Search results for: learning goal orientation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10835

Search results for: learning goal orientation

6395 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction

Authors: Omer Cahana, Ofer Levi, Maya Herman

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning

Procedia PDF Downloads 96
6394 Investigating the Impact of Knowledge Management Components on Employee Productivity

Authors: Javad Moghtader Kargaran

Abstract:

Today, attention to knowledge and management Knowledge as a strategy is very important has taken with economy becoming knowledge-oriented, how and knowing the effective management and integration of different types Knowledge (obvious-implicit) to preserve and create advantage. Competition has become very important. Knowledge is a valuable resource for empowering organizations in the direction of innovation and competition. Due to the importance of human resources in the survival of organizations, extensive efforts are made to empower them. This knowledge can lead to awareness among employees. Employees and the knowledge that is in their minds are very valuable resources for the organization, which must be managed and developed. In fact, the ultimate goal of knowledge management is to increase the intelligence and productivity of employees and the organization.

Keywords: knowledge, management, productivity, human

Procedia PDF Downloads 100
6393 Optical and Structural Properties of ZnO Quantum Dots Functionalized with 3-Aminopropylsiloxane Prepared by Sol-gel Method

Authors: M. Pacio, H. Juárez, R. Pérez-Cuapio E. Rosendo, T. Díaz, G. García

Abstract:

In this study, zinc oxide (ZnO) quantum dots (QDs) have been prepared by a simple route. The growth parameters for ZnO QDs were systematically studied inside a SiO2 shell; this shell acts as a capping agent and also enhances stability of the nanoparticles in water. ZnO QDs in silica shell could be produced by initially synthesizing a ZnO colloid (containing ZnO nanoparticles in methanol solution) and then was mixed with 3-aminopropylsiloxane used as SiO2 precursor. ZnO QDs were deposited onto silicon substrates (100) orientation by spin-coating technique. ZnO QDs into a SiO2 shell were pre-heated at 300 °C for 10 min after each coating, that procedure was repeated five times. The films were subsequently annealing in air atmosphere at 500 °C for 2 h to remove the trapped fluid inside the amorphous silica cage. ZnO QDs showed hexagonal wurtzite structure and about 5 nm in diameter. The composition of the films at the surface and in the bulk was obtained by Secondary Ion Mass Spectrometry (SIMS), the spectra revealed the presence of Zn- and Si- related clusters associated to the chemical species in the solid matrix. Photoluminescence (PL) spectra under 325 nm of excitation only show a strong UV emission band corresponding to ZnO QDs, such emission is enhanced with annealing. Our results showed that the method is appropriate for the preparation of ZnO QDs films embedded in a SiO2 shell with high UV photoluminescence.

Keywords: ZnO QDs, sol gel, functionalization

Procedia PDF Downloads 436
6392 Trauma and Its High Influence on Special Education

Authors: Athena Johnson

Abstract:

Special education is an important field but often under-researched, particularly for the cause of learning deficiencies. Often times special education looks at the symptoms rather than the cause, and this can lead to many misdiagnoses. Student trauma, as measured by the Adverse Childhood Experiences (ACE) test, is extremely common, often resulting in Post Traumatic Stress Disorder (PTSD). PTSD affects the brain's ability to learn properly, making students have a much more difficult time with auditory learning and memory due to always being in flight or fight mode, and due to this, students with PTSD are often misdiagnosed with Attention Deficit and Hyperactivity Disorder (ADHD). This can lead to them getting the wrong support, with PTSD students needing more counseling than anything else. Through these research papers' methodologies, a literature review on article research from the perspectives of students who were misdiagnosed, and imperial research, the major findings of this study were the importance of trauma-informed care in schools. Trauma-informed care in the school system is crucial for helping the many students who experience traumatic life events and struggle in school due to it. It is important to support students with PTSD so that they are able to integrate and learn better in society and school with trauma-informed school care.

Keywords: ACE test, ADHD, misdiagnoses, special education, trauma, trauma-informed care, PTSD

Procedia PDF Downloads 117
6391 Investigation of Knitted Fabric Properties Effect on Evaporation Rate

Authors: N. S. Achour, M. Hamdaoui, S. Ben Nasrallah

Abstract:

Evaporation kinetics of water from porous knitted fabrics are studied: An experimental study of determining evaporated water mass (g) versus time (s) from different knitted fabrics was gravimetrically investigated in various atmospheric conditions. Then evaporation rates are calculated. The goal is to determine the effect of fabric composition, knit structure and yarns properties on evaporation rate. The results show that fabrics geometrical properties, such as porosity and thickness, have a significant influence on evaporated water quantities.

Keywords: evaporation rate, experimental study, geometrical properties, porous knitted fabrics

Procedia PDF Downloads 508
6390 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 166
6389 Early Adolescents Motivation and Engagement Levels in Learning in Low Socio-Economic Districts in Sri Lanka (Based on T-Tests Results)

Authors: Ruwandika Perera

Abstract:

Even though the Sri Lankan government provides a reasonable level of support for students at all levels of the school system, for example, free education, textbooks, school uniforms, subsidized public transportation, and school meals, low participation in learning among secondary students is an issue warranting investigation, particularly in low socio-economic districts. This study attempted to determine the levels of motivation and engagement amongst students in a number of schools in two low socio-economic districts of Sri Lanka. This study employed quantitative research design in an attempt to determine levels of motivation and engagement amongst Sri Lankan secondary school students. Motivation and Engagement Scale-Junior School (MES-JS) was administered among 100 Sinhala-medium and 100 Tamil-medium eighth-grade students (50 students from each gender). The mean age of the students was 12.8 years. Schools were represented by type 2 government schools located in Monaragala and Nuwara Eliya districts in Sri Lanka. Confirmatory factor analysis (CFA) was conducted to measure the construct validity of the scale. Since this did not provide a robust solution, exploratory factor analysis (EFA) was conducted. Four factors were identified; Failure Avoidance and Anxiety (FAA), Positive Motivation (PM), Uncertain Control (UC), and Positive Engagement (PE). An independent-samples t-test was conducted to compare PM, PE, FAA, and UC in gender and ethnic groups. There was no significant difference identified for PE, FAA, and UC scales based upon gender. These results indicate that for the participants in this study, there were no significant differences based on gender in the levels of failure avoidance and anxiety, uncertain control, and positive engagement in the school experience. But, the result for the PM scale was close to significant, indicating there may be differences based on gender for positive motivation. A significant difference exists for all scales based on ethnicity, with the mean result for the Tamil students being significantly higher than that for the Sinhala students. These results indicate those Sinhala-medium students’ levels of positive motivation and positive engagement in learning was lower than Tamil-medium students. Also, these results indicate those Tamil-medium students’ levels of failure avoidance, anxiety, and uncertain control was higher than Sinhala-medium students. It could be concluded that male students levels of PM were significantly lower than female students. Also, Sinhala-medium students’ levels of PM and PE was lower than Tamil-medium students, and Tamil-medium students levels of FAA and UC was significantly higher than Sinhala-medium students. Thus, there might be particular school-related conditions affecting this situation, which are related to early adolescents’ motivation and engagement in learning.

Keywords: early adolescents, engagement, low socio-economic districts, motivation

Procedia PDF Downloads 167
6388 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 151
6387 Application of the Pattern Method to Form the Stable Neural Structures in the Learning Process as a Way of Solving Modern Problems in Education

Authors: Liudmyla Vesper

Abstract:

The problems of modern education are large-scale and diverse. The aspirations of parents, teachers, and experts converge - everyone interested in growing up a generation of whole, well-educated persons. Both the family and society are expected in the future generation to be self-sufficient, desirable in the labor market, and capable of lifelong learning. Today's children have a powerful potential that is difficult to realize in the conditions of traditional school approaches. Focusing on STEM education in practice often ends with the simple use of computers and gadgets during class. "Science", "technology", "engineering" and "mathematics" are difficult to combine within school and university curricula, which have not changed much during the last 10 years. Solving the problems of modern education largely depends on teachers - innovators, teachers - practitioners who develop and implement effective educational methods and programs. Teachers who propose innovative pedagogical practices that allow students to master large-scale knowledge and apply it to the practical plane. Effective education considers the creation of stable neural structures during the learning process, which allow to preserve and increase knowledge throughout life. The author proposed a method of integrated lessons – cases based on the maths patterns for forming a holistic perception of the world. This method and program are scientifically substantiated and have more than 15 years of practical application experience in school and student classrooms. The first results of the practical application of the author's methodology and curriculum were announced at the International Conference "Teaching and Learning Strategies to Promote Elementary School Success", 2006, April 22-23, Yerevan, Armenia, IREX-administered 2004-2006 Multiple Component Education Project. This program is based on the concept of interdisciplinary connections and its implementation in the process of continuous learning. This allows students to save and increase knowledge throughout life according to a single pattern. The pattern principle stores information on different subjects according to one scheme (pattern), using long-term memory. This is how neural structures are created. The author also admits that a similar method can be successfully applied to the training of artificial intelligence neural networks. However, this assumption requires further research and verification. The educational method and program proposed by the author meet the modern requirements for education, which involves mastering various areas of knowledge, starting from an early age. This approach makes it possible to involve the child's cognitive potential as much as possible and direct it to the preservation and development of individual talents. According to the methodology, at the early stages of learning students understand the connection between school subjects (so-called "sciences" and "humanities") and in real life, apply the knowledge gained in practice. This approach allows students to realize their natural creative abilities and talents, which makes it easier to navigate professional choices and find their place in life.

Keywords: science education, maths education, AI, neuroplasticity, innovative education problem, creativity development, modern education problem

Procedia PDF Downloads 68
6386 Studies on Race Car Aerodynamics at Wing in Ground Effect

Authors: Dharni Vasudhevan Venkatesan, K. E. Shanjay, H. Sujith Kumar, N. A. Abhilash, D. Aswin Ram, V. R. Sanal Kumar

Abstract:

Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.

Keywords: external aerodynamics, external flow choking, race car aerodynamics, wing in ground effect

Procedia PDF Downloads 360
6385 Resilience-Vulnerability Interaction in the Context of Disasters and Complexity: Study Case in the Coastal Plain of Gulf of Mexico

Authors: Cesar Vazquez-Gonzalez, Sophie Avila-Foucat, Leonardo Ortiz-Lozano, Patricia Moreno-Casasola, Alejandro Granados-Barba

Abstract:

In the last twenty years, academic and scientific literature has been focused on understanding the processes and factors of coastal social-ecological systems vulnerability and resilience. Some scholars argue that resilience and vulnerability are isolated concepts due to their epistemological origin, while others note the existence of a strong resilience-vulnerability relationship. Here we present an ordinal logistic regression model based on the analytical framework about dynamic resilience-vulnerability interaction along adaptive cycle of complex systems and disasters process phases (during, recovery and learning). In this way, we demonstrate that 1) during the disturbance, absorptive capacity (resilience as a core of attributes) and external response capacity explain the probability of households capitals to diminish the damage, and exposure sets the thresholds about the amount of disturbance that households can absorb, 2) at recovery, absorptive capacity and external response capacity explain the probability of households capitals to recovery faster (resilience as an outcome) from damage, and 3) at learning, adaptive capacity (resilience as a core of attributes) explains the probability of households adaptation measures based on the enhancement of physical capital. As a result, during the disturbance phase, exposure has the greatest weight in the probability of capital’s damage, and households with absorptive and external response capacity elements absorbed the impact of floods in comparison with households without these elements. At the recovery phase, households with absorptive and external response capacity showed a faster recovery on their capital; however, the damage sets the thresholds of recovery time. More importantly, diversity in financial capital increases the probability of recovering other capital, but it becomes a liability so that the probability of recovering the household finances in a longer time increases. At learning-reorganizing phase, adaptation (modifications to the house) increases the probability of having less damage on physical capital; however, it is not very relevant. As conclusion, resilience is an outcome but also core of attributes that interacts with vulnerability along the adaptive cycle and disaster process phases. Absorptive capacity can diminish the damage experienced by floods; however, when exposure overcomes thresholds, both absorptive and external response capacity are not enough. In the same way, absorptive and external response capacity diminish the recovery time of capital, but the damage sets the thresholds in where households are not capable of recovering their capital.

Keywords: absorptive capacity, adaptive capacity, capital, floods, recovery-learning, social-ecological systems

Procedia PDF Downloads 139
6384 Teaching Audiovisual Translation (AVT):Linguistic and Technical Aspects of Different Modes of AVT

Authors: Juan-Pedro Rica-Peromingo

Abstract:

Teachers constantly need to innovate and redefine materials for their lectures, especially in areas such as Language for Specific Purposes (LSP) and Translation Studies (TS). It is therefore essential for the lecturers to be technically skilled to handle the never-ending evolution in software and technology, which are necessary elements especially in certain courses at university level. This need becomes even more evident in Audiovisual Translation (AVT) Modules and Courses. AVT has undergone considerable growth in the area of teaching and learning of languages for academic purposes. We have witnessed the development of a considerable number of masters and postgraduate courses where AVT becomes a tool for L2 learning. The teaching and learning of different AVT modes are components of undergraduate and postgraduate courses. Universities, in which AVT is offered as part of their teaching programme or training, make use of professional or free software programs. This paper presents an approach in AVT withina specific university context, in which technology is used by means of professional and nonprofessional software. Students take an AVT subject as part of their English Linguistics Master’s Degree at the Complutense University (UCM) in which they are using professional (Spot) and nonprofessional (Subtitle Workshop, Aegisub, Windows Movie Maker) software packages. The students are encouraged to develop their tasks and projects simulating authentic professional experiences and contexts in the different AVT modes: subtitling for hearing and deaf and hard of hearing population, audio description and dubbing. Selected scenes from TV series such as X-Files, Gossip girl, IT Crowd; extracts from movies: Finding Nemo, Good Will Hunting, School of Rock, Harry Potter, Up; and short movies (Vincent) were used. Hence, the complexity of the audiovisual materials used in class as well as the activities for their projects were graded. The assessment of the diverse tasks carried out by all the students are expected to provide some insights into the best way to improve their linguistic accuracy and oral and written productions with the use of different AVT modes in a very specific ESP university context.

Keywords: ESP, audiovisual translation, technology, university teaching, teaching

Procedia PDF Downloads 519
6383 Research on the Strategy of Old City Reconstruction under Market Orientation: Taking Mutoulong Community in Shenzhen as an Example

Authors: Ziwei Huang

Abstract:

In order to promote Inventory development in Shenzhen, the market-oriented real estate development mode has occupied a dominant position in the urban renewal activities of Shenzhen. This research is based on the theory of role relationship and urban regime, taking the Mutoulong community as the research object. Carries on the case depth analysis found that: Under the situation of absence and dislocation of the government's role, land property rights disputes and lack of communication platforms is the main reason for the problems of nail households and market failures, and the long-term delay in the progress of old city reconstruction. Through the analysis of the cause of the transformation problem and the upper planning and interest coordination mechanism, the optimization strategy of the old city transformation is finally proposed as follows: the establishment of interest coordination platform, the risk assessment of the government's intervention in the preliminary construction of the land, the adaptive construction of laws and regulations, and the re-examination of the interest relationship between the government and the market.

Keywords: Shenzhen city, Mutoulong community, urban regeneration, urban regime theory, role relationship theory

Procedia PDF Downloads 101
6382 A Study on Relationships between Authenticity of Transactions, Quality of Relationships, and Transaction Performances

Authors: Chan Kwon Park, Chae-Bogk Kim, Sung-Min Park

Abstract:

This study is a research on the authenticity of transactions between corporations and quality of their relationships and transaction performances. As the factors of authenticity of transactions, honesty, transparency, customer orientation and consistency were selected; as the factors of quality of relationships, trust and commitment were selected, and as the factors of transactions performances, intention of repeat transactions and switching intention were selected, and on these relationships a hypothesis was established, and verification was conducted. First, the factors of the authenticity of transactions positively influenced the factors of quality of relationships. Thus, a higher level of authenticity of transactions can lead to higher level of trust and commitment. Second, the factors of quality of relationships made a positive influence on the intention of repeat transactions, while a negative influence in the switching intention. Third, it showed that trust and commitment as the factors of quality of relationships functioned partly as the parameter between the authenticity of transactions and transaction performances. Finally, it proved that the factors of the authenticity of transactions improved trust and commitment in transactions between corporations and further improved the intention of repeat transactions while they decreased the switching intention.

Keywords: authenticity of transactions, trust, commitment, intention of repeat transactions, switching intention

Procedia PDF Downloads 379
6381 The Impact of Collective Punishment on Cadets’ Psychology

Authors: Ersegün Ömer Erol

Abstract:

Since the first civilizations, armies have been the most significant part of the countries. As generally known, in today’s world, people are trying hard to find the best way to educate their armies so as to prepare them effectively for the war. Due to the fact that, as rarely known, collective punishment is in fact one of the methods used commonly in militaries in order to educate personnel and cadets. In this study, it is purposed to find out the constructive and unfavorable impacts of collective punishment on cadets’ psychology and by comparing these impacts to decide whether the collective punishment is functional or not. These impacts are obtained from the questionnaire applied on cadets and personnel. The main goal of the study is to provide new point of views and more scientific information about the discussed education way-the collective punishment.

Keywords: army, cadet, collective punishment, psychology

Procedia PDF Downloads 315
6380 Spatial Orientation of Land Use Activities along Buffalo River Estuary: A Study in Buffalo City Metropolitan Municipality, Eastern Cape South Africa

Authors: A. Ngunga, M. K. Soviti, S. Nakin

Abstract:

South Africa is one of the developing countries rich in estuary ecosystem. Previous studies have identified many impacts of land use activities on the pollution status of the estuaries. These land use activity and related practices are often blamed for the many pollution problems affecting the estuaries. For example, the estuarine ecosystems on a global scale are experiencing vast transformations from anthropogenic influences; Buffalo River Estuary is one of the influenced estuaries whereby the sources of pollution are unknown. These problems consequently lead to the degradation of the estuaries. The aim of the research was to establish the factors that have the potential to impact pollution status of Buffalo river estuary. Study focuses on Identifying and mapping land use activities along Buffalo River Estuary. Questionnaire survey, structured interviews, direct observation, GPS survey and ArcGIS mapping were the methods used for data collection in the area, and results were analyzed and presented by ANOVA and Microsoft Excel statistical methods. The results showed that harbour is the main source of pollution, in Buffalo River Estuary, through Ballast water discharge. Therefore that requires more concern for protecting and cleaning the estuary.

Keywords: estuary, land-use activities, pollution, mapping, water pollution

Procedia PDF Downloads 196
6379 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 169
6378 The Effects of Relationship Banking on the Financial Performance of SMEs in Kenya

Authors: Abraham Rotich

Abstract:

The purpose of this study was to determine the effects of relationship banking on the financial performance of SMEs. The paper attempted to establish the link between the constructs of relationship banking and SME performance. The study was guided by relationship lending, relationship monitoring, relationship risk sharing and bundle of products as independent variables while financial performance will be the dependent variable. The study used a quasi experimental design with population being the 620 SMEs who have a relationship banking arrangement with banks in Nairobi. The study used stratified sampling to pick a sample of 235. The population of interest will be the CEOs of the respective companies. The basis of stratification is the sectors in which the SMEs operate in. The study will use a questionnaire to collect data. The questionnaire will have both open and close ended questions. A pilot study will be conducted to test reliability and validity of questionnaire. The data was analyzed using descriptive statistics. Regression analysis was employed to test if there is a relationship between the dependent and the independent variable. The study found evidence that relationship banking positively impacts on financial performance of SMEs. Specifically, the study established that each component of relationship banking in this study i.e relationship lending, monitoring, bundle of products and risk sharing positively affects financial performance.

Keywords: relationship banking, SMEs, financial performance, entrepreneurial orientation

Procedia PDF Downloads 326
6377 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: designing, education management, information systems, matrix technology, process affinity

Procedia PDF Downloads 441
6376 A Comparison of the First Language Vocabulary Used by Indonesian Year 4 Students and the Vocabulary Taught to Them in English Language Textbooks

Authors: Fitria Ningsih

Abstract:

This study concerns on the process of making corpus obtained from Indonesian year 4 students’ free writing compared to the vocabulary taught in English language textbooks. 369 students’ sample writings from 19 public elementary schools in Malang, East Java, Indonesia and 5 selected English textbooks were analyzed through corpus in linguistics method using AdTAT -the Adelaide Text Analysis Tool- program. The findings produced wordlists of the top 100 words most frequently used by students and the top 100 words given in English textbooks. There was a 45% match between the two lists. Furthermore, the classifications of the top 100 most frequent words from the two corpora based on part of speech found that both the Indonesian and English languages employed a similar use of nouns, verbs, adjectives, and prepositions. Moreover, to see the contextualizing the vocabulary of learning materials towards the students’ need, a depth-analysis dealing with the content and the cultural views from the vocabulary taught in the textbooks was discussed through the criteria developed from the checklist. Lastly, further suggestions are addressed to language teachers to understand the students’ background such as recognizing the basic words students acquire before teaching them new vocabulary in order to achieve successful learning of the target language.

Keywords: corpus, frequency, English, Indonesian, linguistics, textbooks, vocabulary, wordlists, writing

Procedia PDF Downloads 190
6375 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 133
6374 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi

Authors: P. Phenpun, S. Wareewan

Abstract:

This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.

Keywords: humanized care service, volunteer activity, nursing student, learning log

Procedia PDF Downloads 309
6373 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior

Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: urban mobility, decongestion, machine learning, neural network

Procedia PDF Downloads 198
6372 Motivation and Multiglossia: Exploring the Diversity of Interests, Attitudes, and Engagement of Arabic Learners

Authors: Anna-Maria Ramezanzadeh

Abstract:

Demand for Arabic language is growing worldwide, driven by increased interest in the multifarious purposes the language serves, both for the population of heritage learners and those studying Arabic as a foreign language. The diglossic, or indeed multiglossic nature of the language as used in Arabic speaking communities however, is seldom represented in the content of classroom courses. This disjoint between the nature of provision and students’ expectations can severely impact their engagement with course material, and their motivation to either commence or continue learning the language. The nature of motivation and its relationship to multiglossia is sparsely explored in current literature on Arabic. The theoretical framework here proposed aims to address this gap by presenting a model and instruments for the measurement of Arabic learners’ motivation in relation to the multiple strands of the language. It adopts and develops the Second Language Motivation Self-System model (L2MSS), originally proposed by Zoltan Dörnyei, which measures motivation as the desire to reduce the discrepancy between leaners’ current and future self-concepts in terms of the second language (L2). The tripartite structure incorporates measures of the Current L2 Self, Future L2 Self (consisting of an Ideal L2 Self, and an Ought-To Self), and the L2 Learning Experience. The strength of the self-concepts is measured across three different domains of Arabic: Classical, Modern Standard and Colloquial. The focus on learners’ self-concepts allows for an exploration of the effect of multiple factors on motivation towards Arabic, including religion. The relationship between Islam and Arabic is often given as a prominent reason behind some students’ desire to learn the language. Exactly how and why this factor features in learners’ L2 self-concepts has not yet been explored. Specifically designed surveys and interview protocols are proposed to facilitate the exploration of these constructs. The L2 Learning Experience component of the model is operationalized as learners’ task-based engagement. Engagement is conceptualised as multi-dimensional and malleable. In this model, situation-specific measures of cognitive, behavioural, and affective components of engagement are collected via specially designed repeated post-task self-report surveys on Personal Digital Assistant over multiple Arabic lessons. Tasks are categorised according to language learning skill. Given the domain-specific uses of the different varieties of Arabic, the relationship between learners’ engagement with different types of tasks and their overall motivational profiles will be examined to determine the extent of the interaction between the two constructs. A framework for this data analysis is proposed and hypotheses discussed. The unique combination of situation-specific measures of engagement and a person-oriented approach to measuring motivation allows for a macro- and micro-analysis of the interaction between learners and the Arabic learning process. By combining cross-sectional and longitudinal elements with a mixed-methods design, the model proposed offers the potential for capturing a comprehensive and detailed picture of the motivation and engagement of Arabic learners. The application of this framework offers a number of numerous potential pedagogical and research implications which will also be discussed.

Keywords: Arabic, diglossia, engagement, motivation, multiglossia, sociolinguistics

Procedia PDF Downloads 168
6371 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 25
6370 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model

Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu

Abstract:

Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.

Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing

Procedia PDF Downloads 256
6369 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 65
6368 The Role of Human Resource Flexibility and Agility in Achieving Sustainable Competitiveness

Authors: Agnieszka Leszczynska

Abstract:

Flexibility and agility constitute the most dominant features of modern human resource management systems. The former pertains to procedures, practices and competences of human resources, and the latter to the procedures and practices’ effectiveness in dealing with changing conditions in the surrounding environment. The purpose of the paper is to present the relations between the flexibility and agility of human resources and achieving sustainable competitiveness. Based upon hitherto research, we develop a conceptual model that links the constructs together. The conducted study is of theoretical and conceptual nature. Critical literature analysis and the synthesis method were applied. A premise was made that the three dimensions of HR (Human Resources) flexibility (employee skill flexibility, employee behaviour flexibility, and HR practice flexibility) and HR agility affect competitiveness, by increasing the flexibility, creativity of human resources, and improving quality performance, and exert an impact upon the quality of life of employees and social relations. In particular, the agility and flexibility of human resources contribute to the growth of adaptability and strategic orientation, which directly affects the organization's competitiveness. The research results will help to better understand the impact of flexibility and agility related to the HRM (Human Resources Management) system upon the implementation of the concept of sustainable development in the organization.

Keywords: agility, human resource, sustainable competitiveness, sustainable development

Procedia PDF Downloads 230
6367 Poly (L-Lysine)-Coated Liquid Crystal Droplets for Sensitive Detection of DNA and Its Applications in Controlled Release of Drug Molecules

Authors: Indu Verma, Santanu Kumar Pal

Abstract:

Interactions between DNA and adsorbed Poly (L-lysine) (PLL) on liquid crystal (LC) droplets were investigated using polarizing optical microcopy (POM) and epi-fluorescence microscopy. Earlier, we demonstrated that adsorption of PLL to the LC/aqueous interface resulted in homeotropic orientation of the LC and thus exhibited a radial configuration of the LC confined within the droplets. Subsequent adsorption of DNA (single stranded DNA/double stranded DNA) at PLL coated LC droplets was found to trigger a LC reorientation within the droplets leading to pre-radial/bipolar configuration of those droplets. To our surprise, subsequent exposure of complementary ssDNA (c-ssDNA) to ssDNA/ adsorbed PLL modified LC droplets did not cause the LC reorientation. This is likely due to the formation of polyplexes (DNA-PLL complex) as confirmed by fluorescence microscopy and atomic force microscopy. In addition, dsDNA adsorbed PLL droplets have been found to be effectively used to displace (controlled release) propidium iodide (a model drug) encapsulated within dsDNA over time. These observations suggest the potential for a label free droplet based LC detection system that can respond to DNA and may provide a simple method to develop DNA-based drug nano-carriers.

Keywords: DNA biosensor, drug delivery, interfaces, liquid crystal droplets

Procedia PDF Downloads 302
6366 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 48