Search results for: structural mode RCS
1779 Optimizing Oxidation Process Parameters of Al-Li Base Alloys Using Taguchi Method
Authors: Muna K. Abbass, Laith A. Mohammed, Muntaha K. Abbas
Abstract:
The oxidation of Al-Li base alloy containing small amounts of rare earth (RE) oxides such as 0.2 wt% Y2O3 and 0.2wt% Nd2O3 particles have been studied at temperatures: 400ºC, 500ºC and 550°C for 60hr in a dry air. Alloys used in this study were prepared by melting and casting in a permanent steel mould under controlled atmosphere. Identification of oxidation kinetics was carried out by using weight gain/surface area (∆W/A) measurements while scanning electron microscopy (SEM) and x-ray diffraction analysis were used for micro structural morphologies and phase identification of the oxide scales. It was observed that the oxidation kinetic for all studied alloys follows the parabolic law in most experimental tests under the different oxidation temperatures. It was also found that the alloy containing 0.2 wt %Y 2O3 particles possess the lowest oxidation rate and shows great improvements in oxidation resistance compared to the alloy containing 0.2 wt % Nd2O3 particles and Al-Li base alloy. In this work, Taguchi method is performed to estimate the optimum weight gain /area (∆W/A) parameter in oxidation process of Al-Li base alloys to obtain a minimum thickness of oxidation layer. Taguchi method is used to formulate the experimental layout, to analyses the effect of each parameter (time, temperature and alloy type) on the oxidation generation and to predict the optimal choice for each parameter and analyzed the effect of these parameters on the weight gain /area (∆W/A) parameter. The analysis shows that, the temperature significantly affects on the (∆W/A) parameter.Keywords: Al-Li base alloy, oxidation, Taguchi method, temperature
Procedia PDF Downloads 3721778 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method
Authors: Michael G. Pantelyat
Abstract:
Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.Keywords: electromagnetic devices, multiphysics, numerical analysis, simulation and design
Procedia PDF Downloads 3861777 Determination of Hydrocarbon Path Migration from Gravity Data Analysis (Ghadames Basin, Southern Tunisia, North Africa)
Authors: Mohamed Dhaoui, Hakim Gabtni
Abstract:
The migration of hydrocarbons is a fairly complicated process that depends on several parameters, both structural and sedimentological. In this study, we will try to determine secondary migration paths which convey hydrocarbon from their main source rock to the largest reservoir of the Paleozoic petroleum system of the Tunisian part of Ghadames basin. In fact, The Silurian source rock is the main source rock of the Paleozoic petroleum system of the Ghadames basin. However, the most solicited reservoir in this area is the Triassic reservoir TAGI (Trias Argilo-Gréseux Inférieur). Several geochemical studies have confirmed that oil products TAGI come mainly from the Tannezuft Silurian source rock. That being said that secondary migration occurs through the fault system which affects the post-Silurian series. Our study is based on analysis and interpretation of gravity data. The gravity modeling was conducted in the northern part of Ghadames basin and the Telemzane uplift. We noted that there is a close relationship between the location of producing oil fields and gravity gradients which separate the positive and negative gravity anomalies. In fact, the analysis and transformation of the Bouguer anomaly map, and the residual gravity map allowed as understanding the architecture of the Precambrian in the study area, thereafter gravimetric models were established allowed to determine the probable migration path.Keywords: basement, Ghadames, gravity, hydrocarbon, migration path
Procedia PDF Downloads 3671776 Effect of Intrinsic Point Defects on the Structural and Optical Properties of SnO₂ Thin Films Grown by Ultrasonic Spray Pyrolysis Method
Authors: Fatiha Besahraoui, M'hamed Guezzoul, Kheira Chebbah, M'hamed Bouslama
Abstract:
SnO₂ thin film is characterized by Atomic Force Microscopy (AFM) and Photoluminescence Spectroscopies. AFM images show a dense surface of columnar grains with a roughness of 78.69 nm. The PL measurements at 7 K reveal the presence of PL peaks centered in IR and visible regions. They are attributed to radiative transitions via oxygen vacancies, Sn interstitials, and dangling bonds. A bands diagram model is presented with the approximate positions of intrinsic point defect levels in SnO₂ thin films. The integrated PL measurements demonstrate the good thermal stability of our sample, which makes it very useful in optoelectronic devices functioning at room temperature. The unusual behavior of the evolution of PL peaks and their full width at half maximum as a function of temperature indicates the thermal sensitivity of the point defects present in the band gap. The shallower energy levels due to dangling bonds and/or oxygen vacancies are more sensitive to the temperature. However, volume defects like Sn interstitials are thermally stable and constitute deep and stable energy levels for excited electrons. Small redshifting of PL peaks is observed with increasing temperature. This behavior is attributed to the reduction of oxygen vacancies.Keywords: transparent conducting oxide, photoluminescence, intrinsic point defects, semiconductors, oxygen vacancies
Procedia PDF Downloads 861775 Re-Engineering Management Process in IRAN’s Smart Schools
Authors: M. R. Babaei, S. M. Hosseini, S. Rahmani, L. Moradi
Abstract:
Today, the quality of education and training systems and the effectiveness of the education systems of most concern to stakeholders and decision-makers of our country's development in each country. In Iran this is a double issue of concern to numerous reasons; So that governments, over the past decade have hardly even paid the running costs of education. ICT is claiming it has the power to change the structure of a program for training, reduce costs and increase quality, and do education systems and products consistent with the needs of the community and take steps to practice education. Own of the areas that the introduction of information technology has fundamentally changed is the field of education. The aim of this research is process reengineering management in schools simultaneously has been using field studies to collect data in the form of interviews and a questionnaire survey. The statistical community of this research has been the country of Iran and smart schools under the education. Sampling was targeted. The data collection tool was a questionnaire composed of two parts. The questionnaire consists of 36 questions that each question designates one of effective factors on the management of smart schools. Also each question consists of two parts. The first part designates the operating position in the management process, which represents the domain's belonging to the management agent (planning, organizing, leading, controlling). According to the classification of Dabryn and in second part the factors affect the process of managing the smart schools were examined, that Likert scale is used to classify. Questions the validity of the group of experts and prominent university professors in the fields of information technology, management and reengineering of approved and Cronbach's alpha reliability and also with the use of the formula is evaluated and approved. To analyse the data, descriptive and inferential statistics were used to analyse the factors contributing to the rating of (Linkert scale) descriptive statistics (frequency table data, mean, median, mode) was used. To analyse the data using analysis of variance and nonparametric tests and Friedman test, the assumption was evaluated. The research conclusions show that the factors influencing the management process re-engineering smart schools in school performance is affected.Keywords: re-engineering, management process, smart school, Iran's school
Procedia PDF Downloads 2441774 A Survey Proposal towards Holistic Management of Schizophrenia
Authors: Pronab Ganguly, Ahmed A. Moustafa
Abstract:
Holistic management of schizophrenia involves mainstream pharmacological intervention, complimentary medicine intervention, therapeutic intervention and other psychosocial factors such as accommodation, education, job training, employment, relationship, friendship, exercise, overall well-being, smoking, substance abuse, suicide prevention, stigmatisation, recreation, entertainment, violent behaviour, arrangement of public trusteeship and guardianship, day-day-living skill, integration with community, and management of overweight due to medications and other health complications related to medications amongst others. Our review shows that there is no integrated survey by combining all these factors. An international web-based survey was conducted to evaluate the significance of all these factors and present them in a unified manner. It is believed this investigation will contribute positively towards holistic management of schizophrenia. There will be two surveys. In the pharmacological intervention survey, five popular drugs for schizophrenia will be chosen and their efficacy as well as harmful side effects will be evaluated on a scale of 0 -10. This survey will be done by psychiatrists. In the second survey, each element of therapeutic intervention and psychosocial factors will be evaluated according to their significance on a scale of 0 - 10. This survey will be done by care givers, psychologists, case managers and case workers. For the first survey, professional bodies of psychiatrists in English speaking countries will be contacted to request them to ask their members to participate in the survey. For the second survey, professional bodies of clinical psychologist and care givers in English speaking countries will be contacted to request them to ask their members to participate in the survey. Additionally, for both the surveys, relevant professionals will be contacted through personal contact networks. For both the surveys, mean, mode, median, standard deviation and net promoter score will be calculated for each factor and then presented in a statistically significant manner. Subsequently each factor will be ranked according to their statistical significance. Additionally, country specific variation will be highlighted to identify the variation pattern. The results of these surveys will identify the relative significance of each type of pharmacological intervention, each type of therapeutic intervention and each type of psychosocial factor. The determination of this relative importance will definitely contribute to the improvement in quality of life for individuals with schizophrenia.Keywords: schizophrenia, holistic management, antipsychotics, quality of life
Procedia PDF Downloads 1501773 Material Supply Mechanisms for Contemporary Assembly Systems
Authors: Rajiv Kumar Srivastava
Abstract:
Manufacturing of complex products such as automobiles and computers requires a very large number of parts and sub-assemblies. The design of mechanisms for delivery of these materials to the point of assembly is an important manufacturing system and supply chain challenge. Different approaches to this problem have been evolved for assembly lines designed to make large volumes of standardized products. However, contemporary assembly systems are required to concurrently produce a variety of products using approaches such as mixed model production, and at times even mass customization. In this paper we examine the material supply approaches for variety production in moderate to large volumes. The conventional approach for material delivery to high volume assembly lines is to supply and stock materials line-side. However for certain materials, especially when the same or similar items are used along the line, it is more convenient to supply materials in kits. Kitting becomes more preferable when lines concurrently produce multiple products in mixed model mode, since space requirements could increase as product/ part variety increases. At times such kits may travel along with the product, while in some situations it may be better to have delivery and station-specific kits rather than product-based kits. Further, in some mass customization situations it may even be better to have a single delivery and assembly station, to which an entire kit is delivered for fitment, rather than a normal assembly line. Finally, in low-moderate volume assembly such as in engineered machinery, it may be logistically more economical to gather materials in an order-specific kit prior to launching final assembly. We have studied material supply mechanisms to support assembly systems as observed in case studies of firms with different combinations of volume and variety/ customization. It is found that the appropriate approach tends to be a hybrid between direct line supply and different kitting modes, with the best mix being a function of the manufacturing and supply chain environment, as well as space and handling considerations. In our continuing work we are studying these scenarios further, through the use of descriptive models and progressing towards prescriptive models to help achieve the optimal approach, capturing the trade-offs between inventory, material handling, space, and efficient line supply.Keywords: assembly systems, kitting, material supply, variety production
Procedia PDF Downloads 2261772 Statistical Mechanical Approach in Modeling of Hybrid Solar Cells for Photovoltaic Applications
Authors: A. E. Kobryn
Abstract:
We present both descriptive and predictive modeling of structural properties of blends of PCBM or organic-inorganic hybrid perovskites of the type CH3NH3PbX3 (X=Cl, Br, I) with P3HT, P3BT or squaraine SQ2 dye sensitizer, including adsorption on TiO2 clusters having rutile (110) surface. In our study, we use a methodology that allows computing the microscopic structure of blends on the nanometer scale and getting insight on miscibility of its components at various thermodynamic conditions. The methodology is based on the integral equation theory of molecular liquids in the reference interaction site representation/model (RISM) and uses the universal force field. Input parameters for RISM, such as optimized molecular geometries and charge distribution of interaction sites, are derived with the use of the density functional theory methods. To compare the diffusivity of the PCBM in binary blends with P3HT and P3BT, respectively, the study is complemented with MD simulation. A very good agreement with experiment and the reports of alternative modeling or simulation is observed for PCBM in P3HT system. The performance of P3BT with perovskites, however, seems as expected. The calculated nanoscale morphologies of blends of P3HT, P3BT or SQ2 with perovskites, including adsorption on TiO2, are all new and serve as an instrument in rational design of organic/hybrid photovoltaics. They are used in collaboration with experts who actually make prototypes or devices for practical applications.Keywords: multiscale theory and modeling, nanoscale morphology, organic-inorganic halide perovskites, three dimensional distribution
Procedia PDF Downloads 1551771 Impact Position Method Based on Distributed Structure Multi-Agent Coordination with JADE
Authors: YU Kaijun, Liang Dong, Zhang Yarong, Jin Zhenzhou, Yang Zhaobao
Abstract:
For the impact monitoring of distributed structures, the traditional positioning methods are based on the time difference, which includes the four-point arc positioning method and the triangulation positioning method. But in the actual operation, these two methods have errors. In this paper, the Multi-Agent Blackboard Coordination Principle is used to combine the two methods. Fusion steps: (1) The four-point arc locating agent calculates the initial point and records it to the Blackboard Module.(2) The triangulation agent gets its initial parameters by accessing the initial point.(3) The triangulation agent constantly accesses the blackboard module to update its initial parameters, and it also logs its calculated point into the blackboard.(4) When the subsequent calculation point and the initial calculation point are within the allowable error, the whole coordination fusion process is finished. This paper presents a Multi-Agent collaboration method whose agent framework is JADE. The JADE platform consists of several agent containers, with the agent running in each container. Because of the perfect management and debugging tools of the JADE, it is very convenient to deal with complex data in a large structure. Finally, based on the data in Jade, the results show that the impact location method based on Multi-Agent coordination fusion can reduce the error of the two methods.Keywords: impact monitoring, structural health monitoring(SHM), multi-agent system(MAS), black-board coordination, JADE
Procedia PDF Downloads 1781770 Performance Evaluations of Lap Spliced Joint of Decked Bulb-Tee Type Modular Bridge
Authors: Sang-Yoon Lee, Jae-Joon Song
Abstract:
Precast decked bulb-tee girder or precast deck generally adopts in-situ connections of loop joints. Loop joint could be an effective method to connect precast concrete members where the width of joint is not wide sufficiently to allow the lap splice length of reinforcing bars. However, the regulation for the minimum bend diameter of looped rebar gives limitation not to reduce the thickness of precast concrete member; thus, in-situ connection adopting loop joint place a constraint on improving the structural efficiency of precast concrete member. Ultra high strength concrete (UHSC) is effective on reduce the development and lap splice length of reinforcing bar. In-situ connection with UHSC gives a merit to reduce connection width. This study intends to investigate the details of the longitudinal joint to be applied in the precast modular bridge using decked bulb-tee girder that has been recently developed in Korea. This paper presents the details applying UHSC and lap splices of straight reinforcement and results of tests. Several tests were performed on flexural specimens with longitudinal joints to verify the length of the lap splices and amount of transverse reinforcement, and to examine the flexural strength of the longitudinal joint.Keywords: precast structure, decked bulb-tee girder, in-situ connection, UHSC, modular bridge
Procedia PDF Downloads 4611769 Study the Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties
Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari
Abstract:
Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5 wt% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, acid value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the cured films were observed by scanning electron microscopy. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.Keywords: alkyd resin, nano-coatings, dehydration, palm oil
Procedia PDF Downloads 3101768 Microstructural and Optical Characterization of High-quality ZnO Nano-rods Deposited by Simple Electrodeposition Process
Authors: Somnath Mahato, Minarul Islam Sarkar, Luis Guillermo Gerling, Joaquim Puigdollers, Asit Kumar Kar
Abstract:
Nanostructured Zinc Oxide (ZnO) thin films have been successfully deposited on indium tin oxide (ITO) coated glass substrates by a simple two electrode electrodeposition process at constant potential. The preparative parameters such as deposition time, deposition potential, concentration of solution, bath temperature and pH value of electrolyte have been optimized for deposition of uniform ZnO thin films. X-ray diffraction studies reveal that the prepared ZnO thin films have a high preferential oriented c-axis orientation with compact hexagonal (wurtzite) structure. Surface morphological studies show that the ZnO films are smooth, continuous, uniform without cracks or holes and compact with nanorod-like structure on the top of the surface. Optical properties reveal that films exhibit higher absorbance in the violet region of the optical spectrum; it gradually decreased in the visible range with increases in wavelength and became least at the beginning of NIR region. The photoluminescence spectra shows that the observed peaks are attributed to the various structural defects in the nanostructured ZnO crystal. The microstructural and optical properties suggest that the electrodeposited ZnO thin films are suitable for application in photosensitive devices such as photovoltaic solar cells photoelectrochemical cells and light emitting diodes etc.Keywords: electrodeposition, microstructure, optical properties, ZnO thin films
Procedia PDF Downloads 3211767 Hierarchical Optimization of Composite Deployable Bridge Treadway Using Particle Swarm Optimization
Authors: Ashraf Osman
Abstract:
Effective deployable bridges that are characterized by an increased capacity to weight ratio are recently needed for post-disaster rapid mobility and military operations. In deployable bridging, replacing metals as the fabricating material with advanced composite laminates as lighter alternatives with higher strength is highly advantageous. This article presents a hierarchical optimization strategy of a composite bridge treadway considering maximum strength design and bridge weight minimization. Shape optimization of a generic deployable bridge beam cross-section is performed to achieve better stress distribution over the bridge treadway hull. The developed cross-section weight is minimized up to reserving the margins of safety of the deployable bridging code provisions. Hence, the strength of composite bridge plates is maximized through varying the plies orientation. Different loading cases are considered of a tracked vehicle patch load. The orthotropic plate properties of a composite sandwich core are used to simulate the bridge deck structural behavior. Whereas, the failure analysis is conducted using Tsai-Wu failure criterion. The naturally inspired particle swarm optimization technique is used in this study. The proposed technique efficiently reduced the weight to capacity ratio of the developed bridge beam.Keywords: CFRP deployable bridges, disaster relief, military bridging, optimization of composites, particle swarm optimization
Procedia PDF Downloads 1411766 An Optimal Hybrid EMS System for a Hyperloop Prototype Vehicle
Authors: J. F. Gonzalez-Rojo, Federico Lluesma-Rodriguez, Temoatzin Gonzalez
Abstract:
Hyperloop, a new mode of transport, is gaining significance. It consists of the use of a ground-based transport system which includes a levitation system, that avoids rolling friction forces, and which has been covered with a tube, controlling the inner atmosphere lowering the aerodynamic drag forces. Thus, hyperloop is proposed as a solution to the current limitation on ground transportation. Rolling and aerodynamic problems, that limit large speeds for traditional high-speed rail or even maglev systems, are overcome using a hyperloop solution. Zeleros is one of the companies developing technology for hyperloop application worldwide. It is working on a concept that reduces the infrastructure cost and minimizes the power consumption as well as the losses associated with magnetic drag forces. For this purpose, Zeleros proposes a Hybrid ElectroMagnetic Suspension (EMS) for its prototype. In the present manuscript an active and optimal electromagnetic suspension levitation method based on nearly zero power consumption individual modules is presented. This system consists of several hybrid permanent magnet-coil levitation units that can be arranged along the vehicle. The proposed unit manages to redirect the magnetic field along a defined direction forming a magnetic circuit and minimizing the loses due to field dispersion. This is achieved using an electrical steel core. Each module can stabilize the gap distance using the coil current and either linear or non-linear control methods. The ratio between weight and levitation force for each unit is 1/10. In addition, the quotient between the lifted weight and power consumption at the target gap distance is 1/3 [kg/W]. One degree of freedom (DoF) (along the gap direction) is controlled by a single unit. However, when several units are present, a 5 DoF control (2 translational and 3 rotational) can be achieved, leading to the full attitude control of the vehicle. The proposed system has been successfully tested reaching TRL-4 in a laboratory test bench and is currently in TRL-5 state development if the module association in order to control 5 DoF is considered.Keywords: active optimal control, electromagnetic levitation, HEMS, high-speed transport, hyperloop
Procedia PDF Downloads 1461765 Electrodeposition and Selenization of Cuin Alloys for the Synthesis of Photoactive Cu2in1-X Gax Se2 (Cigs) Thin Films
Authors: Mohamed Benaicha, Mahdi Allam
Abstract:
A new two stage electrochemical process as a safe, large area and low processing cost technique for the production of semi-conducting CuInSe2 (CIS) thin films is studied. CuIn precursors were first potentiostatically electrodeposited onto molybdenum substrates from an acidic thiocyanate electrolyte. In a second stage, the prepared metallic CuIn layers were used as substrate in the selenium electrochemical deposition system and subjected to a thermal treatment in vacuum atmosphere, to eliminate binary phase formation by reaction of the Cu2-x Se and InxSey selenides, leading to the formation of CuInSe2 thin film. Electrochemical selenization from aqueous electrolyte is introduced as an alternative to toxic and hazardous H2Se or Se vapor phase selenization used in physical techniques. In this study, the influence of film deposition parameters such as bath composition, temperature and potential on film properties was studied. The electrochemical, morphological, structural and compositional properties of electrodeposited thin films were characterized using various techniques. Results of Cyclic and Stripping-Cyclic Voltammetry (CV, SCV), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray microanalysis (EDX) investigations revealed good reproducibility and homogeneity of the film composition. Thereby optimal technological parameters for the electrochemical production of CuIn, Se as precursors for CuInSe2 thin layers are determined.Keywords: photovoltaic, CIGS, copper alloys, electrodeposition, thin films
Procedia PDF Downloads 4641764 Protective Role of CoQ10 or L-Carnitine on the Integrity of the Myocardium in Doxorubicin Induced Toxicity
Authors: Gehan A. Hegazy, Hesham N. Mustafa, Sally A. El Awdan, Marawan AbdelBaset
Abstract:
Doxorubicin (DOX) is a chemotherapeutic agent used for the treatment of different cancers and its clinical usage is hindered by the oxidative injury-related cardiotoxicity. This work aims to declare if the harmful effects of DOX on the heart can be alleviated with the use of Coenzyme Q10 (CoQ10) or L-carnitine. The study was performed on seventy-two female Wistar albino rats divided into six groups, 12 animals each: Control group; DOX group (10 mg/kg); CoQ10 group (200 mg/kg); L-carnitine group (100 mg/kg); DOX + CoQ10 group; DOX + L-carnitine group. CoQ10 and L-carnitine treatment orally started five days before a single dose of 10 mg/kg DOX that injected intraperitoneally (IP) then the treatment continued for ten days. At the end of the study, serum biochemical parameters of cardiac damage, oxidative stress indices, and histopathological changes were investigated. CoQ10 or L-carnitine showed noticeable effects in improving cardiac functions evidenced reducing serum enzymes as serum interleukin-1 beta (IL-1), tumor necrosis factor alpha (TNF-), leptin, lactate dehydrogenase (LDH), Cardiotrophin-1, Troponin-I and Troponin-T. Also, alleviate oxidative stress, decrease of cardiac Malondialdehyde (MDA), Nitric oxide (NO) and restoring cardiac reduced glutathione levels to normal levels. Both corrected the cardiac alterations histologically and ultrastructurally. With visible improvements in -SMA, vimentin and eNOS immunohistochemical markers. CoQ10 or L-carnitine supplementation improves the functional and structural integrity of the myocardium.Keywords: CoQ10, doxorubicin, L-Carnitine, cardiotoxicity
Procedia PDF Downloads 1701763 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door
Authors: Zainab Fadhil Al Toki, Nader Ghareeb
Abstract:
This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers
Procedia PDF Downloads 521762 A Relationship between Transformational Leadership, Internal Audit and Risk Management Implementation in the Indonesian Public Sector
Authors: Tio Novita Efriani
Abstract:
Public sector organizations work in a complex and risky environment. Since the beginning of 2000s, the public sector has paid attention to the need for an effective risk management. The Indonesian public sector has also concerned about this issue and in 2008 it enacted the Government Regulation that gives mandate for the implementation of risk management in government organizations. This paper investigates risk management implementation in the Indonesian public sector organizations and the role of transformational leadership and internal audit activities. Data was collected via survey. A total of 202 effective responses (30% response rate) from employees in 34 government ministries were statistically analyzed by using Partial least square structural equation modelling (PLS-SEM) and the software was SmartPLS 3.0. All the constructs were lower order, except for the risk management implementation construct, which was treated as a second-order construct. A two-stage approach was employed in the analysis of the higher order component. The findings revealed that transformational leadership positively influence risk management implementation. The findings also found that the core and legitimate roles of internal audit in risk management positively affect the implementation of risk management. The final finding showed that internal auditing mediates a relationship between transformational leadership and risk management implementation. These results suggest that the implementation of risk management in the Indonesian public sector was significantly supported by internal auditors and leadership. The findings confirm the importance of transformational leadership and internal audit in the public sector risk management strategies.Keywords: Indonesian public sector, internal audit, risk management, transformational leadership
Procedia PDF Downloads 2021761 Torque Loss Prediction Test Method of Bolted Joints in Heavy Commercial Vehicles
Authors: Volkan Ayik
Abstract:
Loosening as a result of torque loss in bolted joints is one of the most encountered problems resulting in loss of connection between parts. The main reason for this is the dynamic loads to which the joints are subjected while the vehicle is moving. In particular, vibration-induced loads can loosen the joints in any size and geometry. The aim of this study is to study an improved method due to road-induced vibration in heavy commercial vehicles for estimating the vibration performance of bolted joints of the components connected to the chassis, before conducting prototype level vehicle structural strength tests on a proving ground. The frequency and displacements caused by the road conditions-induced vibration loads have been determined for the parts connected to the chassis, and various experimental design scenarios have been formed by matching specific components and vibration behaviors. In the studies, the performance of the torque, washer, test displacement, and test frequency parameters were observed by maintaining the connection characteristics on the vehicle, and the sensitivity ratios for these variables were calculated. As a result of these experimental design findings, tests performed on a developed device based on Junker’s vibration device and proving ground conditions versus test correlation levels were found.Keywords: bolted joints, junker’s test, loosening failure, torque loss
Procedia PDF Downloads 1241760 An Islamic Microfinance Business Model in Bangladesh and Its Role in Poverty Alleviation
Authors: Abul Hassan
Abstract:
Present socio-economic context and women wellbeing in Bangladesh imposes lots of constraints on women’s involvement in income generating activities. Different studies showed that the implementation of World Bank structural adjustment policies have had mixed impacts on women and their wellbeing. By involving poor people specially women in Islamic microfinance programmes in Bangladesh are used as a tool to combat poverty. Women are specifically targeted by Islamic microfinance under the rural development scheme of Islami Bank Bangladesh that provide interest free loan to the women groups. The programme has a multiplier effect since women invest largely in their households. The aim of this research is twofold: firstly, it wanted to confirm or refute a positive link between Islamic microfinance and the socio-economic wellbeing of women in Bangladesh and secondly, to explore the context in which Islamic microfinance programs function in Bangladesh and the way their performance can be improved. Based on structured questionnaires’ survey, this study addressed two research questions: (1) What can be expected from the offer of Islamic microfinance on the welfare of recipients and (2) Under what conditions would such an offer be more beneficial. The main result of this study shows that increase in women’s income and assets played a very important role in enhancing women’s economic independence and sense of self-confidence. An important policy recommendation is that it is necessary to redirect Islamic microfinance towards diversified developmental activities that will contribute to the improvement, in the long run, of the wellbeing of the recipients.Keywords: business model, Islamic microfinance, women’s wellbeing
Procedia PDF Downloads 3881759 University Students’ Perception on Public Transit in Dhaka City
Authors: Mosabbir Pasha, Ijaj Mahmud Chowdhury, M. A. Afrahim Bhuiyann
Abstract:
With the increasing population and intensive land use, huge traffic demand is generating worldwide both in developing and developed countries. As a developing country, Bangladesh is also facing the same problem in recent years by producing huge numbers of daily trips. As a matter of fact, extensive traffic demand is increasing day by day. Also, transport system in Dhaka is heterogeneous, reflecting the heterogeneity in the socio-economic and land use patterns. As a matter of fact, trips produced here are for different purposes such as work, business, educational etc. Due to the significant concentration of educational institutions a large share of the trips are generated by educational purpose. And one of the major percentages of educational trips is produced by university going students and most of them are travelled by car, bus, train, taxi, rickshaw etc. The aim of the study was to find out the university students’ perception on public transit ridership. A survey was conducted among 330 students from eight different universities. It was found out that 26% of the trips produced by university going students are travelled by public bus service and only 5% are by train. Percentage of car share is 16% and 12% of the trips are travelled by private taxi. From the study, it has been found that more than 42 percent student’s family resides outside of Dhaka, eventually they prefer bus instead of other options. Again those who chose to walk most of the time, of them, over 40 percent students’ family reside outside of Dhaka and of them over 85 percent students have a tendency to live in a mess. They generally choose a neighboring location to their respective university so that they can reach their destination by walk. On the other hand, those who travel by car 80 percent of their family reside inside Dhaka. The study also revealed that the most important reason that restricts students not to use public transit is poor service. Negative attitudes such as discomfort, uneasiness in using public transit also reduces the usage of public transit. The poor waiting area is another major cause of not using public transit. Insufficient security also plays a significant role in not using public transit. On the contrary, the fare is not a problem for students those who use public transit as a mode of transportation. Students also think stations are not far away from their home or institution and they do not need to wait long for the buses or trains. It was also found accessibility to public transit is moderate.Keywords: traffic demand, fare, poor service, public transit ridership
Procedia PDF Downloads 2681758 Electrokinetic Regulation of Flow in Microcrack Reservoirs
Authors: Aslanova Aida Ramiz
Abstract:
One of the important aspects of rheophysical problems in oil and gas extraction is the regulation of thermohydrodynamic properties of liquid systems using physical and physicochemical methods. It is known that the constituent parts of real fluid systems in oil and gas production are practically non-conducting, non-magnetically active components. Real heterogeneous hydrocarbon systems, from the structural point of view, consist of an infinite number of microscopic local ion-electrostatic cores distributed in the volume of the dispersion medium. According to Cohen's rule, double electric layers are formed at the contact boundaries of components in contact (oil-gas, oil-water, water-condensate, etc.) in a heterogeneous system, and as a result, each real fluid system can be represented as a complex composition of a set of local electrostatic fields. The electrokinetic properties of this structure are characterized by a certain electrode potential. Prof. F.H. Valiyev called this potential the α-factor and came up with the idea that many natural and technological rheophysical processes (effects) are essentially electrokinetic in nature, and by changing the α-factor, it is possible to adjust the physical properties of real hydraulic systems, including thermohydrodynamic parameters. Based on this idea, extensive research work was conducted, and the possibility of reducing hydraulic resistances and improving rheological properties was experimentally discovered in real liquid systems by reducing the electrical potential with various physical and chemical methods.Keywords: microcracked, electrode potential, hydraulic resistance, Newtonian fluid, rheophysical properties
Procedia PDF Downloads 771757 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change
Authors: Volker Wannack
Abstract:
Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.Keywords: hydrogen, blockchain, sustainability, innovation, structural change
Procedia PDF Downloads 1691756 Potential Serological Biomarker for Early Detection of Pregnancy in Cows
Authors: Shveta Bathla, Preeti Rawat, Sudarshan Kumar, Rubina Baithalu, Jogender Singh Rana, Tushar Kumar Mohanty, Ashok Kumar Mohanty
Abstract:
Pregnancy is a complex process which includes series of events such as fertilization, formation of blastocyst, implantation of embryo, placental formation and development of fetus. The success of these events depends on various interactions which are synchronized by endocrine interaction between a receptive dam and competent embryo. These interactions lead to change in expression of hormones and proteins. But till date no protein biomarker is available which can be used to detect successful completion of these events. We employed quantitative proteomics approach to develop putative serological biomarker which has diagnostic applicability for early detection of pregnancy in cows. For this study, sera were collected from control (non-pregnant, n=6) and pregnant animals on successive days of pregnancy (7, 19, 45, n=6). The sera were subjected to depletion for removal of albumin using Norgen depletion kit. The tryptic peptides were labeled with iTRAQ. The peptides were pooled and fractionated using bRPLC over 80 min gradient. Then 12 fractions were injected to nLC for identification and quantitation in DDA mode using ESI. Identification using Mascot search revealed 2056 proteins out of which 352 proteins were differentially expressed. Twenty proteins were upregulated and twelve proteins were down-regulated with fold change > 1.5 and < 0.6 respectively (p < 0.05). The gene ontology studies of DEPs using Panther software revealed that majority of proteins are actively involved in catalytic activities, binding and enzyme regulatory activities. The DEP'S such as NF2, MAPK, GRIPI, UGT1A1, PARP, CD68 were further subjected to pathway analysis using KEGG and Cytoscape plugin Cluego that showed involvement of proteins in successful implantation, maintenance of pluripotency, regulation of luteal function, differentiation of endometrial macrophages, protection from oxidative stress and developmental pathways such as Hippo. Further efforts are continuing for targeted proteomics, western blot to validate potential biomarkers and development of diagnostic kit for early pregnancy diagnosis in cows.Keywords: bRPLC, Cluego, ESI, iTRAQ, KEGG, Panther
Procedia PDF Downloads 4611755 Disaster Management and Resilience: A Conceptual Synthesis of Local
Authors: Oshienemen Albert, Dilanthi Amaratunga, Richard Haigh
Abstract:
Globally, disasters of any form can affect the environment, built environment, the waterways, societies, nations and communities in diverse areas. The such impacts could cut across, economic loss, social setting, cultural and livelihood structures of affected population. Thus, the raise of disaster impacts across developing nations are alarming with decades impact due to the lack of hard and soft infrastructural development across communities, inconsistency in the governmental policy and implementation, making it difficult for disaster affected communities to bounce back when necessary, especially in Nigeria. The Nigeria disasters, especially oil spillages have affected diverse communities across the Niger Delta region for decades with little or nothing as external support for the broken livelihood structure, cultural and economic damages of the people. Though, in the spirit of contribution to the communities affected by oil spill and negative consequence of petroleum production, the federal government at different times established some impressionistic bodies and agencies to oversee the affairs of the region as with regards to oil spillages and development. Thus, the agencies contributions are yet to manifest in practice. This amplifies the quest for the structural clarities of the management systems and the resilience’s of the communities, to better equip the communities for any such disaster. Therefore, the study sets to explore the Nigerian disaster management systems and resilience concept at local community level. Thus, desk-based approach and interviews are employed for the synthesis while, drawing conclusion and recommendations.Keywords: disaster, community, management, resilience
Procedia PDF Downloads 1861754 Risk Assessment of Roof Structures in Concepcion, Tarlac in the Event of an Ash Fall
Authors: Jerome Michael J. Sadullo, Jamaica Lois A. Torres, Trisha Muriel T. Valino
Abstract:
In the Philippines, Central Luzon is one of the regions at high risk in terms of volcanic eruption. In fact, last June 15, 1991, which were the Mount Pinatubo has erupted, the most affected provinces were Zambales, Olangapo, Pampanga, Tarlac, Bataan, Bulacan and Nueva Ecija. During the Mount Pinatubo eruption, Castillejos, Zambales, has recorded the most significant damage to both commercial and residential structures. In this study, the researchers aim to determine and analyze the various impacts of ashfall on roof structures in Concepcion, Tarlac, during the event of a volcanic eruption. In able for the researcher to determine the sample size of the study, they have utilized Cochran's sample size formula. With the computed sample size, the researchers have gathered data through the distribution of survey forms, utilizing public records, and picture documentation of different roof structures in Concepcion, Tarlac. With the data collected, Chi-squared goodness of fit was done by the researcher in order to compare the data collected from the observed N (Concepcion, Tarlac) and expected N (Castillejos, Zambales). The results showed that when it comes to the roof constructions material used in Concepcion, Tarlac and Castillejos, Zambales. Structures in Concepcion, Tarlac were most likely to suffer worse when another eruption happens compared to the structures in Castillejos, Zambales. Yet, considering the current structural statuses of structure in Concepcion Tarlac and its location from Mount Pinatubo, they are less likely to experience ashfall.Keywords: risk assessment, Concepcion, Tarlac, Volcano Pinatubo, roof structures, ashfall
Procedia PDF Downloads 1071753 The “Bright Side” of COVID-19: Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective
Authors: Isaac Owusu Asante, Yushi Jiang, Hailin Tao
Abstract:
Live streaming marketing, the new electronic commerce element, became an optional marketing channel following the COVID-19 pandemic. Many sellers have leveraged the features presented by live streaming to increase sales. Studies on live streaming have focused on gaming and consumers’ loyalty to brands through live streaming, using interview questionnaires. This study, however, was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during live streaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study introduces a new way of measuring interactions in live streaming commerce and proposes a way to manually gather data on consumer behaviors in live streaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.Keywords: livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness
Procedia PDF Downloads 811752 Determination of Failure Modes of Screwed Connections in Cold-Formed Steel Structures
Authors: Mahyar Maali, Merve Sagiroglu
Abstract:
Steel, which is one of the base materials we prefer in the building construction, is the material with the highest ratio to weight of carrying capacity. Due to the carrying capacity, lighter and better quality steel in smaller sections and sizes has recently been used as a frame system in cold-formed steel structures. While light steel elements used as secondary frame elements during the past, they have nowadays started to be preferred as the main frame in low/middle story buildings and detached houses with advantages such as quick and easy installation, time-saving, and small amount of scrap. It is also economically ideal because the weight of structure is lighter than other steel profiles. Structural performances and failure modes of cold-formed structures are different from conventional ones due to their thin-walled structures. One of the most important elements of light steel structures to ensure stability is the connection. The screwed connections, which have self-drilling properties with special drilling tools, are widely used in the installation of cold-formed profiles. The length of the screw is selected according to the total thickness of the elements after the screw thickness is determined according to the elements of connections. The thickness of the material depends on the length of the drilling portion at the end of the screw. The shear tests of plates connected with self-drilling screws are carried out depending on the screw length, and their failure modes were evaluated in this study.Keywords: cold-formed steel, screwed connection, connection, screw length
Procedia PDF Downloads 1771751 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure
Authors: Sireetorn Kuharat, Anwar Beg
Abstract:
In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number
Procedia PDF Downloads 1191750 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 94