Search results for: functional training
2323 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD
Authors: Mehdi Montakhabrazlighi, Ercan Balikci
Abstract:
The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.Keywords: neural network, rupture strength, superalloy, thermocalc
Procedia PDF Downloads 3142322 Artificial Intelligence in Disease Diagnosis
Authors: Shalini Tripathi, Pardeep Kumar
Abstract:
The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications
Procedia PDF Downloads 1322321 A Qualitative Evidence of the Markedness of Code Switching during Commercial Bank Service Encounters in Ìbàdàn Metropolis
Authors: A. Robbin
Abstract:
In a multilingual setting like Nigeria, the success of service encounters is enhanced by the use of a language that ensures the linguistic and persuasive demands of the interlocutors. This study examined motivations for code switching as a negotiation strategy in bank-hall desk service encounters in Ìbàdàn metropolis using Myers-Scotton’s exploration on markedness in language use. The data consisted of transcribed audio recording of bank-hall service encounters, and direct observation of bank interactions in two purposively sampled commercial banks in Ìbàdàn metropolis. The data was subjected to descriptive linguistic analysis using Myers Scotton’s Markedness Model. Findings reveal that code switching is frequently employed during different stages of service encounter: greeting, transaction and closing to fulfil relational, bargaining and referential functions. Bank staff and customers code switch to make unmarked, marked and explanatory choices. A strategy used to identify with customer’s cultural affiliation, close status gap, and appeal to begrudged customer; or as an explanatory choice with non-literate customers for ease of communication. Bankers select English to maintain customers’ perceptions of prestige which is retained or diverged from depending on their linguistic preference or ability. Yoruba is seen as an efficient negotiation strategy with both bankers and their customers, making choices within conversation to achieve desired conversational and functional aims.Keywords: banking, bilingualism, code-switching, markedness, service encounter
Procedia PDF Downloads 2062320 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 1432319 The Relationship between HR Disclosure and Employee’s Turnover: Study on the Telecommunication Sector in Jordan
Authors: Dina Ahmed Alkhodary
Abstract:
Human Resources are the individual skills, knowledge, attitude, capabilities and experience collected to produce wealth to the company. Human Resource disclosure is the process of involving, reporting, and sharing the Investments made in the Human Resources of an Organization that such as organizations short goals and objectives, employees creation value, training and development plan are presently not accounted for in the conventional accounting practices which is importance nowadays to reduce the employee`s turnover. For the purpose of the study 3 telecommunications companies in Jordan have been selected. Telecommunication industry has been chosen for this study since it is a successful sector in Jordan and Human resource disclosure practices were adopted in all the selected companies and companies was aware to the HR practices. The objective of the study is to find out the HR disclosures practices of the telecommunication Companies in Jordan and to find the relationship between the HR Disclosures practices and employees’ turnover which has been measured by leaver proficiencies, remaining member proficiencies and the new comers proficiencies. The researcher has used the questioner to collect data for the research purpose. Results reveal that There are human resource disclosure practices in telecommunication companies in Jordan but in some areas only and has found There that there is a significant relationship between the human resource disclosure practices of the telecommunication companies in Jordan and Employees turnover. It is important to the companies to disclose more information and it’s important to the researchers to study the HR disclosure in the other industries in Jordan to increase the awareness about it.Keywords: HR, disclosure, employee, turnover
Procedia PDF Downloads 3132318 Soft Computing Approach for Diagnosis of Lassa Fever
Authors: Roseline Oghogho Osaseri, Osaseri E. I.
Abstract:
Lassa fever is an epidemic hemorrhagic fever caused by the Lassa virus, an extremely virulent arena virus. This highly fatal disorder kills 10% to 50% of its victims, but those who survive its early stages usually recover and acquire immunity to secondary attacks. One of the major challenges in giving proper treatment is lack of fast and accurate diagnosis of the disease due to multiplicity of symptoms associated with the disease which could be similar to other clinical conditions and makes it difficult to diagnose early. This paper proposed an Adaptive Neuro Fuzzy Inference System (ANFIS) for the prediction of Lass Fever. In the design of the diagnostic system, four main attributes were considered as the input parameters and one output parameter for the system. The input parameters are Temperature on admission (TA), White Blood Count (WBC), Proteinuria (P) and Abdominal Pain (AP). Sixty-one percent of the datasets were used in training the system while fifty-nine used in testing. Experimental results from this study gave a reliable and accurate prediction of Lassa fever when compared with clinically confirmed cases. In this study, we have proposed Lassa fever diagnostic system to aid surgeons and medical healthcare practictionals in health care facilities who do not have ready access to Polymerase Chain Reaction (PCR) diagnosis to predict possible Lassa fever infection.Keywords: anfis, lassa fever, medical diagnosis, soft computing
Procedia PDF Downloads 2692317 The Effect of Torsional Angle on Reversible Electron Transfer in Donor: Acceptor Frameworks Using Bis(Imino)Pyridines as Proxy
Authors: Ryan Brisbin, Hassan Harb, Justin Debow, Hrant Hratchian, Ryan Baxter
Abstract:
Donor-Acceptor (DA) frameworks are crucial parts of any technology requiring charge transport. This type of behavior is ubiquitous across technologies from semi conductors to solar panels. Currently, most DA systems involve metallic components, but progressive research is being pursued to design fully organic DA systems to be used as both organic semi-conductors and light emitting diodes. These systems are currently comprised of conductive polymers and salts. However, little is known about the effect of various physical aspects (size, torsional angle, electron density) have on the act of reversible charge transfer. Herein, the effect of torsional angle on reductive stability in bis(imino)pyridines is analyzed using a combination of single crystal analysis and electro-chemical peak current ratios from cyclic voltammetry. The computed free energies of reduction and electron attachment points were also investigated through density functional theory and natural ionization orbital theory to gain greater understanding of the global effect torsional angles have on electron transfer in bis(imino)pyridines. Findings indicated that torsional angles are a multi-variable parameter affected by both local steric constraints and resonant electronic contributions. Local steric impacted torsional angles demonstrated a negligible effect on electrochemical reversibility, while resonant affected torsional angles were observed to significantly alter the electrochemical reversibility.Keywords: cyclic voltammetry, bis(imino)pyridines, structure-activity relationship, torsional angles
Procedia PDF Downloads 2372316 Teaching Basic Life Support in More Than 1000 Young School Children in 5th Grade
Authors: H. Booke, R. Nordmeier
Abstract:
Sudden cardiac arrest is sometimes eye-witnessed by kids. Mostly, their (grand-)parents are affected by sudden cardiac arrest, putting these kids under enormous psychological pressure: Although they are more than desperate to help, they feel insecure and helpless and are afraid of causing harm rather than realizing their chance to help. Even years later, they may blame themselves for not having helped their beloved ones. However, the absolute majority of school children - at least in Germany - is not educated to provide first aid. Teaching young kids (5th grade) in basic life support thus may help to save lives while washing away the kids' fear from causing harm during cardio-pulmonary resuscitation. A teaching of circulatory and respiratory (patho-)physiology, followed by hands-on training of basic life support for every single child, was offered to each school in our district. The teaching was performed by anesthesiologists, and the program was called 'kids can save lives'. However, before enrollment in this program, the entire class must have had lessons in biology with a special focus on heart and circulation as well as lung and gas exchange. More than 1.000 kids were taught and trained in basic life support, giving them the knowledge and skills to provide basic life support. This may help to reduce the rate of failure to provide first aid. Therefore, educating young kids in basic life support may not only help to save lives, but it also may help to prevent any feelings of guilt because of not having helped in cases of eye-witnessed sudden cardiac arrest.Keywords: teaching, children, basic life support, cardiac arrest, CPR
Procedia PDF Downloads 1332315 Mutational and Evolutionary Analysis of Interleukin-2 Gene in Four Pakistani Goat Breeds
Authors: Tanveer Hussain, Misbah Hussain, Masroor Ellahi Babar, Muhammad Traiq Pervez, Fiaz Hussain, Sana Zahoor, Rashid Saif
Abstract:
Interleukin 2 (IL-2) is a cytokine which is produced by activated T cells, play important role in immune response against antigen. It act in both autocrine and paracrine manner. It can stimulate B cells and various other phagocytic cells like monocytes, lymphokine-activated killer cells and natural killer cells. Acting in autocrine fashion, IL-2 protein plays a crucial role in proliferation of T cells. IL-2 triggers the release of pro and anti- inflammatory cytokines by activating several pathways. In present study, exon 1 of IL-2 gene of four local Pakistani breeds (Dera Din Panah, Beetal, Nachi and Kamori) from two provinces was amplified by using reported Ovine IL-2 primers, yielding PCR product of 501 bp. The sequencing of all samples was done to identify the polymorphisms in amplified region of IL-2 gene. Analysis of sequencing data resulted in identification of one novel nucleotide substitution (T→A) in amplified non-coding region of IL-2 gene. Comparison of IL-2 gene sequence of all four breeds with other goat breeds showed high similarity in sequence. While phylogenetic analysis of our local breeds with other mammals showed that IL-2 is a variable gene which has undergone many substitutions. This high substitution rate can be due to the decreased or increased changed selective pressure. These rapid changes can also lead to the change in function of immune system. This pioneering study of Pakistani goat breeds urge for further studies on immune system of each targeted breed for fully understanding the functional role of IL-2 in goat immunity.Keywords: interleukin 2, mutational analysis, phylogeny, goat breeds, Pakistan
Procedia PDF Downloads 6102314 The Importance of an Intensive Course in English for University Entrants: Teachers’ and Students’ Experience and Perception
Authors: Ruwan Gunawardane
Abstract:
This paper attempts to emphasize the benefits of conducting an intensive course in English for university entrants. In the Sri Lankan university context, an intensive course in English is usually conducted amidst various obstacles. In the 1970s and 1980s, undergraduates had intensive programmes in English for two to three months. Towards the end of the 1990s, a programme called General English Language Training (GELT) was conducted for the new students, and it was done outside universities before they entered their respective universities. Later it was not conducted, and that also resulted in students’ poor performance in English at university. However, having understood its importance, an eight week long intensive course in English was conducted for the new intake of the Faculty of Science, University of Ruhuna. As the findings show, the students heavily benefited from the programme. More importantly, they had the opportunity to refresh their knowledge of English gained at school and private institutions while gaining new knowledge. Another advantage was that they had plenty of time to enjoy learning English since the learners had adequate opportunities to carry out communicative tasks and the course was not exam-oriented, which reduced their fear of making mistakes in English considerably. The data was collected through an open-ended questionnaire given to 60 students, and their oral feedback was also taken into consideration. In addition, a focus group interview with 6 teachers was also conducted to get an idea about their experience and perception. The data were qualitatively analyzed. The findings suggest that an intensive programme in English undoubtedly lays a good foundation for the students’ academic career at university.Keywords: intensive course, English, teachers, undergraduates, experience, perception
Procedia PDF Downloads 1332313 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural
Authors: Mohammad Heidari
Abstract:
In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network
Procedia PDF Downloads 4162312 Nutritionists' Perspective on the Conception of a Telenutrition Platform for Diabetes Care: Qualitative Study
Authors: Choumous Mannoubi, Dahlia Kairy, Brigitte Vachon
Abstract:
The use of technology allows clinicians to provide an individualized approach in a cost-effective manner and to reach a broader client base more easily. Such interventions can be effective in ensuring self-management and follow-up of people with diabetes, reducing the risk of complications by improving accessibility to care services, and better adherence to health recommendations. Consideration of users' opinions and fears to inform the design and implementation stages of these telehealth services seems to be essential to improve their acceptance and usability. The objective of this study is to describe the telepractice of nutritionists supporting the therapeutic management of diabetic patients and document the functional requirements of nutritionists for the design of a tele-nutrition platform. To best identify the requirements and constraints of nutritionists, we conducted individual semi-structured interviews with 10 nutritionists who offered tele-nutrition services. Using a qualitative design with a descriptive approach based on the Nutrition Care Process Model (mNCP) framework, we explored in depth the state of nutritionists' telepractice in public and private health care settings, as well as their requirements for teleconsultation. Qualitative analyses revealed that nutritionists primarily used telephone calls during the COVID 19 pandemic to provide teleconsultations. Nutritionists identified the following important features for the design of a tele-nutrition platform: it should support interprofessional collaboration, allow for the development and monitoring of a care plan, integrate with the existing IT environment, be easy to use, accommodate different levels of patient literacy, and allow for easy sharing of educational materials to support nutrition education.Keywords: telehealth, nutrition, diabetes, telenutrition, teleconsultation, telemonitoring
Procedia PDF Downloads 1332311 Chitosan Stabilized Oil-in-Water Pickering Emulsion Optimized for Food-Grade Application
Authors: Ankit Patil, Tushar D. Deshpande, Yogesh M. Nimdeo
Abstract:
Pickering emulsions (PE) were developed in response to increased demand for organic, eco-friendly, and biocompatible products. These emulsions are usually stabilized by solid particles. In this research, we created chitosan-based sunflower oil-in-water (O/W) PE without the need for a surfactant. In our work, we employed chitosan, a biopolymer derived from chitin, as a stabilizer. This decision was influenced by chitosan's biocompatibility and biodegradability, as well as its anti-inflammatory and antibacterial capabilities. It also has other functional properties, such as antioxidant activity, a probiotic delivery mechanism, and the ability to encapsulate bioactive compounds. The purpose of this study was to govern key parameters that can be changed to obtain stable PE, such as the concentration of chitosan (0.3-0.5 wt.%), the concentration of oil (0.8-1 vol%), the pH of the emulsion (3-7) manipulated by the addition of 1M HCl/ 4M NaOH, and the amount of electrolyte (NaCl-0-300mM) added to increase or decrease ionic strength. A careful combination of these properties resulted in the production of the most stable and optimal PE. Particle size study found that emulsions with pH 6, 0.4% chitosan, and 300 mM salts were exceptionally stable, with droplet size 886 nm, PI of 0.1702, and zeta potential of 32.753.83 mV. It is fair to infer that when ionic strength rises, particle size, zeta potential, and PI value decrease. A lower PI value suggests that emulsion nanoparticles are more homogeneous. The addition of sodium chloride increases the ionic strength of the emulsion, facilitating the formation of more compact and ordered particle layers. These findings provide light on the creation of stimulus-responsive chitosan-based PE capable of encapsulating bioactive materials, functioning as antioxidants, and serving as food-grade emulsifiers.Keywords: pickering emulsion, biocompatibility, eco-friendly, chitosan
Procedia PDF Downloads 2382310 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms
Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna
Abstract:
In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove
Procedia PDF Downloads 3012309 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds
Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal
Abstract:
EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds
Procedia PDF Downloads 3262308 Rhizosphere Microbiome Involvement in the Natural Suppression of Soybean Cyst Nematode in Disease Suppressive Soil
Authors: M. Imran Hamid, Muzammil Hussain, Yunpeng Wu, Meichun Xiang, Xingzhong Liu
Abstract:
The rhizosphere microbiome elucidate multiple functioning in the soil suppressiveness against plant pathogens. Soybean rhizosphere microbial communities may involve in the natural suppression of soybean cyst nematode (SCN) populations in disease suppressive soils. To explore these ecological mechanisms of microbes, a long term monoculture suppressive soil were taken into account for further investigation to test the disease suppressive ability by using different treatments. The designed treatments are as, i) suppressive soil (S), ii) conducive soil (C), iii) conducive soil mixed with 10% (w/w) suppressive soil (CS), iv) suppressive soil treated at 80°C for 1 hr (S80), and v) suppressive soil treated with formalin (SF). By using an ultra-high-throughput sequencing approach, we identified the key bacterial and fungal taxa involved in SCN suppression. The Phylum-level investigation of bacteria revealed that Actinobacteria, Bacteroidetes, and Proteobacteria in the rhizosphere soil of soybean seedlings were more abundant in the suppressive soil than in the conducive soil. The phylum-level analysis of fungi in rhizosphere soil indicated that relative abundance of Ascomycota was higher in suppressive soil than in the conducive soil, where Basidiomycota was more abundant. Transferring suppressive soil to conducive soil increased the population of Ascomycota in the conducive soil by lowering the populations of Basidiomycota. The genera, such as, Pochonia, Purpureocillium, Fusarium, Stachybotrys that have been well documented as bio-control agents of plant nematodes were far more in the disease suppressive soils. Our results suggested that the plants engage a subset of functional microbial groups in the rhizosphere for initial defense upon nematode attack and protect the plant roots later on by nematodes to response for suppression of SCN in disease-suppressive soils.Keywords: disease suppressive soil, high-throughput sequencing, rhizosphere microbiome, soybean cyst nematode
Procedia PDF Downloads 1532307 Residential High-Rises and Meaningful Places: Missing Actions in the Isle of Dogs Regeneration
Authors: Elena Kalcheva, Ahmad Taki, Yuri Hadi
Abstract:
Urban regeneration often includes residential high-rises as a way of optimum use of land. However, high-rises are in many cases connected to placelessness, this is not due to some intrinsic characteristic of the typology, but more to a failure to provide meaningful places in connection to them. The reason to study the Isle of the Dogs regeneration is the successful process that led to vibrant area with strong identity and social sustainability. Therefore, the purpose of this research is to identify the gaps into the sound strategy for the development of the area and in its implementation which will make the place more sustainable. The paper addresses four research questions: are the residential high-rises supporting a proper physical form; is there deployed properly scaled mix of land uses and functions in connection with residential high-rises; are there possible quality activities in quality places near the residential high-rises; and is there a strong sense of place created with the residential high-rise buildings and their surroundings. The methodology relies on observational survey of the researched area together with structured questions, to evaluate the external qualities of the residential high-rises and their surroundings. Visual information can help identify the mistakes and the omissions of the provided project examples. It can provide insight on how can be improved imageability, legibility and human scale. In this connection, the paper argues that although the quality of the architecture of the high-rises is superb, there is a failure to create meaningful, high quality public realm in connection with them. As such, it does not function as well as the designers intended to do: the functional quality of the public realm is quite low. The implications of the study suggest that actions need to take place in order to improve and foster further regeneration of the area.Keywords: high-rises, isle of the dogs, public realm, regeneration
Procedia PDF Downloads 2822306 Impact of Islamic Hr Practices on Job Satisfaction: An Empirical Study of Banking Sector in Pakistan
Authors: Naheed Malik, Waheed Akhtar
Abstract:
An introduction to the Islamic move towards the managing human resource is a preliminary attempt to provide managers with a useful way of managing and accepting employees. This knowledge would be helpful to even non-Muslim managers. Muslim managers are required not to know only the Islamic HR but also it is expected from them to apply the Islamic approach in managing the employees. Human resource is considered the most substantial asset of organizations. Studies have recommended that successful human resource management (HRM) leads to positive attitudes and behaviors at the workplace. On the contrary, unproductive use of human resources results in negative penalty in the form of lower job satisfaction, lower commitment, or even high employee turnover and even poor workforce quality.The study examined the Impact of Islamic HR practices on job satisfaction. Islamic HR variables encompass the aspects of performance appraisal, training and development, selection and recruitment. Data was obtained via self –administered questionnaires distributed among the employees of Banks in Pakistan which are practicing Islamic Banking. The sampling method employed was purposive sampling.Based on 240 responses obtained ,the study revealed that Islamic HRM deliberates the 40per cent of the variances in Job satisfaction .All variables excluding recruitment were found to be substantially pertinent to the dependent variable. The study also meditated the implications for future studies.Keywords: islamic HRM, job satisfaction, islamic and conventional banks, Pakistan
Procedia PDF Downloads 2972305 Information Needs of Cassava Processors on Small-Scale Cassava Processing in Oyo State, Nigeria
Authors: Rafiat Bolanle Fasasi-Hammed
Abstract:
Cassava is an important food crop in rural households of Nigeria. It has a high potential for product diversification, because it can be processed into various products forms for human consumption and can be made into chips for farm animals, and also starch and starch derivatives. However, cassava roots are highly perishable and contain potentially toxic cyanogenic glycosides which necessitate its processing. Therefore, this study was carried out to assess information needs of cassava processors on food safety practices in Oyo State, Nigeria. Simple random sampling technique was used in the selection of 110 respondents for this study. Descriptive statistics and chi-square were used to analyze the data collected. Results of this study showed that the mean age of the respondents was 39.4 years, majority (78.7%) of the respondents was married, 51.9% had secondary education; 45.8% of the respondents have spent more than 12 years in cassava processing. The mean income realized was ₦26,347.50/month from cassava processing. Information on cassava processing got to the respondents through friends, family and relations (73.6%) and fellow cassava processors (58.6%). Serious constraints identified were ineffective extension agents (93.9%), food safety regulatory agencies (88.1%) and inadequate processing and storage facilities (67.8%). Chi-square results showed that significant relationship existed between socio-economic characteristics of the respondents (χ2 = 29.80, df = 2,), knowledge level (χ2 = 9.26, df = 4), constraints (χ2 = 13.11, df = 2) and information needs at p < 0.05 level of significance. The study recommends that there should be regular training on improved cassava processing methods for the cassava processors in the study area.Keywords: information, needs, cassava, Oyo State, processing
Procedia PDF Downloads 3022304 A Community-Engaged Approach to Examining Health Outcomes Potentially Related to Exposure to Environmental Contaminants in Yuma, Arizona
Authors: Julie A. Baldwin, Robert T. Trotter, Mark Remiker, C. Loren Buck, Amanda Aguirre, Trudie Milner, Emma Torres, Frank A. von Hippel
Abstract:
Introduction: In the past, there have been concerns about contaminants in the water sources in Yuma, Arizona, including the Colorado River. Prolonged exposure to contaminants, such as perchlorate and heavy metals, can lead to deleterious health effects in humans. This project examined the association between the concentration of environmental contaminants and patient health outcomes in Yuma residents, using a community-engaged approach to data collection. Methods: A community-engaged design allowed community partners and researchers to establish joint research goals, recruit participants, collect data, and formulate strategies for dissemination of findings. Key informant interviews were conducted to evaluate adherence to models of community-based research. Results: The training needs, roles, and expectations of community partners varied based on available resources, prior research experience, and perceived research challenges and ways to address them. Conclusions: Leveraging community-engaged approaches for studies of environmental contamination in marginalized communities can expedite recruitment efforts and stimulate action that can lead to improved community health.Keywords: community engaged research, environmental contaminants, underserved populations, health equity
Procedia PDF Downloads 1392303 Microbial Quality of Traditional Qatari Foods Sold by Women Street Vendors in Doha, Qatar
Authors: Tahra El-Obeid, Reham Mousa, Amal Alzahiri
Abstract:
During the past few years the traditional market of Qatar has become an attraction to many customers who eat from the numerous women street vendors selling Qatari traditional dishes. To gain an understanding on the safety of these street vended foods, we designed the study to test microbiological quality of 14 different Qatari foods sold in Souk Wagif, the main traditional market in Qatar. This study was conducted to mainly identify presence or absence of microbial pathogens. A total of 56 samples were purchased from 10 different street vendors and the samples were collected randomly on different days. The samples were tested for microbial contaminants at Central Food Laboratories, Doha, Qatar. The qualitative study was conducted using Real Time-PCR to screen for; Salmonella spp., Listeria monocytogenes, Escherichia coli and E. coli 0157:H7. Out of the 56 samples, only two samples “Biryani” and “Khabess” contained E. coli. However, both samples tested negative for E. coli O157:H7. The microbial contamination of the Qatari traditional street vended foods was 3%. This result may be attributed to the food safety training requirement set by the regulatory authorities before issuing any license to food handlers in Qatar as well as the food inspection conducted by the food health inspectors on a regular basis.Keywords: microbiological quality, street vended food, traditional dishes, Qatar
Procedia PDF Downloads 3132302 Effect of Extrusion Processing Parameters on Protein in Banana Flour Extrudates: Characterisation Using Fourier-Transform Infrared Spectroscopy
Authors: Surabhi Pandey, Pavuluri Srinivasa Rao
Abstract:
Extrusion processing is a high-temperature short time (HTST) treatment which can improve protein quality and digestibility together with retaining active nutrients. In-vitro protein digestibility of plant protein-based foods is generally enhanced by extrusion. The current study aimed to investigate the effect of extrusion cooking on in-vitro protein digestibility (IVPD) and conformational modification of protein in green banana flour extrudates. Green banana flour was extruded through a co-rotating twin-screw extruder varying the moisture content, barrel temperature, screw speed in the range of 10-20 %, 60-80 °C, 200-300 rpm, respectively, at constant feed rate. Response surface methodology was used to optimise the result for IVPD. Fourier-transform infrared spectroscopy (FTIR) analysis provided a convenient and powerful means to monitor interactions and changes in functional and conformational properties of extrudates. Results showed that protein digestibility was highest in extrudate produced at 80°C, 250 rpm and 15% feed moisture. FTIR analysis was done for the optimised sample having highest IVPD. FTIR analysis showed that there were no changes in primary structure of protein while the secondary protein structure changed. In order to explain this behaviour, infrared spectroscopy analysis was carried out, mainly in the amide I and II regions. Moreover, curve fitting analysis showed the conformational changes produced in the flour due to protein denaturation. The quantitative analysis of the changes in the amide I and II regions provided information about the modifications produced in banana flour extrudates.Keywords: extrusion, FTIR, protein conformation, raw banana flour, SDS-PAGE method
Procedia PDF Downloads 1622301 The Didactic Transposition in Brazilian High School Physics Textbooks: A Comparative Study of Didactic Materials
Authors: Leandro Marcos Alves Vaz
Abstract:
In this article, we analyze the different approaches to the topic Magnetism of Matter in physics textbooks of Brazilian schools. For this, we compared the approach to the concepts of the magnetic characteristics of materials (diamagnetism, paramagnetism, ferromagnetism and antiferromagnetism) in different sources of information and in different levels of education, from Higher Education to High School. In this sense, we used as reference the theory of the Didactic Transposition of Yves Chevallard, a French educational theorist, who conceived in his theory three types of knowledge – Scholarly Knowledge, Knowledge to be taught and Taught Knowledge – related to teaching practice. As a research methodology, from the reading of the works used in teacher training and those destined to basic education students, we compared the treatment of a higher education physics book, a scientific article published in a Brazilian journal of the educational area, and four high school textbooks, in order to establish in which there is a greater or lesser degree of approximation with the knowledge produced by the scholars – scholarly knowledge – or even with the knowledge to be taught (to that found in books intended for teaching). Thus, we evaluated the level of proximity of the subjects conveyed in high school and higher education, as well as the relevance that some textbook authors give to the theme.Keywords: Brazilian physics books, didactic transposition, magnetism of matter, teaching of physics
Procedia PDF Downloads 2982300 The Impact of Transformational Leadership and Interpersonal Interaction on Mentoring Function
Authors: Ching-Yuan Huang, Rhay-Hung Weng, Yi-Ting Chen
Abstract:
Mentoring functions will improve new nurses' job performance, provide support with new nurses, and then reduce the turnover rate of them. This study explored the impact of transformational leadership and interpersonal interaction on mentoring functions. We employed a questionnaire survey to collect data and selected a sample of new nurses from three hospitals in Taiwan. A total of 306 valid surveys were obtained. Multiple regression model analysis was conducted to test the study hypothesis. Inspirational motivation, idealized influence, and individualized consideration had a positive influence on overall mentoring function, but intellectual stimulation had a positive influence on career development function only. Perceived similarity and interaction frequency also had positive influences on mentoring functions. When the shift overlap rate exceeded 80%, mentoring function experienced a negative result. The transformational leadership of mentors actually would improve the mentoring functions among new staff nurses. Perceived similarity and interaction frequency between mentees and mentors also had a positive influence on mentoring functions. Managers should enhance the transformational leadership of mentors by designing leadership training and motivation programs. Furthermore, nursing managers should promote the interaction between new staff nurses and their mentors, but the shift overlap rate should not exceed 80%.Keywords: interpersonal interaction, mentoring function, mentor, new nurse, transformational leadership
Procedia PDF Downloads 3322299 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images
Authors: Khitem Amiri, Mohamed Farah
Abstract:
Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.Keywords: hyperspectral images, deep belief network, radiometric indices, image classification
Procedia PDF Downloads 2802298 Quality Determinants of Client Satisfaction: A Case Study of ACE-Australian Consulting Engineers, Sydney, Australia
Authors: Elham S. Hasham, Anthony S. Hasham
Abstract:
The construction industry is one of Australia’s fastest growing industries and its success is a result of a firm’s client satisfaction with focus on product determinants such as price and quality. Ensuring quality at every phase is a must and building rapport with the client will go a long way. To capitalise on the growing demand for Engineering Consulting Firms (ECFs), we should “redefine the bottom line by allowing client satisfaction, high-quality standards, and profits to be the top priorities”. Consequently, the emphasis should be on improving employee skills through various training provisions. Clients seek consistency and thus expect that all services should be similar in respect to quality and the ability of the service to meet their needs. This calls for empowerment and comfortable work conditions to motivate employees and give them incentive to deliver quality and excellent output. The methodology utilized is triangulation-a combination of both quantitative and qualitative research. The case study-Australian Consulting Engineers (ACE) was established in 1995 and has operations throughout Australia, the Philippines, Europe, U.A.E., K.S.A., and Lebanon. ACE is affiliated with key agencies and support organizations in the engineering industry with International Organization for Standardization (ISO) certifications in Safety and Quality Management. The objective of this study is significant as it sheds light on employee motivation and client satisfaction as imperative determinants of the success of an organization.Keywords: leadership, motivation, organizational behavior, satisfaction
Procedia PDF Downloads 652297 Differential Response of Cellular Antioxidants and Proteome Expression to Salt, Cadmium and Their Combination in Spinach (Spinacia oleracea)
Authors: Rita Bagheri, Javed Ahmed, Humayra Bashir, M. Irfan Qureshi
Abstract:
Agriculture lands suffer from a combination of stresses such as salinity and metal contamination including cadmium at the same time. Under such condition of multiple stresses, plant may exhibit unique responses different from the stress occurring individually. Thus, it would be interesting to investigate that how plant respond to combined stress at level of antioxidants and proteome expression, and identifying the proteins which are involved in imparting stress tolerance. With an approach of comparative proteomics and antioxidant analysis, present study investigates the response of Spinacia oleracea to salt (NaCl), cadmium (Cd), and their combination (NaCl+Cd) stress. Two-dimensional gel electrophoresis was used for resolving leaf proteome, and proteins of interest were identified using PDQuest software. A number of proteins expressed differentially, those indicated towards their roles in imparting stress tolerance, were digested by trypsin and analyzed on mass spectrometer for peptide mass fingerprinting (PMF). Data signals were then matched with protein databases using MASCOT. Results show that NaCl, Cd and both together (NaCl+Cd) induce oxidative stress which was highest in combined stress of Cd+NaCl. Correspondingly, the activities of enzymatic antioxidants viz., SOD, APX, GR and CAT, and non-enzymatic antioxidants had highest changes under combined stress compares to single stress over their respective controls. Among the identified proteins, several interesting proteins were identified that may be have role in Spinacia oleracia tolerance in individual and combinatorial stress of salt and cadmium. The functional classification of identified proteins indicates the importance and necessity of keeping higher ratio of defence and disease responsive proteins.Keywords: Spinacia oleracea, Cd, salinity, proteomics, antioxidants, combinatorial stress
Procedia PDF Downloads 3822296 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography
Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu
Abstract:
Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli
Procedia PDF Downloads 2542295 The Development of Crisis Distance Education at Kuwait University During the COVID-19 Pandemic
Authors: Waleed Alanzi
Abstract:
The purpose of this qualitative study was to add to the existing literature and provide a more detailed understanding of the individual experiences and perceptions of 15 Deans at the University of Kuwait regarding their first year of planning, developing, and implementing crisis distance education (CDE) in response to the COVID-19 epidemic. An interpretative phenomenological approach was applied, using the thematic analysis of interview transcripts to describe the challenging journeys taken by each of the Deans from the first-person point of view. There was objective evidence, manifested by four primary themes (“Obstacles to the implementation of CDE”; “Planning for CDE”; “Training for CDE,” and “Future Directions”) to conclude that the faculty members, technical staff, administrative staff, and students generally helped each other to overcome the obstacles associated with planning and implementing CDE. The idea that CDE may turn homes into schools and parents into teachers was supported. The planning and implementation of CDE were inevitably associated with a certain amount of confusion, as well as disruptions in the daily routines of staff and students, as well as significant changes in their responsibilities. There were contradictory ideas about the future directions of distance education after the pandemic. Previous qualitative research on the implementation of CDE at higher education institutions in the Arab world has focused mainly on the experiences and perceptions of students; however, little is known about the experiences and perceptions of the students at the University of Kuwait during the COVID19 pandemic, providing a rationale and direction for future research.Keywords: distance learning, qualitative research, COVID-19 epidemic, Kuwait university
Procedia PDF Downloads 1052294 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 99