Search results for: real anthropometric database
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7020

Search results for: real anthropometric database

2730 Change of Epidemiological Characteristics and Disease Burden of Varicella Due to Implementation of Mass Immunization Program in Taiwan from 2000 to 2012

Authors: En-Tzu Wang, Ting-Ann Wang, Yi-Hui Shen, Yu-Min Chou, Chi-Tai Fang, Chin-Hui Yang

Abstract:

Background and purpose: A mass varicella immunization program was established to provide free 1-dose vaccination for all 1-year-old children throughout Taiwan since 2004. The epidemiological characteristics and disease burden of varicella from 2000 to 2012 was investigated and the results will be essential to refine the national immunization policy. Method: We included patients (n = 17,838–164,245) with ICD-9-CM codes 052 (chickenpox) from the 2000 to 2012 National Health Insurance Database. The age, period, and cohort-specific incidence of varicella were calculated. The hospital admission rate, medical costs and indirect costs from the societal perspective of varicella including travel costs to the medical facility, registration fee, productivity losses of the patients and caregivers were also estimated. Result: There were 979,252 patients for medical treatment due to varicella from 2000 to 2012 in Taiwan. The implementation of a routine childhood varicella vaccination program has resulted in 87% decline in morbidity (881.49 to 115.17 per 100,000). The average age of patients increased from 7.9 years to 16.3 years. The overall varicella-related hospital admission rate was 15.5 per 1000 patients, and peaked in the groups of infants younger than 1 year, adults aged from 20 to 39 years and elders over 70 years. Among patients admitted to hospital, 33.5% of them had one or more complications. Patients with underlying diseases had higher admission rate (241.6 per 1,000) and longer duration of hospital stay (6.61 days vs. 4.76 days). The annual varicella-related medical expense declined after 2002 and the proportion of medical costs for admission has increased to 42%. The annual indirect costs from the societal perspective of varicella were 5.29 to 9.63 times higher than varicella-related medical costs. Every one dollar invested in the varicella immunization program, 2.97 dollars of medical and social costs were saved on average. Conclusion: The dramatic decline in morbidity, hospitalization, medical and social costs of varicella can be directly attributed to the implementation of the mass immunization program. Two-dose vaccination is recommended for both children with underlying diseases and susceptible adults to prevent serious complications and hospitalizations.

Keywords: disease burden, epidemiology, medical and social costs, varicella, varicella vaccine

Procedia PDF Downloads 417
2729 The Application of Cognitive Linguistics to Teaching EFL Students to Understand Spoken Coinages: Based on an Experiment with Speakers of Russian

Authors: Ekaterina Lukianchenko

Abstract:

The present article addresses the nuances of teaching English vocabulary to Russian-speaking students. The experiment involving 39 participants aged 17 to 21 proves that the key to understanding spoken coinages is not only the knowledge of their constituents, but rather the understanding of the context and co-text. The volunteers who took part knew the constituents, but did not know the meaning of the words. The assumption of the authors consists in the fact that the structure of the concept has a direct relation with the form of the particular vocabulary unit, but its form is secondary to its meaning, if the word is a spoken coinage, which is partly proved by the fact that in modern slang words have multiple meanings, as well as one notion can have various embodiments that have virtually nothing in common. The choice of vocabulary items that youngsters use is not exactly arbitrary, but, even if complex nominals are taken into consideration, whose meaning seems clear, as it looks like a sum of their constituents’ meanings, they are still impossible to understand without any context or co-text, as a lot of them are idiomatic, non-transparent. It is further explained what methods might be effective in teaching students how to deal with new words they encounter in real-life situations and how student’s knowledge of vocabulary might be enhanced.

Keywords: spoken language, cognitive linguistics, complex nominals, nominals with the incorporated object, concept, EFL, communicative language teaching

Procedia PDF Downloads 281
2728 GABARAPL1 (GEC1) mRNA Expression Levels in Patients with Alzheimer's Disease

Authors: Ali Bayram, Burak Uz, Ilhan Dolasik, Remzi Yiğiter

Abstract:

The GABARAP (GABAA-receptor-associated protein) family consists of GABARAP, GABARAPL1 (GABARAP-like 1) and GABARAPL2 (GABARAP-like 2). GABARAPL1, like GABARAP, was described to interact with both GABAA receptor and tubulin, and to be involved in intracellular GABAA receptor trafficking and promoting tubulin polymerization. In addition, GABARAPL1 is thought to be involved in various physiological (autophagosome closure, regulation of circadian rhythms) and/or pathological mechanisms (cancer, neurodegeneration). Alzheimer’s disease (AD) is a progressive neuro degenerative disorder characterized with impaired cognitive functions. Disruption of the GABAergic neuro transmission as well as cholinergic and glutamatergic interactions, may also be involved in the pathogenesis of AD. GABARAPL1 presents a regulated tissue expression and is the most expressed gene among the GABARAP family members in the central nervous system. We, herein, conducted a study to investigate the GABARAPL1 mRNA expression levels in patients with AD. 50 patients with AD and 49 control patients were enrolled to the present study. Messenger RNA expression levels of GABARAPL1 were detected by real-time polymerase chain reaction. GABARAPL1 mRNA expression in AD / control patients was 0,495 (95% confidence interval: 0,404-0,607), p= 0,00000002646. Reduced activity of GABARAPL1 gene might play a role, at least partly, in the pathophysiology of AD.

Keywords: Alzheimer’s disease, GABARAPL1, mRNA expression, RT-PCR

Procedia PDF Downloads 460
2727 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control

Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba

Abstract:

This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.

Keywords: electrical generator, induction motor drive, modeling, pitch angle control, real time control, renewable energy, wind turbine, wind turbine emulator

Procedia PDF Downloads 237
2726 Mind Care Assistant - Companion App

Authors: Roshani Gusain, Deep Sinha, Karan Nayal, Anmol Kumar Mishra, Manav Singh

Abstract:

In this research paper, we introduce "Mind Care Assistant - Companion App", which is a Flutter and Firebase-based mental health monitor. The app wants to improve and monitor the mental health of its users, it uses noninvasive ways to check for a change in their emotional state. By responding to questions, the app will provide individualized suggestions ᅳ tasks and mindfulness exercises ᅳ for users who are depressed or anxious. The app features a chat-bot that incorporates cognitive behavioural therapy (CBT) principles and combines natural language processing with machine learning to develop personalised responses. The feature of the app that makes it easy for us to choose between iOS and Android is cross-platform, which allows users from both mobile systems to experience almost no changes in their interfaces. With Firebase integration synchronized and real-time data storage, security is easily possible. The paper covers the architecture of the app, how it was developed and some important features. The primary research result presents the promise of a "Mind Care Assistant" in mental health care using new wait-for-health technology, proposing a full stack application to be able to manage depression/anxiety and overall Mental well-being very effectively.

Keywords: mental health, mobile application, flutter, firebase, Depression, Anxiety

Procedia PDF Downloads 26
2725 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation

Authors: P. D. Pastuszak

Abstract:

The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.

Keywords: active thermography, composite, curved structures, defects

Procedia PDF Downloads 323
2724 Poetics of the Connecting ha’: A Textual Study in the Poetry of Al-Husari Al-Qayrawani

Authors: Mahmoud al-Ashiriy

Abstract:

This paper begins from the idea that the real history of literature is the history of its style. And since the rhyme –as known- is not merely the last letter, that have received a lot of analysis and investigation, but it is a collection of other values in addition to its different markings. This paper will explore the work of the connecting ha’ and its effectiveness in shaping the text of poetry, since it establishes vocal rhythms in addition to its role in indicating references through the pronoun, vertically through the poem through the sequence of its verses, also horizontally through what environs the one verse of sentences. If the scientific formation of prosody stopped at the possibilities and prohibitions; literary criticism and poetry studies should explore what is above the rule of aesthetic horizon of poetic effectiveness that varies from a text to another, a poet to another, a literary period to another, or from a poetic taste to another. Then the paper will explore this poetic essence in the texts of the famous Andalusian Poet Al-Husari Al-Qayrawani through his well-known Daliyya (a poem that its verses end with the letter D), and the role of the connecting ha’ in fulfilling its text and the accomplishment of its poetics, departing from this to the diwan (the big collection of poems) also as a higher text that surpasses the text/poem, and through what it represents of effectiveness the work of the phenomenon in accomplishing the poetics of the poem of Al-Husari Al-Qayrawani who is one of the pillars of Arabic poetics in Andalusia.

Keywords: Al-Husari Al-Qayrawni, poetics, rhyme, stylistics, science of the text

Procedia PDF Downloads 576
2723 The Challenges Faced in Learning English as a Second Language in Sri Lanka: A Case Study of Ordinary Level Students in Kurunegala District

Authors: H. L. M. Fawzan

Abstract:

Undoubtedly, learning English as a second language (ESL) is considered a challenging task. It is more difficult for students in far-away districts when compared with the students in the capital cities, where learning resources are easily available and where the environment is conducive to learning. Thus, this study is an analysis of the challenges faced by learners in learning English as the second language within kurunegala district in Sri Lanka. Even though various efforts have been taken by the Sri Lankan Educationalists for improving the situation of English language teaching for the past few decades, a disappointing situation still exist in the achievements of English learning among Sri Lankan students. So, it is necessary to explore real reasons behind the poor achievements of the students in the English Language. It is also an attempt to highlight what can be done to improve the situation significantly. Kurunegala is far away from the capital city of Sri Lanka and is a densely populated district. In the year 2020, state university admission was 45.87% from the Kurunegala district (Department of Examinations). The researcher strived to examine some of the likely challenges faced when teaching English in secondary schools in Kurunegala. The data was collected using a questionnaire from 35 students from schools within the Kurunegala education division. The result of the study reveals that students were highly motivated to learn English for their prospects and expectations such as local and international communication, academic advancement, and employment prospects.

Keywords: english, teaching, Kurunegala, Sri Lanka, challenges

Procedia PDF Downloads 155
2722 Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis

Authors: Xudong He, Jian Wang, Jiqiang Liu, Lei Han, Yang Yu, Shaohua Lv

Abstract:

Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively.

Keywords: correlation analysis, hierarchical filtering, multisource data, network security

Procedia PDF Downloads 203
2721 Production Sharing Contracts Transparency Simulation

Authors: Chariton Christou, David Cornwell

Abstract:

Production Sharing Contract (PSC) is the type of contract that is being used widely in our time. The financial crisis made the governments tightfisted and they do not have the resources to participate in a development of a field. Therefore, more and more countries introduce the PSC. The companies have the power and the money to develop the field with their own way. The main problem is the transparency of oil and gas companies especially in the PSC and how this can be achieved. Many discussions have been made especially in the U.K. What we are suggesting is a dynamic financial simulation with the help of a flow meter. The flow meter will count the production of each field every day (it will be installed in a pipeline). The production will be the basic input of the simulation. It will count the profit, the costs and more according to the information of the flow meter. In addition it will include the terms of the contract and the costs that have been paid. By all these parameters the simulation will be able to present in real time the information of a field (taxes, employees, R-factor). By this simulation the company will share some information with the government but not all of them. The government will know the taxes that should be paid and what is the sharing percentage of it. All of the other information could be confidential for the company. Furthermore, oil company could control the R-factor by changing the production each day to maximize its sharing percentages and as a result of this the profit. This idea aims to change the way that governments 'control' oil companies and bring a transparency evolution in the industry. With the help of a simulation every country could be next to the company and have a better collaboration.

Keywords: production sharing contracts, transparency, simulation

Procedia PDF Downloads 378
2720 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung

Abstract:

In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 394
2719 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 177
2718 Dynamic Software Product Lines for Customer Centric Context Aware Business Process Management

Authors: Bochra Khiari, Lamia Labed

Abstract:

In the new digital marketplace, organizations are striving for a proactive position by leveraging the great potential of disruptive technologies to seize the full opportunity of the digital revolution in order to reshape their customer value propositions. New technologies such as big data analytics, which provide prediction of future events based on real-time information, are being integrated into BPM which urges the need for additional core values like capabilities for dynamic adaptation, autonomic behavior, runtime reconfiguration and post-deployment activities to manage unforeseen scenarios at runtime in a situated and changeable context. Dynamic Software Product Lines (DSPL) is an emerging paradigm that supports these runtime variability mechanisms. However, few works exploiting DSPLs principles and techniques in the BPM domain have been proposed so far. In this paper, we propose a conceptual approach DynPL4CBPM, which integrates DSPLs concepts along with the entire related dynamic properties, to the whole BPM lifecycle in order to dynamically adapt business processes according to different context conditions in an individual environment.

Keywords: adaptive processes, context aware business process management, customer centric business process management, dynamic software product lines

Procedia PDF Downloads 163
2717 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Authors: Adrienne Kline, Jaydip Desai

Abstract:

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Keywords: brain-machine interface, EEGLAB, emotiv EEG neuroheadset, OpenViBE, simulink

Procedia PDF Downloads 503
2716 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems

Authors: Ekrem Canli, Thomas Glade

Abstract:

The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.

Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping

Procedia PDF Downloads 281
2715 The Impact of Total Dust (LGS) and Mineral Dust (PM 10) in Cardio Vascular and Respiratory System, in Albania: A Longitudinal Study

Authors: Canga Mimoza, Irene Malagnino, Giulia Malagnino, Vito Malagnino

Abstract:

Aim: This study aims at evaluating the impact of total dust (LGS) and mineral dust (PM10), in the cardio vascular and respiratory systems. Also proving that these air polluters are the cause of several diseases, such as bronchopneumonia, pneumonia, bronchitis, angina pectoris and cardiac insufficiency. Material and Method: The study is concentrated in the cities of Fier and Vlora. This is a clinic-epidemiological study conducted during the time period 2014-2019. Some of the data of LGS and PM10 were obtained from the database of the Institute of Public Health. The formula to measure the mean value of LGS and PM10 is ∆X=X (mean)-Xᵢ. Results: Based on the calculations made, we noticed that: The mean value of LGS in the city of Fieri was 227,33, while the mean value of LGS in the city of Vlora was 177,4. Whereas, the mean value of PM10 in the city of Fieri was 105.5 and the mean value of PM10 in the city of Vlore was 77.5. According to, our statistics the values of LGS were 1.2 times higher in Fier than in Vlora and the PM10 values were 1.36 times higher in Fier than in Vlora. Based on the data, in the city of Fier, the incidence of the bronchopneumonia was 56.53 sick patients/1000 inhabitants, but in Vlora, it was 22 sick patients/1000 inhabitants, so the number of the sick patients was 2.5 times higher in the city of Fieri compared with Vlora city, (P=0.001). The number of the patients with bronchitis, in the city of Fier, was 18 patients/1000 inhabitants, whereas, in Vlora, it was 9 patients/1000 inhabitants, (P=0.005). Based on the data, 8 patients/1000 inhabitants in the city of Fier, suffered from the pneumonia disease, while in Vlora city, were 4 patients/1000 inhabitants, (P=0.005). Another disease taken in consideration was angina pectoris. This study can claim that in the city of Fier, 9.5 patients/1000 inhabitants suffered from this disease, while in Vlora city, were only 4 patients /1000 inhabitants, (P=0.001). Findings of the present study proved that 3.7 patients/1000 inhabitants in the city of Fieri, had cardiac insufficiency, whereas in the city of Vlora, were 1.8 patients/1000 inhabitants, (P=0.05). Conclusions: LGS and PM10 have an influential impact on the cardio vascular and respiratory system; that’s why their levels should be kept under control. The pollution levels are 1.2 and 1.4 times higher in Fier than in Vlora; also the incidences of the diseases are 2 times higher in Fier than in Vlora. Recommendations: In order to prevent the cardio vascular and respiratory diseases, we should avoid places where pollution is higher than the norm. This can be achieved by frequenting places where the air pollution is lower, such as parks, gardens, top floors, etc.

Keywords: impact of total dust, LGS, mineral dust, PM 10, cardio vascular pathologies, respiratory disease

Procedia PDF Downloads 133
2714 "Good" Discretion Among Private Sector Street Level Bureaucrats

Authors: Anna K. Wood, Terri Friedline

Abstract:

In April and May 2020, the private banking industry approved over 1.7 million emergency small business loans, totaling over $650 billion in federal relief funds as part of the Paycheck Protection Program (PPP). Since the program’s rollout, the extensive evidence of discriminatory lending and misuse of funds has been revealed by investigative journalism and academic studies. This study is based on 41 interviews with frontline banking industry professionals conducted during the days and weeks of the PPP rollout, presenting a real-time narrative of the program rollout through the eyes of those in the role of a street-level bureaucrat. We present two themes from this data about the conditions under which these frontline workers experienced the PPP: Exigent Timelines and Defaulting to Existing Workplace Norms and Practices. We analyze these themes using literature on street-level organizations, bureaucratic discretion, and the differences between public and private sector logic. The results of this study present new directions for theorizing sector-level differences in street-level bureaucratic discretion in the context of mixed-sector collaboration on public service delivery, particularly under conditions of crisis and urgency.

Keywords: street level bureaucracy, social policy, bureaucratic discretion, public private partnerships

Procedia PDF Downloads 108
2713 Postoperative Wound Infections Following Caesarean Section in Obese Patients

Authors: S. Yeo, M. Mathur

Abstract:

Introduction: Obesity, defined as a Body Mass Index (BMI) of more than or equal to 30kg/m, is associated with an increased risk of complications during pregnancy and delivery. During labour, obese mothers often require greater intervention and have higher rates of caesarean section. Despite a low overall rate of serious complications following caesarean section, a high BMI predisposes to a higher risk of postoperative complications. Our study, therefore, aimed to investigate the impact of antenatal obesity on adverse outcomes following caesarean section, particularly wound-related infections. Materials and Methods: A retrospective cohort study of all caesarean deliveries during the first quarter of a chosen year was undertaken in our hospital, which is a tertiary referral centre with > 12,000 deliveries per year. Patients’ health records and data from our hospital’s electronic labour and delivery database were reviewed. Data analysis was performed using the Statistical Package for the Social Sciences (SPSS), and odds ratios plus adjusted odd ratios were calculated with 95% confidence intervals (CI). Results: A total of 1829 deliveries were reviewed during our study period. Of these, 180 (9.8%) patients were obese. The rate of caesarean delivery was 48.9% in obese patients versus 28.1% in non-obese patients. Post-operatively, 17% of obese patients experienced wound infection versus 0.2% of non-obese patients. Obese patients were also more likely to experience major postpartum haemorrhage (4.6% vs. 0.2%) and postpartum pyrexia (18.2% vs. 5.0%) in comparison to non-obese patients. Conclusions: Obesity is a significant risk factor in the development of postoperative complications following caesarean section. Wound infection remains a major concern for obese patients undergoing major surgery and results in extensive morbidity during the postnatal period. Postpartum infection can prolong recovery and affect maternal mental health, leading to reduced perinatal bonding with long-term implications on breastfeeding and parenting confidence. This study supports the need for the development of standardized protocols specifically for obese patients undergoing caesarean section. Multidisciplinary team care, in conjunction with anaesthesia, family physicians, and plastic surgery counterparts, early on in the antenatal journey, may be beneficial where wound complications are anticipated and to minimize the burden of postoperative infection in obese mothers.

Keywords: pregnancy, obesity, caesarean, infection

Procedia PDF Downloads 86
2712 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal

Authors: Jugal Bhandari, K. Hari Priya

Abstract:

The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.

Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language

Procedia PDF Downloads 371
2711 Interaction with Earth’s Surface in Remote Sensing

Authors: Spoorthi Sripad

Abstract:

Remote sensing is a powerful tool for acquiring information about the Earth's surface without direct contact, relying on the interaction of electromagnetic radiation with various materials and features. This paper explores the fundamental principle of "Interaction with Earth's Surface" in remote sensing, shedding light on the intricate processes that occur when electromagnetic waves encounter different surfaces. The absorption, reflection, and transmission of radiation generate distinct spectral signatures, allowing for the identification and classification of surface materials. The paper delves into the significance of the visible, infrared, and thermal infrared regions of the electromagnetic spectrum, highlighting how their unique interactions contribute to a wealth of applications, from land cover classification to environmental monitoring. The discussion encompasses the types of sensors and platforms used to capture these interactions, including multispectral and hyperspectral imaging systems. By examining real-world applications, such as land cover classification and environmental monitoring, the paper underscores the critical role of understanding the interaction with the Earth's surface for accurate and meaningful interpretation of remote sensing data.

Keywords: remote sensing, earth's surface interaction, electromagnetic radiation, spectral signatures, land cover classification, archeology and cultural heritage preservation

Procedia PDF Downloads 63
2710 Moroccan Human Ecological Behavior: Grounded Theory Approach

Authors: Dalal Tarfaoui, Salah Zkim

Abstract:

Today, environmental sustainability is everyone’s concern as it contributes in many aspects to a country's development. Morocco is also aware of the increasing threats to its natural resources. Accordingly, many projects and research have been discussed pointing mainly to water security, pollution, desertification, and land degradation, but few studies bothered to dig into the human demeanor to disclose its ecological behavior. Human behavior is accountable for environment deterioration in the first place, but we keep fighting the symptoms instead of limiting the root causes. In the conceptual framework highlighted in the present article, semi-structured interviews have been conducted using a grounded theory approach. Initially this study will serve as a pilot study and a cornerstone to approve a bigger project now in progress. Beyond the existing general ecological measures (GEM), this study has chosen the grounded theory approach to bring out firsthand insights, and probe to which extent an ecological dimension exists in Morocco as a developing country. The discourse of the ecological behavior within the Moroccan context is seen in more realist, social, and community philosophy. The study has revealed an appreciative ecological behavior that is unfortunately repressed by variables beyond people’s control, which would prevent the people’s environmental good intentions to be translated into real ecological actions.

Keywords: ecological behavior, ecological dimension, variables beyond people’s control, Morocco

Procedia PDF Downloads 501
2709 Effect of Media Reputation on Financial Performance and Abnormal Returns of Corporate Social Responsibility Winner

Authors: Yu-Chen Wei, Dan-Leng Wang

Abstract:

This study examines whether the reputation from media press affect the financial performance and market abnormal returns around the announcement of corporate social responsibility (CSR) award in the Taiwan Stock Market. The differences between this study and prior literatures are that the media reputation of media coverage and net optimism are constructed by using content analyses. The empirical results show the corporation which won CSR awards could promote financial performance next year. The media coverage and net optimism related to CSR winner are higher than the non-CSR companies prior and after the CSR award is announced, and the differences are significant, but the difference would decrease when the day was closing to announcement. We propose that non-CSR companies may try to manipulate media press to increase the coverage and positive image received by investors compared to the CSR winners. The cumulative real returns and abnormal returns of CSR winners did not significantly higher than the non-CSR samples however the leading returns of CSR winners would higher after the award announcement two months. The comparisons of performances between CSR and non-CSR companies could be the consideration of portfolio management for mutual funds and investors.

Keywords: corporate social responsibility, financial performance, abnormal returns, media, reputation management

Procedia PDF Downloads 438
2708 An Approach to Practical Determination of Fair Premium Rates in Crop Hail Insurance Using Short-Term Insurance Data

Authors: Necati Içer

Abstract:

Crop-hail insurance plays a vital role in managing risks and reducing the financial consequences of hail damage on crop production. Predicting insurance premium rates with short-term data is a major difficulty in numerous nations because of the unique characteristics of hailstorms. This study aims to suggest a feasible approach for establishing equitable premium rates in crop-hail insurance for nations with short-term insurance data. The primary goal of the rate-making process is to determine premium rates for high and zero loss costs of villages and enhance their credibility. To do this, a technique was created using the author's practical knowledge of crop-hail insurance. With this approach, the rate-making method was developed using a range of temporal and spatial factor combinations with both hypothetical and real data, including extreme cases. This article aims to show how to incorporate the temporal and spatial elements into determining fair premium rates using short-term insurance data. The article ends with a suggestion on the ultimate premium rates for insurance contracts.

Keywords: crop-hail insurance, premium rate, short-term insurance data, spatial and temporal parameters

Procedia PDF Downloads 59
2707 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow

Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng

Abstract:

The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.

Keywords: area-based traffic, car-following model, micro-simulation, stochastic modeling

Procedia PDF Downloads 149
2706 The Enhancement of Training of Military Pilots Using Psychophysiological Methods

Authors: G. Kloudova, M. Stehlik

Abstract:

Optimal human performance is a key goal in the professional setting of military pilots, which is a highly challenging atmosphere. The aviation environment requires substantial cognitive effort and is rich in potential stressors. Therefore, it is important to analyze variables such as mental workload to ensure safe conditions. Pilot mental workload could be measured using several tools, but most of them are very subjective. This paper details research conducted with military pilots using psychophysiological methods such as electroencephalography (EEG) and heart rate (HR) monitoring. The data were measured in a simulator as well as under real flight conditions. All of the pilots were exposed to highly demanding flight tasks and showed big individual response differences. On that basis, the individual pattern for each pilot was created counting different EEG features and heart rate variations. Later on, it was possible to distinguish the most difficult flight tasks for each pilot that should be more extensively trained. For training purposes, an application was developed for the instructors to decide which of the specific tasks to focus on during follow-up training. This complex system can help instructors detect the mentally demanding parts of the flight and enhance the training of military pilots to achieve optimal performance.

Keywords: cognitive effort, human performance, military pilots, psychophysiological methods

Procedia PDF Downloads 233
2705 Compilation of Load Spectrum of Loader Drive Axle

Authors: Wei Yongxiang, Zhu Haoyue, Tang Heng, Yuan Qunwei

Abstract:

In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two-dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.

Keywords: load spectrum, axle, torque, rain-flow counting method, extrapolation

Procedia PDF Downloads 368
2704 Air Quality Analysis Using Machine Learning Models Under Python Environment

Authors: Salahaeddine Sbai

Abstract:

Air quality analysis using machine learning models is a method employed to assess and predict air pollution levels. This approach leverages the capabilities of machine learning algorithms to analyze vast amounts of air quality data and extract valuable insights. By training these models on historical air quality data, they can learn patterns and relationships between various factors such as weather conditions, pollutant emissions, and geographical features. The trained models can then be used to predict air quality levels in real-time or forecast future pollution levels. This application of machine learning in air quality analysis enables policymakers, environmental agencies, and the general public to make informed decisions regarding health, environmental impact, and mitigation strategies. By understanding the factors influencing air quality, interventions can be implemented to reduce pollution levels, mitigate health risks, and enhance overall air quality management. Climate change is having significant impacts on Morocco, affecting various aspects of the country's environment, economy, and society. In this study, we use some machine learning models under python environment to predict and analysis air quality change over North of Morocco to evaluate the climate change impact on agriculture.

Keywords: air quality, machine learning models, pollution, pollutant emissions

Procedia PDF Downloads 95
2703 Social Movements of Central-Eastern Europe: Examining Trends of Cooperation and Antagonism by Using Big Data

Authors: Reka Zsuzsanna Mathe

Abstract:

The globalization and the Europeanization have significantly contributed to a change in the role of the nation-states. The global economic crisis, the climate changes, and the recent refugee crisis, are just a few among many challenges that cannot be effectively addressed by the traditional role of the nation-states. One of the main roles of the states is to solve collective action problems, however due to their changing roles; apparently this is getting more and more difficult. Depending on political culture, collective action problems are solved either through cooperation or conflict. The political culture of Central and Eastern European (CEE) countries is marked by low civic participation and by a weak civil society. In this type of culture collective action problems are likely to be induced through conflict, rather than the democratic process of dialogue and any type of social change is probably to be introduced by social movements. Several studies have been conducted on the social movements of the CEE countries, yet, it is still not clear if the most significant social movements of the region tend to choose rather the cooperative or the conflictual way as action strategy. This study differentiates between a national and a European action field, having different social orders. The actors of the two fields are the broadly understood civil society members, conceptualized as social movements. This research tries to answer the following questions: a) What are the norms that best characterize the CEE countries’ social order? b) What type of actors would prefer a change and in which areas? c) Is there a significant difference between the main actors active in the national versus the European field? The main hypotheses are that there are conflicting norms defining the national and the European action field, and there is a significant difference between the action strategies adopted by social movements acting in the two different fields. In mapping the social order, the study uses data provided by the European Social Survey. Big data of the Global Data on Events, Location and Tone (GDELT) database offers information regarding the main social movements and their preferred type of action. The unit of the analysis is the so called ‘Visegrad 4’ countries: Poland, Czech Republic, Slovakia and Hungary and the research uses data starting from 2005 (after the European accession of these four countries) until May, 2017. According to the data, the main hypotheses were confirmed.

Keywords: big data, Central and Eastern Europe, civil society, GDELT, social movements

Procedia PDF Downloads 164
2702 The Development of Competency with a Training Curriculum via Electronic Media for Condominium Managers

Authors: Chisakan Papapankiad

Abstract:

The purposes of this research were 1) to study the competency of condominium managers, 2) to create the training curriculum via electronic media for condominium managers, and 3) to evaluate the training curriculum for condominium managers. The research methods included document analysis, interview, questionnaire, and a try-out. A total of 20 experts were selected to collect data by using Delphi technique. The designed curriculum was tried out with 30 condominium managers. The important steps of conducting this research included analyzing and synthesizing, creating interview questions, conducting factor analysis and developing the training curriculum, editing by experts, and trying out with sample groups. The findings revealed that there were five core competencies: leadership, human resources management, management, communication, and self-development. The training curriculum was designed and all the learning materials were put into a CD. The evaluation of the training curriculum was performed by five experts and the training curriculum was found to be cohesive and suitable for use in the real world. Moreover, the findings also revealed three important issues: 1) the competencies of the respondents after the experiment were higher than before the experiment and this had a level of significance of 0.01, 2) the competencies remained with the respondents at least 12 weeks and this also had a level of significance of 0.01, and 3) the overall level of satisfaction from the respondents were 'the highest level'.

Keywords: competency training curriculum, condominium managers, electronic media

Procedia PDF Downloads 289
2701 HLA-G, a Neglected Immunosuppressive Checkpoint for Breast Cancer Immunotherapy

Authors: Xian-Peng Jiang, Catherine C. Baucom, Toby Jiang, Robert L. Elliott

Abstract:

HLA-G binds to the inhibitory receptors of uterine NK cells and plays an important role in protection of fetal cells from maternal NK lysis. HLA-G also mediates tumor escape, but the immunosuppressive role is often neglected. These studies have focused on the examination of HLA-G expression in human breast carcinoma and HLA-G immunosuppressive role in NK cytolysis. We examined HLA-G expression in breast cell lines by real time PCR, ELISA and immunofluorescent staining. We treated the breast cancer cell lines with anti-human HLA-G antibody or progesterone. Then, NK cytolysis was measured by using MTT assay. We find that breast carcinoma cell lines increase the expression of HLA-G mRNA and protein, compared to normal cells. Blocking HLA-G of the breast cancer cells by the antibody increases NK cytolysis. Progesterone upregulates HLA-G mRNA and protein of human breast cancer cell lines. The increased HLA-G expression suppresses NK cytolysis. In summary, human breast carcinoma overexpress HLA-G immunosuppressive molecules. Blocking HLA-G protein by antibody improves NK cytolysis. In contrast, upregulation of HLA-G expression by progesterone impairs NK cytolytic function. Thus, HLA-G is a new immunosuppressive checkpoint and potential cancer immunotherapeutic target.

Keywords: HLA-G, Breast carcinoma, NK cells, Immunosuppressive checkpoint

Procedia PDF Downloads 93