Search results for: molar concentration
846 Non-Steroidal Anti-inflammatory Drugs, Plant Extracts, and Characterized Microparticles to Modulate Antimicrobial Resistance of Epidemic Meca Positive S. Aureus of Dairy Origin
Authors: Amjad I. Aqib, Shanza R. Khan, Tanveer Ahmad, Syed A. R. Shah, Muhammad A. Naseer, Muhammad Shoaib, Iqra Sarwar, Muhammad F. A. Kulyar, Zeeshan A. Bhutta, Mumtaz A. Khan, Mahboob Ali, Khadija Yasmeen
Abstract:
The current study focused on resistance modulation of dairy linked epidemic mec A positive S. aureus for resistance modulation by plant extract (Eucalyptus globolus, Calotropis procera), NSAIDs, and star like microparticles. Zinc oxide {ZnO}c and {Zn (OH)₂} microparticles were synthesized by solvothermal method and characterized by calcination, X-ray diffraction (XRD), and scanning electron microscope (SEM). Plant extracts were prepared by the Soxhlet extraction method. The study found 34% of subclinical samples (n=200) positive for S. aureus from dairy milk having significant (p < 0.05) association of assumed risk factors with pathogen. The antimicrobial assay showed 55, 42, 41, and 41% of S. aureus resistant to oxacillin, ciprofloxacin, streptomycin, and enoxacin. Amoxicillin showed the highest percentage of increase in zone of inhibitions (ZOI) at 100mg of Calotropis procera extract (31.29%) followed by 1mg/mL (28.91%) and 10mg/mL (21.68%) of Eucalyptus globolus. Amoxicillin increased ZOI by 42.85, 37.32, 29.05, and 22.78% in combination with 500 ug/ml with each of diclofenac, aspirin, ibuprofen, and meloxicam, respectively. Fractional inhibitory concentration indices (FICIs) showed synergism of amoxicillin with diclofenac and aspirin and indifferent synergy with ibuprofen and meloxicam. The preliminary in vitro finding of combination of microparticles with amoxicillin proved to be synergistic, giving rise to 26.74% and 14.85% increase in ZOI of amoxicillin in combination with zinc oxide and zinc hydroxide, respectively. The modulated antimicrobial resistance incurred by NSAIDs, plant extracts, and microparticles against pathogenic S. aureus invite immediate attention to probe alternative antimicrobial sources.Keywords: antimicrobial resistance, dairy milk, nanoparticles, NSIDs, plant extracts, resistance modulation, S. aureus
Procedia PDF Downloads 212845 Evaluation of Stress Relief using Ultrasonic Peening in GTAW Welding and Stress Corrosion Cracking (SCC) in Stainless Steel, and Comparison with the Thermal Method
Authors: Hamidreza Mansouri
Abstract:
In the construction industry, the lifespan of a metal structure is directly related to the quality of welding. In most metal structures, the welded area is considered critical and is one of the most important factors in design. To date, many fracture incidents caused by these types of cracks have occurred. Various methods exist to increase the lifespan of welds to prevent failure in the welded area. Among these methods, the application of ultrasonic peening, in addition to the stress relief process, can manually and more precisely adjust the geometry of the weld toe and prevent stress concentration in this part. This research examined Gas Tungsten Arc Welding (GTAW) on common structural steels and 316 stainless steel, which require precise welding, to predict the optimal condition. The GTAW method was used to create residual stress; two samples underwent ultrasonic stress relief, and for comparison, two samples underwent thermal stress relief. Also, no treatment was considered for two samples. The residual stress of all six pieces was measured by X-Ray Diffraction (XRD) method. Then, the two ultrasonically stress-relieved samples and two untreated samples were exposed to a corrosive environment to initiate cracking and determine the effectiveness of the ultrasonic stress relief method. Thus, the residual stress caused by GTAW in the samples decreased by 3.42% with thermal treatment and by 7.69% with ultrasonic peening. Furthermore, the results show that the untreated sample developed cracks after 740 hours, while the ultrasonically stress-relieved piece showed no cracks. Given the high costs of welding and post-welding zone modification processes, finding an economical, effective, and comprehensive method that has the least limitations alongside a broad spectrum of usage is of great importance. Therefore, the impact of various ultrasonic peening stress relief parameters and the selection of the best stress relief parameter to achieve the longest lifespan for the weld area is highly significant.Keywords: GTAW welding, stress corrosion cracking(SCC), thermal method, ultrasonic peening.
Procedia PDF Downloads 50844 Sulfate Reducing Bacteria Based Bio-Electrochemical System: Towards Sustainable Landfill Leachate and Solid Waste Treatment
Authors: K. Sushma Varma, Rajesh Singh
Abstract:
Non-engineered landfills cause serious environmental damage due to toxic emissions and mobilization of persistent pollutants, organic and inorganic contaminants, as well as soluble metal ions. The available treatment technologies for landfill leachate and solid waste are not effective from an economic, environmental, and social standpoint. The present study assesses the potential of the bioelectrochemical system (BES) integrated with sulfate-reducing bacteria (SRB) in the sustainable treatment and decontamination of landfill wastes. For this purpose, solid waste and landfill leachate collected from different landfill sites were evaluated for long-term treatment using the integrated SRB-BES anaerobic designed bioreactors after pre-treatment. Based on periodic gas composition analysis, physicochemical characterization of the leachate and solid waste, and metal concentration determination, the present system demonstrated significant improvement in volumetric hydrogen production by suppressing methanogenesis. High reduction percentages of Be, Cr, Pb, Cd, Sb, Ni, Cr, COD, and sTOC removal were observed. This mineralization can be attributed to the synergistic effect of ammonia-assisted pre-treatment complexation and microbial sulphide formation. Despite being amended with 0.1N ammonia, the treated leachate level of NO³⁻ was found to be reduced along with SO₄²⁻. This integrated SRB-BES system can be recommended as an eco-friendly solution for landfill reclamation. The BES-treated solid waste was evidently more stabilized, as shown by a five-fold increase in surface area, and potentially useful for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude showed similar treatment with differences in magnitudes for both leachate and solid waste. These findings support the efficacy of SRB-BES in the treatment of landfill leachate and solid waste sustainably, inching a step closer to our sustainable development goals. It utilizes low-cost treatment, and anaerobic SRB adapted to landfill sites. This technology may prove to be a sustainable treatment strategy upon scaling up as its outcomes are two-pronged: landfill waste treatment and energy recovery.Keywords: bio-electrochemical system, leachate /solid waste treatment, landfill leachate, sulfate-reducing bacteria
Procedia PDF Downloads 102843 Use of Radiation Chemistry Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS) for the Elemental Analysis Medicinal Plants from India Used in the Treatment of Heart Diseases
Authors: B. M. Pardeshi
Abstract:
Introduction: Minerals and trace elements are chemical elements required by our bodies for numerous biological and physiological processes that are necessary for the maintenance of health. Medicinal plants are highly beneficial for the maintenance of good health and prevention of diseases. They are known as potential sources of minerals and vitamins. 30 to 40% of today’s conventional drugs used in the medicinal and curative properties of various plants are employed in herbal supplement botanicals, nutraceuticals and drug. Aim: The authors explored the mineral element content of some herbs, because mineral elements may have significant role in the development and treatment of gastrointestinal diseases, and a close connection between the presence or absence of mineral elements and inflammatory mediators was noted. Methods: Present study deals with the elemental analysis of medicinal plants by Instrumental Neutron activation Analysis and Atomic Absorption Spectroscopy. Medicinal herbals prescribed for skin diseases were purchased from markets and were analyzed by Instrumental Neutron Activation Analysis (INAA) using 252Cf Californium spontaneous fission neutron source (flux * 109 n s-1) and the induced activities were counted by γ-ray spectrometry and Atomic Absorption Spectroscopy (AAS) techniques (Perkin Elmer 3100 Model) available at Department of Chemistry University of Pune, INDIA, was used for the measurement of major, minor and trace elements. Results: 15 elements viz. Al, K, Cl, Na, Mn by INAA and Cu, Co, Pb, Ni, Cr, Ca, Fe, Zn, Hg and Cd by AAS were analyzed from different medicinal plants from India. A critical examination of the data shows that the elements Ca , K, Cl, Al, and Fe are found to be present at major levels in most of the samples while the other elements Na, Mn, Cu, Co, Pb, Ni, Cr, Ca, Zn, Hg and Cd are present in minor or trace levels. Conclusion: The beneficial therapeutic effect of the studied herbs may be related to their mineral element content. The elemental concentration in different medicinal plants is discussed.Keywords: instrumental neutron activation analysis, atomic absorption spectroscopy, medicinal plants, trace elemental analysis, mineral contents
Procedia PDF Downloads 331842 Solubility of Carbon Dioxide in Methoxy and Nitrile-Functionalized Ionic Liquids
Authors: D. A. Bruzon, G. Tapang, I. S. Martinez
Abstract:
Global warming and climate change are significant environmental concerns, which require immediate global action in carbon emission mitigation. The capture, sequestration, and conversion of carbon dioxide to other products such as methane or ethanol are ways to control excessive emissions. Ionic liquids have shown great potential among the materials studied as carbon capture solvents and catalysts in the reduction of CO2. In this study, ionic liquids comprising of a methoxy (-OCH3) and cyano (-CN) functionalized imidazolium cation, [MOBMIM] and [CNBMIM] respectively, paired with tris(pentafluoroethyl)trifluorophosphate [FAP] anion were evaluated as effective capture solvents, and organocatalysts in the reduction of CO2. An in-situ electrochemical set-up, which can measure controlled amounts of CO2 both in the gas and in the ionic liquid phase, was used. Initially, reduction potentials of CO2 in the CO2-saturated ionic liquids containing the internal standard cobaltocene were determined using cyclic voltammetry. Chronoamperometric transients were obtained at potentials slightly less negative than the reduction potentials of CO2 in each ionic liquid. The time-dependent current response was measured under a controlled atmosphere. Reduction potentials of CO2 in methoxy and cyano-functionalized [FAP] ionic liquids were observed to occur at ca. -1.0 V (vs. Cc+/Cc), which was significantly lower compared to the non-functionalized analog [PMIM][FAP], with an observed reduction potential of CO2 at -1.6 V (vs. Cc+/Cc). This decrease in the potential required for CO2 reduction in the functionalized ionic liquids shows that the functional groups methoxy and cyano effectively decreased the free energy of formation of the radical anion CO2●⁻, suggesting that these electrolytes may be used as organocatalysts in the reduction of the greenhouse gas. However, upon analyzing the solubility of the gas in each ionic liquid, [PMIM][FAP] showed the highest absorption capacity, at 4.81 mM under saturated conditions, compared to [MOBMIM][FAP] at 1.86 mM, and [CNBMIM][FAP] at 0.76 mM. Also, calculated Henry’s constant determined from the concentration-pressure graph of each functionalized ionic liquid shows that the groups -OCH3 and -CN attached terminal to a C4 alkyl chain do not significantly improve CO2 solubility.Keywords: carbon capture, CO2 reduction, electrochemistry, ionic liquids
Procedia PDF Downloads 402841 Evaluation of Coagulation Efficiency of Protein Extracts from Lupinus Albus L., Moringa Stenopetala Cufod., Trigonella Foenum-Graecum L. And Vicia Faba L. For Water Purification
Authors: Neway Adele, Adey Feleke
Abstract:
Access to clean drinking water is a basic human right. However, an estimated 1.2 billion people across the world consume unclean water daily. Interest has been growing in natural coagulants as the health and environmental concerns of conventional chemical coagulants are rising. Natural coagulants have the potential to serve as alternative water treatment agents. In this study, Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were evaluated as natural coagulants for water treatment. The protein extracts were purified from crude extracts using a protein purifier, and protein concentrations were determined by the spectrophotometric method. Small-volume coagulation efficiency tests were conducted on raw water taken from the Legedadi water treatment plant. These were done using a completely randomized design (CRD) experiment with settling times of 0 min (initial time), 90 min, 180 min and 270 min and protein extract doses of 5 mg/L, 10 mg/L, 15 mg/L and 20 mg/L. Raw water as negative control and polyelectrolyte as positive control were also included. The optical density (OD) values were measured for all the samples. At 270 min and 20 mg/L, the coagulation efficiency percentages for Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were 71%, 89%, 12% and 67% in the water sample collected in April 2019 respectively. Similarly, Lupinus albus, Moringa stenopetala and Vicia faba achieved 17%, 92% and 12% at 270 min settling times and 5 mg/L, 20 mg/L and 10 mg/L concentration in the water sample collected from August 2019, respectively. Negative control (raw water) and polyelectrolyte (positive control) were also 6 − 10% and 89 − 94% at 270 min settling time in April and August 2019, respectively. Among the four protein extracts, Moringa stenopetala showed the highest coagulation efficiency, similar to polyelectrolyte. This study concluded that Moringa stenopetala protein extract could be used as a natural coagulant for water purification in both sampling times.Keywords: coagulation efficiency, extraction, natural coagulant, protein extract
Procedia PDF Downloads 68840 Inactivation of Root-Knot Nematode Eggs Meloidogyne enterolobii in Irrigation Water Treated with Ozone
Authors: I. A. Landa-Fernandez, I. Monje-Ramirez, M. T. Orta-Ledesma
Abstract:
Every year plant-parasitic nematodes diminish the yield of high-value crops worldwide causing important economic losses. Currently, Meloidogyne enterolobii has increased its importance due to its high aggressiveness, increasing geographical distribution and host range. Root-knot nematodes inhabit the rhizosphere soil around plant roots. However, they can come into contact with irrigation water. Thus, plant-parasitic nematodes can be transported by water, as eggs or juveniles. Due to their high resistance, common water disinfection methods are not effective for inactivating these parasites. Ozone is the most effective disinfectant for microbial inactivation. The objective of this study is to demonstrate that ozone treatment is an alternative method control in irrigation water of the root-knot nematode M. enterolobii. It has been shown that ozonation is an effective treatment for the inactivation of protozoan cysts and oocysts (Giardia and Cryptosporidium) and for other species of the genus Meloidogyne (M. incognita), but not for the enterolobii specie. In this study, the strain of M. enterolobii was isolated from tomatoes roots. For the tests, eggs were used and were inoculated in water with similar characteristics of irrigation water. Subsequently, the disinfection process was carried out in an ozonation unit. The performance of the treatments was evaluated through the egg's viability by assessing its structure by optical microscopy. As a result of exposure to ozone, the viability of the nematode eggs was reduced practically in its entirety; with dissolved ozone levels in water close to the standard concentration (equal to 0.4 mgO₃/L), but with high contact times (greater than 4 min): 0.2 mgO₃/L for 15 minutes or 0.55 mgO₃/L for 10 minutes. Additionally, the effect of temperature, alkalinity and organic matter of the water was evaluated. Ozonation is effective and a promising alternative for the inactivation of nematodes in irrigation water, which could contribute to diminish the agricultural losses caused by these organisms.Keywords: inactivation process, irrigation water treatment, ozonation, plant-parasite nematodes
Procedia PDF Downloads 167839 Foamability and Foam Stability of Gelatine-Sodium Dodecyl Sulfate Solutions
Authors: Virginia Martin Torrejon, Song Hang
Abstract:
Gelatine foams are widely explored materials due to their biodegradability, biocompatibility, and availability. They exhibit outstanding properties and are currently subject to increasing scientific research due to their potential use in different applications, such as biocompatible cellular materials for biomedical products or biofoams as an alternative to fossil-fuel-derived packaging. Gelatine is a highly surface-active polymer, and its concentrated solutions usually do not require surfactants to achieve low surface tension. Still, anionic surfactants like sodium dodecyl sulfate (SDS) strongly interact with gelatine, impacting its viscosity and rheological properties and, in turn, their foaming behaviour. Foaming behaviour is a key parameter for cellular solids produced by mechanical foaming as it has a significant effect on the processing and properties of cellular materials. Foamability mainly impacts the density and the mechanical properties of the foams, while foam stability is crucial to achieving foams with low shrinkage and desirable pore morphology. This work aimed to investigate the influence of SDS on the foaming behaviour of concentrated gelatine foams by using a dynamic foam analyser. The study of maximum foam height created, foam formation behaviour, drainage behaviour, and foam structure with regard to bubble size and distribution were carried out in 10 wt% gelatine solutions prepared at different SDS/gelatine concentration ratios. Comparative rheological and viscometry measurements provided a good correlation with the data from the dynamic foam analyser measurements. SDS incorporation at optimum dosages and gelatine gelation led to highly stable foams at high expansion ratios. The viscosity increase of the hydrogel solution at SDS content increased was a key parameter for foam stabilization. In addition, the impact of SDS content on gelling time and gel strength also considerably impacted the foams' stability and pore structure.Keywords: dynamic foam analyser, gelatine foams stability and foamability, gelatine-surfactant foams, gelatine-SDS rheology, gelatine-SDS viscosity
Procedia PDF Downloads 153838 Influence of Chelators, Zn Sulphate and Silicic Acid on Productivity and Meat Quality of Fattening Pigs
Authors: A. Raceviciute-Stupeliene, V. Sasyte, V. Viliene, V. Slausgalvis, J. Al-Saifi, R. Gruzauskas
Abstract:
The objective of this study was to investigate the influence of special additives such as chelators, zinc sulphate and silicic acid on productivity parameters, carcass characteristics and meat quality of fattening pigs. The test started with 40 days old fattening pigs (mongrel (mother) and Yorkshire (father)) and lasted up to 156 days of age. During the fattening period, 32 pigs were divided into 2 groups (control and experimental) with 4 replicates (total of 8 pens). The pigs were fed for 16 weeks’ ad libitum with a standard wheat-barley-soybean meal compound (Control group) supplemented with chelators, zinc sulphate and silicic acid (dosage 2 kg/t of feed, Experimental group). Meat traits in live pigs were measured by ultrasonic equipment Piglog 105. The results obtained throughout the experimental period suggest that supplementation of chelators, zinc sulphate and silicic acid tend to positively affect average daily gain and feed conversion ratio of pigs for fattening (p < 0.05). Pigs’ evaluation with Piglog 105 showed that thickness of fat in the first and second point was by 4% and 3% respectively higher in comparison to the control group (p < 0.05). Carcass weight, yield, and length, also thickness of fat showed no significant difference among the groups. The water holding capacity of meat in Experimental group was lower by 5.28%, and tenderness – lower by 12% compared with that of the pigs in the Control group (p < 0.05). Regarding pigs’ meat chemical composition of the experimental group, a statistically significant difference comparing with the data of the control group was not determined. Cholesterol concentration in muscles of pigs fed diets supplemented with chelators, zinc sulphate and silicic acid was lower by 7.93 mg/100 g of muscle in comparison to that of the control group. These results suggest that supplementation of chelators, zinc sulphate and silicic acid in the feed for fattening pigs had significant effect on pigs growing performance and meat quality.Keywords: silicic acid, chelators, meat quality, pigs, zinc sulphate
Procedia PDF Downloads 180837 Establish Co-Culture System of Dehalococcoides and Sulfate-Reducing Bacteria to Generate Ferrous Sulfide for Reversing Sulfide-Inhibited Reductive Dechlorination
Authors: Po-Sheng Kuo, Che-Wei Lu, Ssu-Ching Chen
Abstract:
Chlorinated ethenes (CEs) constitute a predominant contaminant in Taiwan's native polluted sites, particularly in groundwater inundated with sulfate salts that substantially impede remediation efforts. The reduction of sulfate by sulfate-reducing bacteria (SRB) impairs the dechlorination efficiency of Dehalococcoides by generating hydrogen sulfide (H₂S), resulting in incomplete chloride degradation and thereby leading to the failure of bioremediation. In order to elucidate interactions between sulfate reduction and dechlorination, this study aims to establish a co-culture system of Dehalococcoides and SRB, overcoming H₂S inhibition by employing the synthesis of ferrous sulfide (FeS), which is commonly utilized in chemical remediation due to its high reduction potential. Initially, the study demonstrates that the addition of ferrous chloride (FeCl₂) effectively removed H₂S production from SRB and enhanced the degradation of trichloroethylene to ethene. This process overcomes the inhibition caused by H₂S produced by SRB in high sulfate environments. Compared to different concentrations of ferrous dosages for the biogenic generation of FeS, the efficiency was optimized by adding FeCl₂ at an equal ratio to the concentration of sulfate in the environment. This was more effective in removing H₂S and crystal particles under 10 times smaller than those synthesized under excessive FeCl₂ dosages, addressing clogging issues in situ remediation. Finally, utilizing Taiwan's indigenous dechlorinating consortium in a simulated high sulfate-contaminated environment, the biodiversity of microbial species was analyzed to reveal a higher species richness within the FeS group, conducive to ecological stability. This study validates the potential of the co-culture system in generating biogenic FeS under sulfate and CEs co-contamination, removing sulfate-reducing products, and improving CE remediation through integrated chemical and biological remediations.Keywords: biogenic ferrous sulfide, chlorinated ethenes, Dehalococcoides, sulfate-reducing bacteria, sulfide inhibition
Procedia PDF Downloads 51836 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon
Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng
Abstract:
Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics
Procedia PDF Downloads 272835 The Interactions between Phosphorus Leaching and Lime Application in Undisturbed Soil Columns with Different Soil Textures
Authors: Faezeh Eslamian, Zhiming Qi, Michael J. Tate
Abstract:
Phosphorus losses from agricultural fields through leaching is one of the main contributors to eutrophication of lakes in Quebec as well as North America. The main objective of this study is to evaluate the application of high calcium hydrated lime as a soil amendment in reducing the subsurface transport of phosphorus to water bodies by studying the interactions between phosphorus leaching and lime application in three common agricultural soil textures (sandy loam, loam and clay loam) in Quebec. For this purpose, 6 intact soil columns of 10 cm diameter and 20 cm deep were taken from each of the three different soil textured agricultural fields. Lime (high calcium hydrated lime) was applied to the top 5 cm of half of the intact soil columns while the rest were left as controls. The columns were leached with artificial rainwater in-consecutively at a rate of 3 mm h-1 over a 90-day period. The total amount of water added was equal to the average total rainfall of the region in fall. The leachate samples were collected daily and analyzed for dissolved reactive phosphorus, total dissolved phosphorus, total phosphorus, pH, electrical conductivity, calcium, magnesium, potassium and iron. The results showed that lime was able to significantly reduce dissolved reactive phosphorus concentrations in the leachates by 70 and 40 percent in sandy loam and loam soil columns, respectively, while phosphorus concentration in the clay loam soil leachates were increased by 40 percent. The calcium in lime has P-binding capabilities. Soil chemical properties in sandy and loamy soils can affect phosphorus leaching, whereas, transport mechanisms in clay soils with macropores dominate phosphorus leaching behaviors. The presence of preferential pathways and cracks in the clay soil columns has led to a quick transport of phosphorus through the soil and the less contact time with the soil matrix, therefore, causing less opportunity for P sorption and larger P release. Application of lime to agricultural fields can be considered as a promising measure in mitigating phosphorus loss from sandy loam and loam soils.Keywords: leaching, lime, phosphorus, soil texture
Procedia PDF Downloads 175834 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives
Authors: Dong Xie, Jun Zhao, Yiming Weng
Abstract:
One of the challenges in dental cement biomaterials is how to make a restorative with mechanical strengths and wear resistance that are comparable to contemporary dental resin composites. Currently none of the dental cement restoratives has been used in high stress-bearing sites due to their low mechanical strengths and poor wear-resistance. The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37 oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37-55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.Keywords: dental materials, polymers, strength, biomaterials
Procedia PDF Downloads 441833 Potential of Lead Tolerant and Mobilizing Fungus for Plant Growth Promotion through Plant Growth Promoting Activity; A Promising Approach for Enhance Phytoremediation
Authors: Maria Manzoor, Iram Gul, Muhammad Arshad, Jean Kallerhoff
Abstract:
The potential of fungal isolates to be used in phytoremediation of widespread lead contaminated soil has been evaluated in this study. Five different fungal isolates (Trichoderma harzianum, Penicillium simplicissimum, Aspergillus flavus, Aspergillus niger and Mucor spp.) were obtained and tested for their tolerance to increasing concentration of lead (Pb) i.e. 100, 200, 300, 400 and 500 mgL-1 on PDA and PDB culture experiment. All strains were tolerant up to 500 mgL-1 following sequence; A. flavus > A. niger > Mucor spp. > P. simplicissimum > T. harzianum. Further the isolates were then monitored for possible effect on Pb solubility/mobility through soil incubation experiments and characterized for essays including pathogenicity, germination and root elongation and plant growth promoting activities including IAA (indole acetic acid), phosphorus solubilization and gibberellic acid (GA3) production. Results revealed that fungal isolates have positive effect on Pb mobility in soil and plant biomass production. Pb solubility was significantly (P> 0.05) increased in soil upon application of Mucor spp. P. simplicissimum and T. harzianum. when compared to control. Among different strains three isolates (Mucor spp., P. simplicissimum and T. harzianum) were nonpathogenic because no inhibitory effect of fungus was observed to plant growth when exposed to these strains in root shoot elongation essay. Particularly T. harzianum and P. simplicissimum showed great ability to increase root length by 1.1 and 1.3 folds and shoot length by 1.47 and 1.5 folds respectively under Pb stress (500 mgL-1). Significantly high production of IAA was observed in A. niger (26.7 μg/ml), Phosphorus solubilization was observed in T. harzianum (9.15 μg/ml) and GA3 production was observed in P. simplicissimum (11.02 μg/ml). From results it is concluded that Mucor spp., P. simplicissimum and T. harzianum have potential to increase Pb mobility and improving plant growth under highy Pb contamination, therefore can be used in microbially assisted phytoremediation of Pb contaminated soil.Keywords: Pb tolerant fungus, Pb mobility, plant growth promoting activities, indole acetic acid (IAA)
Procedia PDF Downloads 269832 The Retinoprotective Effects and Mechanisms of Fungal Ingredient 3,4-Dihydroxybenzalacetone through Inhibition of Retinal Müller and Microglial Activation
Authors: Yu-Wen Cheng, Jau-Der Ho, Liang-Huan Wu, Fan-Li Lin, Li-Huei Chen, Hung-Ming Chang, Yueh-Hsiung Kuo, George Hsiao
Abstract:
Retina glial activation and neuroinflammation have been confirmed to cause devastating responses in retinodegenerative diseases. The expression and activation of matrix metalloproteinase (MMP)-9 and inducible nitric oxide synthase (iNOS) could be exerted as the crucial pathological factors in glaucoma- and blue light-induced retinal injuries. The present study aimed to investigate the retinoprotective effects and mechanisms of fungal ingredient 3,4-dihydroxybenzalacetone (DBL) isolated from Phellinus linteus in the retinal glial activation and retinodegenerative animal models. According to the cellular studies, DBL significantly and concentration-dependently abrogated MMP-9 activation and expression in TNFα-stimulated retinal Müller (rMC-1) cells. We found the inhibitory activities of DBL were strongly through the STAT- and ERK-dependent pathways. Furthermore, DBL dramatically attenuated MMP-9 activation in the stimulated Müller cells exposed to conditioned media from LPS-stimulated microglia BV-2 cells. On the other hand, DBL strongly suppressed LPS-induced production of NO and ROS and expression of iNOS in microglia BV-2 cells. Consistently, the phosphorylation of STAT was substantially blocked by DBL in LPS-stimulated microglia BV-2 cells. In the evaluation of retinoprotective functions, the high IOP-induced scotopic electroretinographic (ERG) deficit and blue light-induced abnormal pupillary light response (PLR) were assessed. The deficit scotopic ERG responses markedly recovered by DBL in a rat model of glaucoma-like ischemia/reperfusion (I/R)-injury. DBL also reduced the aqueous gelatinolytic activity and retinal MMP-9 expression in high IOP-injured conditions. Additionally, DBL could restore the abnormal PLR and reduce retinal MMP-9 activation. In summary, DBL could ameliorate retinal neuroinflammation and MMP-9 activation by predominantly inhibiting STAT3 activation in the retinal Müller cells and microglia, which exhibits therapeutic potential for glaucoma and other retinal degenerative diseases.Keywords: glaucoma, blue light, DBL, retinal Müller cell, MMP-9, STAT, Microglia, iNOS, ERG, PLR
Procedia PDF Downloads 139831 Dielectric Study of Ethanol Water Mixtures at Different Concentration Using Hollow Channel Cantilever Platform
Authors: Maryam S. Ghoraishi, John E. Hawk, Thomas Thundat
Abstract:
Understanding liquid properties in small scale has become important in recent decades as immerging new microelectromechanical systems (MEMS) devices have been widely used for micro pumps, drug delivery, and many other laboratory-on-microchips analysis. Often in microfluidic devices, fluids are transported electrokinetically. Therefore, extensive knowledge of fluid flow, heat transport, electrokinetics and electrochemistry are key to successful lab on a chip design. Among different microfluidic devices, recently developed hollow channel cantilever offers an ideal platform to study different fluid properties simultaneously without drastic decrease in quality factor which normally occurs when traditional cantilevers operate in the liquid phase. Using hollow channel cantilever, we monitor changes in density and viscosity of liquid while simultaneously investigating dielectric properties of alcohol water binary mixtures. Considerable research has been conducted on alcohol-water mixtures since such a mixture is a typical prototype for biomolecules, Micelle formation, and structural stability of proteins (to name a few). Here we show that hollow channel cantilever can be employed to investigate dielectric properties of ethanol/water mixtures in different concentrations. We study dynamic amplitude shifts of hollow channel cantilever oscillation at different concentrations of ethanol/water for different voltages. Our results show how interactions between solute and solvent, and possibly cluster formation, could change dielectric properties and dipole reorientation of the mixture, as well as the resulting force on the hollow cantilever. For comparison, we also examine higher conductivity ionic mixtures of sodium sulfate solution under the same conditions as low conductivity ethanol/water mixtures. We will show the results from systematic investigation of solvent effects on dielectric properties of the binary mixture. We will also address the question of resolution limits in dielectric study of analyte molecules imposed by solvent concentrations.Keywords: dielectric constant, cantilever sensors, ethanol water mixtures, low frequency
Procedia PDF Downloads 202830 Computational Elucidation of β-endo-Acetylglucosaminidase (LytB) Inhibition by Kaempferol, Apigenin, and Quercetin in Streptococcus pneumoniae: Anti-Pneumonia Mechanism
Authors: Singh Divya, Rohan Singh, Anjana Pandey
Abstract:
Reviewers' Comments: The study provides valuable insights into the anti-pneumonia properties of flavonoids against LytB. Authors could further validate findings through in vitro studies and consider exploring combination therapies for enhanced efficacy Response: Thankyou for your valuable comments. This study has been conducted further via experimental validation of the in-silico findings. The study uses Streptococcus pneumoniae D39 strain and examine the anti-pneumonia effect of kaempferol, quercetin and apigenin at various concentrations ranging from 9ug/ml to 200ug/ml. From results, it can be concluded that the kaempferol has shown the highest cytotoxic effect (72.1% of inhibition) against S. pneumoniae at concentration of 40ug/ml compare to apigenin and quercetin. The treatment of S. pneumoniae with concoction of kaempferol, quercetin and apigenin has also been performed, it is noted that conc. of 200ug/ml was most effect in achieving 75% inhibition. As S. pneumoniae D39 is a virulent encapsulated strain, the capsule interferes with the uptake of large size drug formulation. For instance, S. pneumoniae D39 with kaempferol and gold nano urchin (GNU) formulation, but the large size of GNU has resulted in reduced cytotoxic effect of kaempferol (27%). To achieve near 100% cytotoxic effect on the MDR S. pneumoniae D39 strain, the study will target the development of kaempferol-engineered gold nano-urchin’ conjugates, where gold nanocrystal will be of small size (less than or equal to 5nm) and decorated with hydroxyl, sulfhydryl, carboxyl, amine and groups. This approach is expected to enhance the anti-pneumonia effect of kaempferol (polyhydroxylated flavonoid). The study will also examine the interactive study among lung epithelial cell line (A549), kaempferol-engineered gold nano urchins, and S. pneumoniae for exploring the colonization, invasion, and biofilm formation of S. pneumoniae on A549 cells resembling the upper respiratory surface of humans.Keywords: streptococcus pneumoniae, β-endo-Acetylglucosaminidase, apigenin, quercetin kaempferol, molecular dynamic simulation, interactome study and GROMACS
Procedia PDF Downloads 3829 Clathrate Hydrate Measurements and Thermodynamic Modelling for Refrigerants with Electrolytes Solution in the Presence of Cyclopentane
Authors: Peterson Thokozani Ngema, Paramespri Naidoo, Amir H. Mohammadi, Deresh Ramjugernath
Abstract:
Phase equilibrium data (dissociation data) for clathrate hydrate (gas hydrate) were undertaken for systems involving fluorinated refrigerants with a single and mixed electrolytes (NaCl, CaCl₂, MgCl₂, and Na₂SO₄) aqueous solution at various salt concentrations in the absence and presence of cyclopentane (CP). The ternary systems for (R410a or R507) with the water system in the presence of CP were performed in the temperature and pressures ranges of (279.8 to 294.4) K and (0.158 to 1.385) MPa, respectively. Measurements for R410a with single electrolyte {NaCl or CaCl₂} solution in the presence of CP were undertaken at salt concentrations of (0.10, 0.15 and 0.20) mass fractions in the temperature and pressure ranges of (278.4 to 293.7) K and (0.214 to1.179) MPa, respectively. The temperature and pressure conditions for R410a with Na₂SO₄ aqueous solution system were investigated at a salt concentration of 0.10 mass fraction in the range of (283.3 to 291.6) K and (0.483 to 1.373) MPa respectively. Measurements for {R410a or R507} with mixed electrolytes {NaCl, CaCl₂, MgCl₂} aqueous solution was undertaken at various salt concentrations of (0.002 to 0.15) mass fractions in the temperature and pressure ranges of (274.5 to 292.9) K and (0.149 to1.119) MPa in the absence and presence of CP, in which there is no published data related to mixed salt and a promoter. The phase equilibrium measurements were performed using a non-visual isochoric equilibrium cell that co-operates the pressure-search technique. This study is focused on obtaining equilibrium data that can be utilized to design and optimize industrial wastewater, desalination process and the development of Hydrate Electrolyte–Cubic Plus Association (HE–CPA) Equation of State. The results show an impressive improvement in the presence of promoter (CP) on hydrate formation because it increases the dissociation temperatures near ambient conditions. The results obtained were modeled using a developed HE–CPA equation of state. The model results strongly agree with the measured hydrate dissociation data.Keywords: association, desalination, electrolytes, promoter
Procedia PDF Downloads 245828 Utilization of Oat in Rabbit Feed for the Development of Healthier Rabbit Meat and Its Impact on Human Blood Lipid Profile
Authors: Muhammad Rizwan Tariq, Muhammad Issa Khan, Zulfiqar Ahmad, Muhammad Adnan Nasir, Muhammad Sameem Javed, Sheraz Ahmed
Abstract:
Functional foods may be a good tool that can be simply utilized in reducing community health expenses. Regular consumption of rabbit meat can offer patrons with bioactive components because the manipulation in rabbit feed is much successful to raise the levels of conjugated linoleic acid, ecosapentaenoic acid, decosahexaenoic acid, polyunsaturated fatty acids, selenium, tocopherol etc. and to reduce the ω-3/ω-6 ratio which is performing a major role in curing of cardiovascular and several other diseases. In comparison to the meats of other species, rabbit meat has higher amounts of protein with essential amino acids, especially in the muscles and low cholesterol contents that also have elevated digestibility. The present study was carried out to develop the functional rabbit meat by modifying feed ingredient of rabbit diet. Thirty-day old rabbits were fed with feeds containing 2 % and 4 % oat. The feeding trial was carried out for eight weeks. Rabbits were divided into three different groups and reared for the period of two months. T0 rabbits were considered control group while T1 rabbits were reared on 4% oat, and T2 were on 2% oat in the feed. At the end of the 8 weeks, the rabbits were slaughtered. Results presented in this study concluded that 4 % oat seed supplementation enhanced n-3 PUFA in meat. It was observed that oat seed supplementation also reduced fat percentage in the meat. Utilization of oat in the feed of rabbits significantly affected the pH, protein, fat, textural and concentration of polyunsaturated fatty acids. A study trial was conducted in order to examine the impact of functional meat on the blood lipid profile of human subjects. They were given rabbit meat in comparison to the chicken meat for the period of one month. The cholesterol, triglycerides and low density lipoprotein were found to be lower in blood serum of human subject group treated with 4 % oat meat.Keywords: functional food, functional rabbit meat, meat quality, rabbit
Procedia PDF Downloads 367827 Identification of Bioactive Metabolites from Ficus carica and Their Neuroprotective Effects of Alzheimer's Disease
Authors: Hanan Khojah, RuAngelie Edrada-Ebel
Abstract:
Neurodegenerative disease including Alzheimer’s disease is a major cause of long-term disability. Oxidative stress is frequently implicated as one of the key contributing factors to neurodegenerative diseases. Protection against neuronal damage remains a great challenge for researchers. Ficus carica (commonly known as fig) is a species of great antioxidant nutritional value comprising a protective mechanism against innumerable health disorders related to oxidative stress as well as Alzheimer’s disease. The purpose of this work was to characterize the non-polar active metabolites in Ficus carica endocarp, mesocarp, and exocarp. Crude extracts were prepared using several extraction solvents, which included 1:1 water: ethylacetate, acetone and methanol. The dried extracts were then solvent partitioned between equivalent amounts of water and ethylacetate. Purification and fractionation were accomplished by high-throughput chromatography. The isolated metabolites were tested on their effect on human neuroblastoma cell line by cell viability test and cell cytotoxicity assay with acrolein. Molecular weights of the active metabolites were determined via LC–HRESIMS and GC-EIMS. Metabolomic profiling was performed to identify the active metabolites by using differential expression analysis software (Mzmine) and SIMCA for multivariate analysis. Structural elucidation and identification of the interested active metabolites were studied by 1-D and 2-D NMR. Significant differences in bioactivity against a concentration-dependent assay on acrolein radicals were observed between the three fruit parts. However, metabolites obtained from mesocarp and the endocarp demonstrated bioactivity to scavenge ROS radical. NMR profiling demonstrated that aliphatic compounds such as γ-sitosterol tend to induce neuronal bioactivity and exhibited bioactivity on the cell viability assay. γ-Sitosterol was found in higher concentrations in the mesocarp and was considered as one of the major phytosterol in Ficus carica.Keywords: alzheimer, Ficus carica, γ-Sitosterol, metabolomics
Procedia PDF Downloads 344826 Tourism and Sustainability Example Projects in the EU
Authors: Renee Yi-Mond Yuan
Abstract:
The fast development of tourism industries around the world, has largely contributed to many cities, and countries economical and social progress. Past year Taiwan in particular was ranked among one of fastest raise growth country. Thanks to the prominent importance of this phenomenon; seasonal mobility or multipurpose trips have reached more than 1 Billion tourists crossing International borders and more than 4 billion intramural travelers that have nourished the economy and employment in the service sector in most attractive regions, representing about one tenth of World GDP amount, including trade, research, cultural or journalistic purposes. Then the increased activities are giving pressure to the consumption of energy, water, resources, and Greenhouse Gas emissions. The further concentration of tourists in most beautiful sites of the World with consistent supply and reduced pollutions and means for waste control and risks management are challenging the preservation and protection of the natural original environment, including species and their ecosystems, ethnics and their cultures or languages, protection of inherited landscapes and monuments for the future generations to come. In this article, few projects will be analyzed, methods and directions in the EU sustainable development scheme giving way to economical and social activities and preserve rural areas and remote countryside as well as smarter cities development. EU ETS forecasting escalation in the next few decades for road and air, and will reconsider investments and reliance on Biobased alternatives that may turn out solutions and contributions to sustain popularization of tourism development. Study of Examples of Stakeholders practices and Governments efforts, consumer’s attitude to bring new forms of more responsible holidays models: ecotourism, eco-certification, partnerships, investment in technologies and facilities, and possibly create greener perceptions and less impacting demands for the longer term through association, organizations and awards.Keywords: tourism, sustainability, protection, risks management, change in rural/urban environment
Procedia PDF Downloads 335825 Process Optimization and Microbial Quality of Provitamin A-Biofortified Amahewu, a Non-Alcoholic Maize Based Beverage
Authors: Temitope D. Awobusuyi, Eric O. Amonsou, Muthulisi Siwela, Oluwatosin A. Ijabadeniyi
Abstract:
Provitamin A-biofortified maize has been developed to alleviate Vitamin A deficiency; a major public health problem in developing countries. Amahewu, a non-alcoholic fermented maize based beverage is produced using white maize, which is deficient in Vitamin A. In this study, the suitable processing conditions for the production of amahewu using provitamin A-biofortified maize and the microbial quality of the processed products were evaluated. Provitamin A-biofortified amahewu was produced with reference to traditional processing method. Processing variables were Inoculum types (Malted provitamin A maize, Wheat bran, and lactobacillus mixed starter culture with either malted provitamin A or wheat bran) and concentration (0.5 %, 1 % and 2 %). A total of four provitamin A-biofortified amahewu products after fermentation were subjected to different storage conditions: 4ᴼC, 25ᴼC and 37ᴼC. pH and TTA were monitored throughout the storage period. Sample of provitamin A-biofortified amahewu were plated and observed every day for 5 days to assess the presence of Aerobic and Anaerobic spore formers, E.coli, Lactobacillus and Mould. The addition of starter culture substantially reduced the fermentation time (6 hour, pH 3.3) compared to those with no addition of starter culture (24 hour pH 3.5). It was observed that Lactobacillus were present from day 0 for all the storage temperatures. The presence of aerobic spore former and mould were observed on day 3. E.coli and Anaerobic spore formers were not present throughout the storage period. These microbial growth were minimal at 4ᴼC while 25ᴼC had higher counts of growth with 37ᴼC having the highest colony count. Throughout the storage period, pH of provitamin A-biofortified amahewu was stable. Provitamin A-biofortified amahewu stored under refrigerated condition (4ᴼC) had better storability compared to 25ᴼC and 37ᴼC. The production and microbial quality of provitamin A-biofortified amahewu might be important in combating Vitamin A Deficiency.Keywords: biofortification, fermentation, maize, vitamin A deficiency
Procedia PDF Downloads 432824 You Only Get One Brain: An Exploratory Retrospective Study On Life After Adolescent TBI
Authors: Mulligan T., Barker-Collo S., Gobson K., Jones K.
Abstract:
There is a relatively scarce body of literature regarding adolescent experiences of traumatic brain injury (TBI). This qualitative study explored how sustaining a TBI at this unique stage of development might impact a young person as they navigate the challenges of adolescence and transition to adulthood, and what might support recovery. Thirteen young adults who sustained a mild-moderate TBI as an adolescent (aged 13 – 17 years), approximately 7.7 years (range = 6.7 – 8.0 years) prior, participated in the research. Semi-structured individual interviews were conducted to explore participants’ experiences surrounding and following their TBIs. Thematic analysis of interview data produced five key categories of findings: (1) Following their TBIs, many participants experienced problems with cognitive (e.g., forgetfulness, concentration difficulties), physical (e.g., migraines, fatigue) and emotional (e.g., depression, anxiety) functioning, which were often endured into adulthood. (2) TBI-related problems often adversely affected important areas of life for the participant, including school, work and friendships. (3) Changes following TBI commonly impacted identity formation. (4) Recovery processes evolved over time as the participants coped initially by just ‘getting on with it’, before learning to accept new limitations and, ultimately, growing from their TBI experiences. (5) While the presence of friends and family assisted recovery, struggles were often exacerbated by a lack of emotional support from others, in addition to the absence of any assistance or information-provision from professionals regarding what to expect following TBI. The findings suggest that even mild TBI sustained during adolescence can have consequences for an individual’s functioning, engagement in life and identity development, whilst also giving rise to post-traumatic growth. Recovery following adolescent TBI might be maximised by facilitating greater understanding of the injury and acknowledging its impacts on important areas of life, as well as the provision of emotional support and facilitating self-reflection and meaning-making.Keywords: adolescent, brain Injury, qualitative, post-traumatic growth
Procedia PDF Downloads 55823 Perceived Effects of Alcohol Abuse on Ordinary Level Students at Gatsi Secondary School
Authors: Chimeri Muzano Leonard
Abstract:
The study was carried out to investigate the perceptions of male and female Ordinary Level students on the effects of alcohol abuse at Gatsi Secondary School. The study showed that alcohol abuse has academic, social, psychological and health effects on Ordinary Level students. The negative effects comprises of death, dropping out, poor grades, poor concentration, risky behaviors, impairment of the brain and central nervous system , risky behaviors and Impairment of reproductive functioning Only students who enrolled for Ordinary Level in the 2014 academic year participated in this study. Fifty students (25 males and 25 females) were randomly selected to participate in the study. A formal survey questionnaire was used to collect data. The respondents were asked to use a scale of 0 (totally disagree) to 10 (completely agree) to indicate the extent to which they agreed with each perception. The Statistical Package for Social Sciences (SPSS) version 19.0 was used for data analysis. The Mann Whitney U test was used to test for the significance of differences in the perceptions of male and female students. No statistically significant differences were detected between males and females in most of their perceptions regarding the effects of alcohol abuse on Ordinary Level students. However, there were three perceptions found to be significantly different between male and female. They comprises of “Peers influence one to drink alcohol”, “Alcohol abuse is a major problem among male students compared to their female peers” and “ Female students should not drink beer”.It was evident from this study that Gatsi Secondary School needs to implement more effective interventions that combat alcohol abuse. A deeper analysis of the issues that predispose Ordinary Level students to alcohol abuse should inform the interventions. Consequently, unravelling the problem of negative effects of alcohol abuse was desirable because of its potential usefulness in developing strategies that might help curb the problem and presumably improve the performance of Ordinary Level students and above all the quality of education at Gatsi Secondary School.Keywords: perceived effects, alcohol, Gatsi Secondary School, alcohol abuse
Procedia PDF Downloads 240822 Osteoprotegerin and Osteoprotegerin/TRAIL Ratio are Associated with Cardiovascular Dysfunction and Mortality among Patients with Renal Failure
Authors: Marek Kuźniewski, Magdalena B. Kaziuk , Danuta Fedak, Paulina Dumnicka, Ewa Stępień, Beata Kuśnierz-Cabala, Władysław Sułowicz
Abstract:
Background: The high prevalence of cardiovascular morbidity and mortality among patients with chronic kidney disease (CKD) is observed especially in those undergoing dialysis. Osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been associated with cardiovascular complications. Our aim was to study their role as cardiovascular risk factors in stage 5 CKD patients. Methods: OPG, RANKL and TRAIL concentrations were measured in 69 hemodialyzed CKD patients and 35 healthy volunteers. In CKD patients, cardiovascular dysfunction was assessed with aortic pulse wave velocity (AoPWV), carotid artery intima-media thickness (CCA-IMT), coronary artery calcium score (CaSc) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) serum concentration. Cardiovascular and overall mortality data were collected during a 7-years follow-up. Results: OPG plasma concentrations were higher in CKD patients comparing to controls. Total soluble RANKL was lower and OPG/RANKL ratio higher in patients. Soluble TRAIL concentrations did not differ between the groups and OPG/TRAIL ratio was higher in CKD patients. OPG and OPG/TRAIL positively predicted long-term mortality (all-cause and cardiovascular) in CKD patients. OPG positively correlated with AoPWV, CCA-IMT and NT-proBNP whereas OPG/TRAIL with AoPWV and NT-proBNP. Described relationships were independent of classical and non-classical cardiovascular risk factors, with exception of age. Conclusions: Our study confirmed the role of OPG as a biomarker of cardiovascular dysfunction and a predictor of mortality in stage 5 CKD. OPG/TRAIL ratio can be proposed as a predictor of cardiovascular dysfunction and mortality.Keywords: osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, receptor activator of nuclear factor kappa-B ligand, hemodialysis, chronic kidney disease, cardiovascular disease
Procedia PDF Downloads 334821 Research on Low interfacial Tension Viscoelastic Fluid Oil Displacement System in Unconventional Reservoir
Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang
Abstract:
Unconventional oil reservoirs have the characteristics of strong heterogeneity and poor injectability, and traditional chemical flooding technology is not effective in such reservoirs; polymer flooding in the production of heavy oil reservoirs is difficult to handle produced fluid and easy to block oil wells, etc. Therefore, a viscoelastic fluid flooding system with good adaptability, low interfacial tension, plugging, and diverting capabilities was studied. The viscosity, viscoelasticity, surface/interfacial activity, wettability, emulsification, and oil displacement performance of the anionic Gemini surfactant flooding system were studied, and the adaptability of the system to the reservoir environment was evaluated. The oil displacement effect of the system in low-permeability and high-permeability (heavy oil) reservoirs was investigated, and the mechanism of the system to enhance water flooding recovery was discussed. The results show that the system has temperature resistance and viscosity increasing performance (65℃, 4.12mPa•s), shear resistance and viscoelasticity; at a lower concentration (0.5%), the oil-water interfacial tension can be reduced to ultra-low (10-3mN/m); has good emulsifying ability for heavy oil, and is easy to break demulsification (4.5min); has good adaptability to reservoirs with high salinity (30000mg/L). Oil flooding experiments show that this system can increase the water flooding recovery rate of low-permeability homogeneous and heterogeneous cores by 13% and 15%, respectively, and can increase the water-flooding recovery rate of high-permeability heavy oil reservoirs by 40%. The anionic Gemini surfactant flooding system studied in this paper is a viscoelastic fluid, has good emulsifying and oil washing ability, can effectively improve sweep efficiency, reduce injection pressure, and has broad application in unconventional reservoirs to enhance oil recovery prospect.Keywords: oil displacement system, recovery factor, rheology, interfacial activity, environmental adaptability
Procedia PDF Downloads 124820 Nutrigenetic and Bioinformatic Analysis of Rice Bran Bioactives for the Treatment of Lifestyle Related Disease Diabetes and Hypertension
Authors: Md. Alauddin, Md. Ruhul Amin, Md. Omar Faruque, Muhammad Ali Siddiquee, Zakir Hossain Howlader, Mohammad Asaduzzaman
Abstract:
Diabetes and hypertension are the major lifestyle related diseases. The α-amylase and angiotensin converting enzymes (ACE) are the key enzymes that regulate diabetes and hypertension. The aim was to develop a drug for the treatment of diabetes and hypertension. The Rice Bran (RB) sample (Oryza sativa; BRRI-Dhan-84) was collected from the Bangladesh Rice Research Institute (BRRI), and rice bran proteins were isolated and hydrolyzed by hydrolyzing enzyme alcalase and trypsin. In vivo experiment suggested that rice bran bioactives has an effect on regulating the expression of several key gluconeogenesis and lipogenesis-regulating genes, such as glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, and fatty acid synthase. The above genes have a connection of regulating the glucose level, lipids profile as well as act as an anti-inflammatory agent. A molecular docking, bioinformatics and in vitro experiments were performed. We found rice bran protein hydrolysates significantly (<0.05) influence the peptide concentration in the case of trypsin, alcalase, and (trypsin + alcalase) digestion. The in vitro analysis found that protein hydrolysate significantly (<0.05) reduced diabetic and hypertension as well as oxidative stress. A molecular docking study showed that the YY and IP peptide have a significantly strong binding affinity to the active site of the ACE enzyme and α-amylase with -7.8Kcal/mol and -6.2Kcal/mol, respectively. The Molecular dynamics (MD) simulation and Swiss ADME data analysis showed that less toxicity risk, good physicochemical properties, pharmacokinetics, and drug-likeness with drug scores 0.45 and 0.55 of YY and IP peptides, respectively. Thus, rice bran bioactive could be a good candidate for the treatment of diabetes and hypertension.Keywords: anti-hypertensive and anti-hyperglycemic, anti-oxidative, bioinformatics, in vitro study, rice bran proteins and peptides
Procedia PDF Downloads 61819 Nickel Removal from Industrial Wastewater by Eucalyptus Leaves and Poplar Ashes
Authors: Negin Bayat, Nahid HasanZadeh
Abstract:
Effluents of different industries such as metalworking, battery industry, mining, including heavy metal are considered problematic issues for both humans and the environment. These heavy metals include cadmium, copper, zinc, nickel, chromium, cyanide, lead, etc. Different physicochemical and biological methods are used to remove heavy metals, such as sedimentation, coagulation, flotation, chemical precipitation, filtration, membrane processes (reverse osmosis and nanofiltration), ion exchange, biological methods, adsorption with activated carbon, etc. These methods are generally either expensive or ineffective. In recent years, considerable attention has been given to the removal of heavy metal ions from solution by absorption using discarded and low-cost materials. In this study, nickel removal using an adsorption process by eucalyptus powdered leaves and poplar ash was investigated. This is an applied study. The effect of various parameters on metal removal, such as pH, amount of adsorbent, contact time, and stirring speed, was studied using a discontinuous method. This research was conducted in aqueous solutions on the laboratory scale. Then, optimum absorption conditions were obtained. Then, the study was conducted on real wastewater samples. In addition, the nickel concentration in the wastewater before and after the absorption process was measured. In all experiments, the remaining nickel was measured using an atomic absorption spectrometry device at 382 nm wavelength after an appropriate time and filtration. The results showed that increasing both adsorbent and pH parameters increase the metal removal rate. Nickel removal increased at the first 60 minutes. Then, the absorption rate remained constant and reached equilibrium. A desired removal rate with 40 mg in 100 ml adsorbent solution at pH = 9.5 was observed. According to the obtained results, the best absorption rate was observed at 40 mg dose using a combination of eucalyptus leaves and poplar ash in this study, which was equal to 99.76%. Thus, this combined method can be used as an inexpensive and effective absorbent for the removal of nickel from aqueous solutions.Keywords: absorption, wastewater, nickel, poplar ash, eucalyptus leaf, treatment
Procedia PDF Downloads 19818 Enhanced Poly Fluoroalkyl Substances Degradation in Complex Wastewater Using Modified Continuous Flow Nonthermal Plasma Reactor
Authors: Narasamma Nippatlapallia
Abstract:
Communities across the world are desperate to get their environment free of toxic per-poly fluoroalkyl substances (PFAS) especially when these chemicals are in aqueous media. In the present study, two different chain length PFAS (PFHxA (C6), PFDA (C10)) are selected for degradation using a modified continuous flow nonthermal plasma. The results showed 82.3% PFHxA and 94.1 PFDA degradation efficiencies, respectively. The defluorination efficiency is also evaluated which is 28% and 34% for PFHxA and PFDA, respectively. The results clearly indicates that the structure of PFAS has a great impact on degradation efficiency. The effect of flow rate is studied. increase in flow rate beyond 2 mL/min, decrease in degradation efficiency of the targeted PFAS was noticed. PFDA degradation was decreased from 85% to 42%, and PFHxA was decreased to 32% from 64% with increase in flow rate from 2 to 5 mL/min. Similarly, with increase in flow rate the percentage defluorination was decreased for both C10, and C6 compounds. This observation can be attributed to mainly because of change in residence time (contact time). Real water/wastewater is a composition of various organic, and inorganic ions that may affect the activity of oxidative species such as 𝑂𝐻. radicals on the target pollutants. Therefore, it is important to consider radicals quenching chemicals to understand the efficiency of the reactor. In gas-liquid NTP discharge reactors 𝑂𝐻. , 𝑒𝑎𝑞 − , 𝑂 . , 𝑂3, 𝐻2𝑂2, 𝐻. are often considered as reactive species for oxidation and reduction of pollutants. In this work, the role played by two distinct 𝑂 .𝐻 Scavengers, ethanol and glycerol, on PFAS percentage degradation, and defluorination efficiency (i,e., fluorine removal) are measured was studied. The addition of scavenging agents to the PFAS solution diminished the PFAS degradation to different extents depending on the target compound molecular structure. In comparison with the degradation of only PFAS solution, the addition of 1.25 M ethanol inhibited C10, and C6 degradation by 8%, and 12%, respectively. This research was supported with energy efficiency, production rate, and specific yield, fluoride, and PFAS concentration analysis with respect to optimum hydraulic retention time (HRT) of the continuous flow reactor.Keywords: wastewater, PFAS, nonthermal plasma, mineralization, defluorination
Procedia PDF Downloads 29817 Impact of Non-Starch Polysaccharides on Sensorial Characteristics and Textural Properties of Bread
Authors: Farhan Saeed, Imran Pasha, Faqir M. Anjum, Muhammad U. Arshad
Abstract:
Introduction: Cereals especially wheat is one example in this respite as it contains several nutrients and phytochemicals. In this regard, presences of non-starch polysaccharides are of significance value e.g. arabinoxylans (AX) and arabinogalactans (AG). These ingredients possess several functional and nutritional properties and in this project, efforts were directed to extract AX and AG from different spring wheat varieties of Pakistan and subsequent utilization in cereal based baked products. Methodology: In the present study, effort was made to characterize eight different spring wheats e.g. Lasani-08, FSD-08, Mairaj-08, Shafaq-06, Sehar-06, Bhakkar-02, Uqab-2000 and Inqalab-91 with special reference to non-starch polysaccharides (arabinoxylans and arabinogalactans) extraction followed by their utilization in baked products. Major Findings of Study: Results showed that the arabinoxylans and arabinogalactans content in whole wheat flour of different wheat varieties ranged from 2.93 to 4.68% and 0.47 to 0.93%, respectively while in bran, they ranged from 11.71 to 18.38% and 1.07-4.43%, respectively. Phenolic compounds i.e. ferulic acid, p-coumaric acids were 1.12 and 19.6mg/100g, respectively. Owing to presence of these phenolic compounds, it has persuasive antioxidant potential. Arabinoxylan has negative impact on gluten quality as reduced gluten strength was observed while significant results were obtained for rheological characteristic. Moreover, adding Arabinoxylan and arabinogalactan in bread formulation resulted in significant increase in volume and texture of the final product. In addition, the hardness of bread lessened considerably due to the increase in the concentration of arabinoxylan and arabinogalactan. Additionally, fracturability of bread improved as the both non-starch polysaccharides levels increased. The highest gumminess value was given to Shafaq-06 with increasing trend from control to 0.5% arabinoxylan. Whilst with the addition of arabinogalactan, the highest bread gumminess value (155.74 ± 6.1, 156.32 ± 7.9) was also observed in Shafaq-06. Concluding Statement: Conclusively, it may be inferred that non-starch polysaccharides hold potential to be extracted and utilized in cereal based products for best quality and value addition.Keywords: non-starch polysaccharides, arabinoxylan, arabinogalactan, bread
Procedia PDF Downloads 223