Search results for: crack addiction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 609

Search results for: crack addiction

189 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length

Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.

Keywords: bond strength, climate change, pull-out test, substitution of reinforcement material, textile

Procedia PDF Downloads 456
188 Case Report: A Case of Confusion with Review of Sedative-Hypnotic Alprazolam Use

Authors: Agnes Simone

Abstract:

A 52-year-old male with unknown psychiatric and medical history was brought to the Psychiatric Emergency Room by ambulance directly from jail. He had been detained for three weeks for possession of a firearm while intoxicated. On initial evaluation, the patient was unable to provide a reliable history. He presented with odd jerking movements of his extremities and catatonic features, including mutism and stupor. His vital signs were stable. Patient was transferred to the medical emergency department for work-up of altered mental status. Due to suspicion for opioid overdose, the patient was given naloxone (Narcan) with no improvement. Laboratory work-up included complete blood count, comprehensive metabolic panel, thyroid stimulating hormone, vitamin B12, folate, magnesium, rapid plasma reagin, HIV, blood alcohol level, aspirin, and Tylenol blood levels, urine drug screen, and urinalysis, which were all negative. CT head and chest X-Ray were also negative. With this negative work-up, the medical team concluded there was no organic etiology and requested inpatient psychiatric admission. Upon re-evaluation by psychiatry, it was evident that the patient continued to have an altered mental status. Of note, the medical team did not include substance withdrawal in the differential diagnosis due to stable vital signs and a negative urine drug screen. The psychiatry team decided to check California's prescription drug monitoring program (CURES) and discovered that the patient was prescribed benzodiazepine alprazolam (Xanax) 2mg BID, a sedative-hypnotic, and hydrocodone/acetaminophen 10mg/325mg (Norco) QID, an opioid. After a thorough chart review, his daughter's contact information was found, and she confirmed his benzodiazepine and opioid use, with recent escalation and misuse. It was determined that the patient was experiencing alprazolam withdrawal, given this collateral information, his current symptoms, negative urine drug screen, and recent abrupt discontinuation of medications while incarcerated. After admission to the medical unit and two doses of alprazolam 2mg, the patient's mental status, alertness, and orientation improved, but he had no memory of the events that led to his hospitalization. He was discharged with a limited supply of alprazolam and a close follow-up to arrange a taper. Accompanying this case report, a qualitative review of presentations with alprazolam withdrawal was completed. This case and the review highlights: (1) Alprazolam withdrawal can occur at low doses and within just one week of use. (2) Alprazolam withdrawal can present without any vital sign instability. (3) Alprazolam withdrawal does not respond to short-acting benzodiazepines but does respond to certain long-acting benzodiazepines due to its unique chemical structure. (4) Alprazolam withdrawal is distinct from and more severe than other benzodiazepine withdrawals. This case highlights (1) the importance of physician utilization of drug-monitoring programs. This case, in particular, relied on California's drug monitoring program. (2) The importance of obtaining collateral information, especially in cases in which the patient is unable to provide a reliable history. (3) The importance of including substance intoxication and withdrawal in the differential diagnosis even when there is a negative urine drug screen. Toxidrome of withdrawal can be delayed. (4) The importance of discussing addiction and withdrawal risks of medications with patients.

Keywords: addiction risk of benzodiazepines, alprazolam withdrawal, altered mental status, benzodiazepines, drug monitoring programs, sedative-hypnotics, substance use disorder

Procedia PDF Downloads 96
187 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 290
186 Seismic Performance of Two-Storey RC Frame Designed EC8 under In-Plane Cyclic Loading

Authors: N. H. Hamid, A. Azmi, M. I. Adiyanto

Abstract:

This main purpose of this paper is to evaluate the seismic performance of double bay two-storey reinforced concrete frame under in-plane lateral cyclic loading which designed using Eurocode 8 (EC8) by taking into account of seismic loading. The prototype model of reinforced concrete frame was constructed in one-half scale tested under in-plane lateral cyclic loading starts with ±0.2% drift, ±0.25% up to ±3.0% drift with the increment of ±0.25%. The performance of the RC frame is evaluated in terms of the hysteresis loop (load vs. displacement), stiffness, ductility, lateral strength, stress-strain relationship and equivalent viscous damping. Visual observation of the crack pattern after testing were observed where the beam- column joint suffer the most severe damage as it is the critical part in moment resisting frame. Spalling of concrete starts occurred at ±2.0% drift and become worse at ±2.5% drift. The experimental result shows that the maximum lateral strength of specimen is 99.98 kN and ductility of the specimen is µ=4.07 which lies between 3≤µ≤6 in order to withstand moderate to severe earthquakes.

Keywords: ductility, equivalent viscous damping, hysteresis loops, lateral strength, stiffness

Procedia PDF Downloads 332
185 Identify the Factors Affecting Employment and Prioritize in the Economic Sector Jobs of Increased Employment MADM approach of using SAW and TOPSIS and POSET: Ministry of Cooperatives, Do Varamin City Social Welfare

Authors: Mina Rahmani Pour

Abstract:

Negative consequences of unemployment are: increasing age at marriage, addiction, depression, drug trafficking, divorce, immigration, elite, frustration, delinquency, theft, murder, etc., has led to addressing the issue of employment by economic planners, public authorities, chief executive economic conditions in different countries and different time is important. All countries are faced with the problem of unemployment. By identifying the influential factors of occupational employment and employing strengths in the basic steps can be taken to reduce unemployment. In this study, the most significant factors affecting employment has identified 12 variables based on interviews conducted Choose Vtasyrafzaysh engaged in three main business is discussed. DRGAM next question the 8 expert ministry to respond to it is distributed and for weight Horns AZFN Shannon entropy and the ranking criteria of the (SAW, TOPSIS) used. According to the results of the above methods are not compatible with each other, to reach a general consensus on the rating criteria of the technique of integrating (POSET) involving average, Borda, copeland is used. Ultimately, there is no difference between the employments in the economic sector jobs of increased employment.

Keywords: employment, effective techniques, SAW, TOPSIS

Procedia PDF Downloads 209
184 The Effect of Heating-Liquid Nitrogen Cooling on Fracture Toughness of Anisotropic Rock

Authors: A. Kavandi, K. Goshtasbi, M. R. Hadei, H. Nejati

Abstract:

In geothermal energy production, the method of liquid nitrogen (LN₂) fracturing in hot, dry rock is one of the most effective methods to increase the permeability of the reservoir. The geothermal reservoirs mainly consist of hard rocks such as granites and metamorphic rocks like gneiss with high temperatures. Gneiss, as a metamorphic rock, experiences a high level of inherent anisotropy. This type of anisotropy is considered as the nature of rocks, which affects the mechanical behavior of rocks. The aim of this study is to investigate the effects of heating-liquid nitrogen (LN₂) cooling treatment and rock anisotropy on the fracture toughness of gneiss. For this aim, a series of semi-circular bend (SCB) tests were carried out on specimens of gneiss with different anisotropy plane angles (0°, 30°, 60°, and 90°). In this study, gneiss specimens were exposed to heating–cooling treatment through gradual heating to 100°C followed by LN₂ cooling. Results indicate that the fracture toughness of treated samples is lower than that of untreated samples, and with increasing the anisotropy plane angle, the fracture toughness increases. The scanning electron microscope (SEM) technique is also implemented to evaluate the fracture process zone (FPZ) ahead of the crack tip.

Keywords: heating-cooling, anisotropic rock, fracture toughness, liquid nitrogen

Procedia PDF Downloads 41
183 Let It Rain In Our Conscious To Flourish Our Individual Self Like A Sakura: The Balance Model From Ppt And Rain Spiritual Method Used In A Drugs Prevention Program For Teenagers In A Psychoeducational Manner

Authors: Moise Alin Ionuț Cornel

Abstract:

In a pilot lesson of prevention of consumption drugs in a classroom of teenager`s where the school want them to know how to manage their thoughts and emotions to protect themself an to be strong in an possible environment of drugs consumption. At this classroom was applied the RAIN(Recognize, Accept, Investigation,Non-identify) spiritual method and the balance model from positive and transcultural psychotherapy (PPT) in a manner of a game play for them to understand the methods in an individual experience. The balance model from PPT with his 4 parts and used in 3 ways, and the RAIN spiritual method was used to see how the teenager`s can bring clarity about theirs individual self and how they spend the time and energy in the daily life. The 3 ways of how they can used this model was explained like a analogy with the 3 periods of the SAKURA (Japanese cherry) flourish (kaika, mankai and chiru). The teenager`s received a new perspective and in the same time new tools from the spiritual point of view combined with the psychotherapeutic point of view to manage their thoughts, emotions, time and energy in the form of a psychoeducational game to be able to prevent the use of drugs.

Keywords: addiction, drugs consumption prevention education, psychotherapy, Self, Spirituality, teenagers

Procedia PDF Downloads 39
182 Chlorine Pretreatment Effect on Mechanical Properties of Optical Fiber Glass

Authors: Abhinav Srivastava, Hima Harode, Chandan Kumar Saha

Abstract:

The principal ingredient of an optical fiber is quartz glass. The quality of the optical fiber decreases if impure foreign substances are attached to its preform surface. If residual strain inside a preform is significant, it cracks with a small impact during drawing or transporting. Furthermore, damages and unevenness on the surface of an optical fiber base material break the fiber during drawing. The present work signifies that chlorine pre-treatment enhances mechanical properties of the optical fiber glass. FTIR (Fourier-Transform Infrared Spectroscopy) results show that chlorine gas chemically modifies the structure of silica clad; chlorine is known to soften glass. Metallic impurities on the preform surface likely formed volatile metal chlorides due to chlorine pretreatment at elevated temperature. The chlorine also acts as a drying agent, and therefore the preform surface is anticipated to be water deficient and supposedly avoids particle adhesion on the glass surface. The Weibull analysis of long length tensile strength demarcates a substantial shift in its knee. The higher dynamic fatigue n-value also indicated surface crack healing.

Keywords: mechanical strength, optical fiber glass, FTIR, Weibull analysis

Procedia PDF Downloads 149
181 The Effect of Smartphones on Human Health Relative to User’s Addiction: A Study on a Wide Range of Audiences in Jordan

Authors: T. Qasim, M. Obeidat, S. Al-Sharairi

Abstract:

The objective of this study is to investigate the effect of the excessive use of smartphones. Smartphones have enormous effects on the human body in that some musculoskeletal disorders (MSDs) and health problems might evolve. These days, there is a wide use of the smartphones among all age groups of society, thus, the focus on smartphone effects on human behavior and health, especially on the young and elderly people, becomes a crucial issue. This study was conducted in Jordan on smartphone users for different genders and ages, by conducting a survey to collect data related to the symptoms and MSDs that are resulted from the excessive use of smartphones. A total of 357 responses were used in the analysis. The main related symptoms were numbness, fingers pain, and pain in arm, all linked to age and gender for comparative reasons. A statistical analysis was performed to find the effects of extensive usage of a smartphone for long periods of time on the human body. Results show that the significant variables were the vision problems and the time spent when using the smartphone that cause vision problems. Other variables including age of user and ear problems due to the use of the headsets were found to be a border line significant.

Keywords: smart phone, age group, musculoskeletal disorders (MSDs), health problems

Procedia PDF Downloads 234
180 Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC

Authors: Yu-Zhou Zheng, Wen-Wei Wang

Abstract:

In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results.

Keywords: basalt fiber-reinforced polymer (BFRP) grid, ECC, RC beams, strengthening

Procedia PDF Downloads 314
179 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings

Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch

Abstract:

It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.

Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry

Procedia PDF Downloads 144
178 Digital Wellbeing: A Multinational Study and Global Index

Authors: Fahad Al Beyahi, Justin Thomas, Md Mamunur Rashid

Abstract:

Various definitions of digital well-being have emerged in recent years, most of which center on the impacts -beneficial and detrimental- of digital technology on health and well-being (psychological, social, and financial). Other definitions go further, emphasizing the attainment of balance, viewing digital well-being as wholly subjective, the individual’s perception of optimal balance between the benefits and ills associated with online connectivity. Based on this broad conceptualization of digital well-being, we undertook a global survey measuring various dimensions of this emerging construct. The survey was administered across 35 nations and 7 world regions, with 1000 participants within each territory (N= 35000). Along with attitudinal, behavioral, and sociodemographic variables, the survey included measures of depression, anxiety, problematic social media use, gaming disorder, and other relevant metrics. Coupled with nation-level policy audits, these data were used to create a multinational (global) digital well-being index. Nations are ranked based on various dimensions of digital well-being, and predictive models are used to identify resilience and risk factors for problem technology use. In this paper, we will discuss key findings from the survey and the index. This work can inform public policy and shape our responses to the emerging implications of lives increasingly lived online and interconnected with digital technology.

Keywords: technology, health, behavioral addiction, digital wellbeing

Procedia PDF Downloads 48
177 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar

Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy

Abstract:

The development of new construction materials using recycled plastic is important to both the construction and the plastic recycling industries. Manufacturing of fibers from industrial or post-consumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of ordinary cement based mortar. Parameters investigated include: Fiber length ranging from 20 to 50 mm, and fiber volume fraction ranging from 0% to 1.5% by volume. The test results showed significant improvement in crack arresting mechanism and substantial reduction in the surface area of cracks for the mortar reinforced with recycled plastic fibers compared to plain mortar. Furthermore, test results indicated that there was a slight decrease in compressive strength of mortar reinforced with different lengths and contents of recycled fibers compared to plain mortar. This study suggests that adding more than 1% of RP fibers to mortar, can be used effectively for controlling plastic shrinkage cracking of cement based mortar, and thus results in waste reduction and resources conservation.

Keywords: mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers

Procedia PDF Downloads 377
176 Prediction of Deformations of Concrete Structures

Authors: A. Brahma

Abstract:

Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.

Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction

Procedia PDF Downloads 312
175 The Optimal Location of Brickforce in Brickwork

Authors: Sandile Daniel Ngidi

Abstract:

A brickforce is a product consisting of two main parallel wires joined by in-line welded cross wires. Embedded in the normal thickness of the brickwork joint, the wires are manufactured to a flattened profile to simplify location into the mortar joint without steel build-up problems at lap positions corners/junctions or when used in conjunction with wall ties. A brickforce has been in continuous use since 1918. It is placed in the cement between courses of bricks. Brickforce is used in every course of the foundations and every course above lintel height. Otherwise, brickforce is used every fourth course in between the foundations and lintel height or a concrete slab and lintel height. The brickforce strengthens and stabilizes the wall, especially if you are building on unstable ground. It provides brickwork increased resistance to tensional stresses. Brickforce uses high tensile steel wires, which can withstand high forces but with a very little stretch. This helps to keep crack widths to a minimum. Recently a debate has opened about the purpose of using brickforce in single-story buildings. The debate has been compounded by the fact that there is no consensus about the spacing of brickforce in brickwork or masonry. In addition, very little information had been published on the relative merits of using the same size of brickforce for the different atmospheric conditions in South Africa. This paper aims to compare different types of brickforce systems used in different countries. Conclusions are made to identify the point and location of brickforce that optimize the system.

Keywords: brickforce, masonry concrete, reinforcement, strengthening, wall panels

Procedia PDF Downloads 206
174 Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation

Authors: Hamid Ahmadi, Shadi Asoodeh

Abstract:

The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stress-life (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0˚, saddle, and crown 180˚ positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KT-joint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints.

Keywords: tubular KT-joint, fatigue, degree of bending (DoB), axial loading, parametric formula

Procedia PDF Downloads 337
173 Analyzing the Causes Behind Gas Turbine Blade Failure: A Comprehensive Case Study

Authors: Med. A. Djeridane, M. Ferhat, H. A. Benhorma, O. Bouledroua

Abstract:

This research is dedicated to exploring the failure of a turbine blade within a gas transportation plant, with a primary focus on conducting a comprehensive examination through advanced metallurgical and mechanical analyses of the identified failed blade. Crafted from the nickel superalloy Inconel IN738LC, the turbine engine had accumulated approximately 61,000 operational hours before the blades failed, causing severe damage to the transportation plant and necessitating a prolonged shutdown. The investigative procedure commenced with an in-depth visual inspection of the blade surfaces, succeeded by fractography analysis of the fracture surfaces, microstructural investigations, chemical analysis, and hardness measurements. The findings unveiled distinctive fatigue marks on the fracture surface. Critical microstructural changes were identified as a consequence of the blade's operation at high temperatures. The investigation determined that the crack initiation resulted from coating damage at the leading edge, subsequently propagating through fatigue. Ultimately, due to a reduction in cross-sectional area, the fracture was completed. This comprehensive analysis sheds light on the intricate factors contributing to turbine blade failure and offers valuable insights for enhancing operational reliability in similar environments.

Keywords: gas turbine, blade failure, TCP phases, fatigue, quantitative analysis

Procedia PDF Downloads 36
172 Long-Term Deformations of Concrete Structures

Authors: Abdelmalk Brahma

Abstract:

Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.

Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction

Procedia PDF Downloads 240
171 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells

Authors: András Szekrényes

Abstract:

Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.

Keywords: J-integral, levy method, third-order shell theory, state space solution

Procedia PDF Downloads 100
170 The Failure and Energy Mechanism of Rock-Like Material with Single Flaw

Authors: Yu Chen

Abstract:

This paper investigates the influence of flaw on failure process of rock-like material under uniaxial compression. In laboratory, the uniaxial compression tests of intact specimens and a series of specimens within single flaw were conducted. The inclination angle of flaws includes 0°, 15°, 30°, 45°, 60°, 75° and 90°. Based on the laboratory tests, the corresponding models of numerical simulation were built and loaded in PFC2D. After analysing the crack initiation and failure modes, deformation field, and energy mechanism for both laboratory tests and numerical simulation, it can be concluded that the influence of flaws on the failure process is determined by its inclination. The characteristic stresses increase as flaw angle rising basically. The tensile cracks develop from gentle flaws (α ≤ 30°) and the shear cracks develop from other flaws. The propagation of cracks changes during failure process and the failure mode of a specimen corresponds to the orientation of the flaw. A flaw has significant influence on the transverse deformation field at the middle of the specimen, except the 75° and 90° flaw sample. The input energy, strain energy and dissipation energy of specimens show approximate increase trends with flaw angle rising and it presents large difference on the energy distribution.

Keywords: failure pattern, particle deformation field, energy mechanism, PFC

Procedia PDF Downloads 192
169 Structural Behavior of Laterally Loaded Precast Foamed Concrete Sandwich Panel

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were carried out to investigate the structural behavior of precast foamed concrete sandwich panels (PFCSP) of total number (6) as one-way action slab tested under lateral load. The details of the test setup and procedures were illustrated. The results obtained from the experimental tests were discussed which include the observation of cracking patterns and influence of aspect ratio (L/b). Analytical study of finite element analysis was implemented and degree of composite action of the test panels was also examined in both experimental and analytical studies. Result shows that crack patterns appeared in only one-direction, similar to reports on solid slabs, particularly when both concrete wythes act in a composite manner. Foamed concrete was briefly reviewed and experimental results were compared with the finite element analyses data which gives a reasonable degree of accuracy. Therefore, based on the results obtained, PFCSP slab can be used as an alternative to conventional flooring system.

Keywords: aspect ratio (L/b), finite element analyses (FEA), foamed concrete (FC), precast foamed concrete sandwich panel (PFCSP), ultimate flexural strength capacity

Procedia PDF Downloads 293
168 The Austenite Role in Duplex Stainless Steel Performance

Authors: Farej Ahmed Emhmmed Alhegagi

Abstract:

Duplex stainless steels are attractive material for apparatus working with sea water, petroleum, refineries, chemical plants,vessels, and pipes operating at high temperatures and/or pressures. The role of austenite phase in duplex stainless steels performance was investigated. Zeron 100, stainless steels with 50/50 ferrite / austenite %, specimens were tested for strength, toughness, embrittlement susceptibility, and assisted environmental cracking (AEC) resistance. Specimens were heat treated at 475°C for different times and loaded to well- selected values of load. The load values were chosen to be within the range of higher / lower than the expected toughness. Sodium chloride solution 3.5wt% environment with polarity of -900mV / SCE was used to investigate the material susceptibility to (AEC). Results showed important effect of austenite on specimens overall mechanical properties. Strength was affected by the ductile nature of austenite phase leading to plastic deformation accommodated by austenite slip system. Austenite embrittlement, either by decomposition or nucleation and growth process, was not observed to take place during specimens heat treatment. Cracking due to (AEC) took place in the ferrite grains and avoided the austenite phase. Specimens showed the austenite to act as a crack arrestor during (AEC) of duplex stainless steels.

Keywords: austenite phase, mechanical properties, embrittlement susceptibility, duplex stainless steels

Procedia PDF Downloads 335
167 Pain Control by Ketamine in Combat Situation; Consideration and Outcomes

Authors: Mohammad Javad Behzadnia, Hamidreza Javadzadeh

Abstract:

Background: Pain management is essential to surmounting multi-injured people in an overcrowded emergency setting. Its role would be more apparent when the physician encounters a mass casualty in a war zone or even a military prehospital. Having sedative and analgesic properties, rapid onset and offset effects, and maintaining the cardiovascular and respiratory contain are the main reason for selecting Ketamine as a good choice in the war zone. Methods: In a prospective interventional study in a war zone, we have selected and followed two groups of casualties for pain management. All were men with an average age of 26.6±8 y/o and 27.5 ±7 y/o in A and B groups, respectively. Group A received only Ketamine and Group B received Ketamine and diazepam. Results: This study showed that all of the injured patients who received Ketamine had experienced some agitation, and they may finally need benzodiazepines for sedation, but in group B that received benzodiazepine before or simultaneous with Ketamine, the agitation was significantly reduced. (P Value ≤0.05) Conclusion: Various factors may affect pain score and perception; patients' culture, mental health, previous drug usage, and addiction could alter the pain score in similar situations. It seems that the significant agitation is due to catecholamine release in stressful Moments of the battlefield. Accordingly, this situation could be exacerbated due to ketamine properties. Nonetheless, as a good choice in the war zone, Ketamine is now recommended to combine with benzodiazepines for procedural sedation and analgesia (PSA).

Keywords: battlefield, ketamine, benzodiazepine, pain control

Procedia PDF Downloads 56
166 Repair and Strengthening of Plain and FRC Shear Deficient Beams Using Externally Bonded CFRP Sheets

Authors: H. S. S. Abou El-Mal, H. E. M. Sallam

Abstract:

This paper presents experimental and analytical study on the behavior of repaired and strengthened shear critical RC beams using externally bonded CFRP bi-directional fabrics. The use of CFRP sheets to repair or strengthen RC beams has been repetitively studied and proven feasible. However, the use of combined repair techniques and applying that method to both plain and FRC beams can maximize the shear capacity of RC shear deficient beams. A total of twelve slender beams were tested under four-point bending. The test parameters included CFRP layout, number of layers and fiber direction, injecting cracks before applying repairing sheets, enhancing the flexural capacity to differentiate between shear repair and strengthening techniques, and concrete matrix types. The findings revealed that applying CFRP sheets increased the overall shear capacity, the amount and orientation of wrapping is of prime importance in both repairing and strengthening, CFRP wrapping could change the failure mode from shear to flexural shear, the use of crack injection combined to CFRP wrapping further improved the shear capacity while, applying the previous method to FRC beams enhanced both shear capacity and failure ductility. Acceptable agreement was found between predicted shear capacities using the Canadian code and the experimental results of the current study.

Keywords: CFRP, FRC, repair, shear strengthening

Procedia PDF Downloads 319
165 Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen

Authors: Jaegu Choi, Jae-Mean Koo, Chang-Sung Seok, Byungwoo Moon

Abstract:

Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement.

Keywords: reverse cyclic loading, j-r curve, ESG specimen, incremental plastic displacement

Procedia PDF Downloads 363
164 Development of High Quality Refractory Bricks from Fireclays for Industrial Applications

Authors: David E. Esezobor, Friday I. Apeh, Harrison O. Onovo, Ademola A. Agbeleye

Abstract:

Available indigenous refractory bricks in Nigeria can only be used in the lining of furnaces for melting of cast iron operating at less than 1,400°C or in preheating furnaces due to their low refractoriness less than 1,500°C. The bricks crack and shatter on heating at 1350 to 1450°C. In this paper, a simple and adaptable technology of manufacturing high-quality refractory bricks from selected Nigerian clays for furnace linings was developed. Fireclays from Onibode, Owode-Ketu in Ogun State and Kwoi in Kaduna State were crushed, ground, and sieved into various grain sizes using standard techniques. The pulverized clays were blended with alumina in various mix ratios and indurated in the furnace at 900 – 16000C. Their chemical, microstructure and mineralogical properties were characterized using atomic absorption spectrophotometry, scanning electron microscopy and x-ray diffraction spectrometry respectively. The mineralogical and spectrochemical analyses suggested that the clays are of siliceous alumino-silicate and acidic in nature. The appropriate blending of fireclays with alumina provided the tremendous improvement in the refractoriness of the bricks and other acceptable service properties comparable with imported refractory bricks. The change in microstructure from pseudo-hexagonal grains to equiaxed grains of well – ordered sequence of structural layers could be responsible for the improved properties.

Keywords: alumina, furnace, industry, manufacturing, refractoriness

Procedia PDF Downloads 230
163 Investigation of Leakage, Cracking and Warpage Issues Observed on Composite Valve Cover in Development Phase through FEA Simulation

Authors: Ashwini Shripatwar, Mayur Biyani, Nikhil Rao, Rajendra Bodake, Sachin Sane

Abstract:

This paper documents the correlation of valve cover sealing, cracking, and warpage Finite Element Modelling with observations on engine test development. The valve cover is a component mounted on engine head with a gasket which provides sealing against oil which flows around camshaft, valves, rockers, and other overhead components. Material nonlinearity and contact nonlinearity characteristics are taken into consideration because the valve cover is made of a composite material having temperature dependent elastic-plastic properties and because the gasket load-deformation curve is also nonlinear. The leakage is observed between the valve cover and the engine head due to the insufficient contact pressure. The crack is observed on the valve cover due to force application at a region with insufficient stiffness and with elevated temperature. The valve cover shrinkage is observed during the disassembly process on hot exhaust side bolt holes after the engine has been running. In this paper, an analytical approach is developed to correlate a Finite Element Model with the observed failures and to address the design issues associated with the failure modes in question by making design changes in the model.

Keywords: cracking issue, gasket sealing analysis, nonlinearity of contact and material, valve cover

Procedia PDF Downloads 114
162 Analysis of the Premature In-Service Failure of Engine Mounting Towers of an Industrial Generator

Authors: Stephen J Futter, Michael I Okereke

Abstract:

This paper presents an investigation of the premature in-service failure of the engine mounting towers that form part of the bedframe commonly used for industrial power generation applications. The client during a routine in-service assessment of the generator set observed that the engine mounting towers had cracked. Thus, this study has investigated in detail the origin of the crack and proffered solutions to prevent a re-occurrence. Seven step problem solving methodology was followed during this paper. The study used both experimental and numerical approaches to understand, monitor and evaluate the cause and evolution of the premature failure. Findings from this study indicated that the failure resulted from a combination of varied processes from procurement of material parts, material selection, welding processes and inaptly designed load-bearing mechanics of the generating set and its mounting arrangement. These in-field observations and experimental simulations provided insights to design and validate a numerical finite element sub-model of the cracked bedframe considering thermal cycling: designed as part of these investigations. Resulting findings led to a recommendation of several procedural changes that should be adopted by the manufacturer, in order to prevent the re-occurrence of such pre-mature failure in future industrial applications.

Keywords: Engine, Premature Failure, Failure Analysis, Finite Element Model

Procedia PDF Downloads 265
161 Anti-Bubble Painting Booth for Wood Coating Resins

Authors: Abasali Masoumi, Amir Gholamian Bozorgi

Abstract:

To have the best quality in wood products such as tabletops and inlay-woods, applying two principles are required: aesthetic and protection against the destructive agent. Artists spent a lot of time creating a masterwork project and also for better demonstrating beautiful appearance and preserving it for hundred years. So they need good material and appropriate method to finish it. As usual, wood painters use polyester or epoxy resins. These finishes need a special skill to use and then give a fantastic paint film and clearness. If we let resins dry in exposure to environmental agents such as unstable temperature, dust and etc., no doubt it becomes cloudy, crack, blister and much wood dust and air bubbles in it. We have designed a special wood coating booth (IR-Patent No: 70429) for wood-coating resins (polyester and epoxy), and this booth provides an adjustable space to control factors that is necessary to have a good finish in the end. Anti-bubble painting booth has the ability to remove bubbles from resin, precludes the cracking process and causes the resin to be the best. With this booth drying time of resin is reduced from 24 hours to 6 hours by fixing the optimum temperature, and it is very good for saving time. This booth is environment-friendly and never lets the poisonous vapors and other VOC (Volatile organic components) enter to workplace atmosphere because they are very harmful to humans.

Keywords: wood coating, epoxy resin, polyester resin, wood finishes

Procedia PDF Downloads 194
160 Embodied Spiritualities and Emerging Search for Social Transformation: An Embodied Ethnographic Study of Yoga Practices in Medellin, Colombia

Authors: Lina M. Vidal

Abstract:

This paper discusses yoga practices involvement in both self-transformation and social transformations by means of an embodied ethnographic approach to different initiatives for social change in Medellín. In the context of gradual popularization of embodied spiritualities, yoga practices have opened their way in calls for social change in a performative perspective which involves collective experiences, reflections and production of embodied knowledge. Through the reflection on bodily dimension and corporal experience, this ethnographic approach acknowledges inter-corporality and somatic modes of attention during observations and personal experiences. In social change initiatives that include yoga practices were identified transformations of common understanding on social issues such as it is produced by institutionalized education, health system and other fields of knowledge. This is clearly visible in yoga projects for children in vulnerable conditions, homeless people, prisoners, and young people recovering from drug addiction. These projects are often promoted by organizations and networks, which incorporate individual life stories into collective experiences. Dissemination of yoga is heading to a broad institutional and cultural legitimation of yoga and of spirituality that impact different fields of social work and everyday life in general. This way, yoga is becoming an embodied activist way of life and a legitimate field for social work.

Keywords: embodied ethnography, Medellin, social transformation, embodied spiritualities, yoga practices

Procedia PDF Downloads 160