive change especially in the shapes of animals and their properties. Children become more aware of animals’ shapes. The study sample was 220 kindergarten children divided into 130 girls and 90 boys at the Orman Experimental Language School in Dokki, Giza, Egypt. The study results showed an improvement in children drawing with 85% than they were before watching videos.

Keywords: National Geographic, children drawing, kindergarten, Goodenough-Harris Test

Procedia PDF Downloads 152