Search results for: open queueing network
3374 Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators
Authors: Anubhav Shrivastava, Lakshya Bhat, Shivarudraswamy
Abstract:
Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.Keywords: distributed generation, fuzzy logic, matlab, newton raphson, IEEE 14 bus, voltage regulation, radial network
Procedia PDF Downloads 6413373 Effective Scheduling of Hybrid Reconfigurable Microgrids Considering High Penetration of Renewable Sources
Authors: Abdollah Kavousi Fard
Abstract:
This paper addresses the optimal scheduling of hybrid reconfigurable microgrids considering hybrid electric vehicle charging demands. A stochastic framework based on unscented transform to model the high uncertainties of renewable energy sources including wind turbine and photovoltaic panels, as well as the hybrid electric vehicles’ charging demand. In order to get to the optimal scheduling, the network reconfiguration is employed as an effective tool for changing the power supply path and avoiding possible congestions. The simulation results are analyzed and discussed in three different scenarios including coordinated, uncoordinated and smart charging demand of hybrid electric vehicles. A typical grid-connected microgrid is employed to show the satisfying performance of the proposed method.Keywords: microgrid, renewable energy sources, reconfiguration, optimization
Procedia PDF Downloads 2763372 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 3193371 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm
Authors: Wilayat Ali, Li Sheng, Waleed Ahmed
Abstract:
The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.Keywords: SLAM, ROS, navigation, localization and mapping, gazebo, Rviz, Turtlebot2, slam algorithms, 2d indoor environment, cartographer
Procedia PDF Downloads 1513370 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 1493369 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach
Authors: Vijay Kr. Yadav, Nilam Rathi
Abstract:
Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy
Procedia PDF Downloads 2633368 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function
Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan
Abstract:
Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.Keywords: combustion duration (CD), crank angle (CA), mass fraction burnt (MFB), producer sas (PG), Wiebe Combustion Model (WCM), wide open throttle (WOT)
Procedia PDF Downloads 3183367 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1403366 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning
Authors: Pooja Khanal, Huaming Zhang
Abstract:
Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.Keywords: bug classification, bug labels, GitHub issues, semantic differences
Procedia PDF Downloads 2063365 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 4923364 Open Trial of Group Schema Therapy for the Treatment of Eating Disorders
Authors: Evelyn Smith, Susan Simpson
Abstract:
Background: Eating disorder (ED) treatment is complicated by high rates of chronicity, comorbidity, complex personality traits and client dropout. Given these complexities, Schema Therapy (ST) has been identified as a suitable treatment option. The study primarily aims to evaluate the efficacy of group ST for the treatment of EDs. The study further evaluated the effectiveness of ST in reducing schemas and improving quality of life. Method: Participant suitability was ascertained using the Eating Disorder Examination. Following this, participants attended 90-minute weekly group sessions over 25 weeks. Groups consisted of six to eight participants and were facilitated by two psychologists, at least one of who is trained in ST. Measures were completed at pre, mid and post-treatment. Measures assessed ED symptoms, cognitive schemas, schema mode presentations, quality of life, self-compassion and psychological distress. Results: As predicted, measures of ED symptoms were significantly reduced following treatment. No significant changes were observed in early maladaptive schema severity; however, reductions in schema modes were observed. Participants did not report improvements in general quality of life measures following treatment, though improvement in psychological well-being was observed. Discussion: Overall, the findings from the current study support the use of group ST for the treatment of EDs. It is expected that lengthier treatment is needed for the reduction in schema severity. Given participant dropout was considerably low, this has important treatment implications for the suitability of ST for the treatment of EDs.Keywords: eating disorders, schema therapy, treatment, quality of life
Procedia PDF Downloads 843363 A Variable Neighborhood Search with Tabu Conditions for the Roaming Salesman Problem
Authors: Masoud Shahmanzari
Abstract:
The aim of this paper is to present a Variable Neighborhood Search (VNS) with Tabu Search (TS) conditions for the Roaming Salesman Problem (RSP). The RSP is a special case of the well-known traveling salesman problem (TSP) where a set of cities with time-dependent rewards and a set of campaign days are given. Each city can be visited on any day and a subset of cities can be visited multiple times. The goal is to determine an optimal campaign schedule consist of daily open/closed tours that visit some cities and maximizes the total net benefit while respecting daily maximum tour duration constraints and the necessity to return campaign base frequently. This problem arises in several real-life applications and particularly in election logistics where depots are not fixed. We formulate the problem as a mixed integer linear programming (MILP), in which we capture as many real-world aspects of the RSP as possible. We also present a hybrid metaheuristic algorithm based on a VNS with TS conditions. The initial feasible solution is constructed via a new matheuristc approach based on the decomposition of the original problem. Next, this solution is improved in terms of the collected rewards using the proposed local search procedure. We consider a set of 81 cities in Turkey and a campaign of 30 days as our largest instance. Computational results on real-world instances show that the developed algorithm could find near-optimal solutions effectively.Keywords: optimization, routing, election logistics, heuristics
Procedia PDF Downloads 1003362 Sustainability of Performing Venues Considering Urban Connectivity and Facility Utilization
Authors: Wei-Hwa Chiang, Wei-Ting Hsu, Yuan-Chi Liu, Cheng-Che Tsai
Abstract:
A sustainable built environment aims for minimizing both regional and global environmental impact while maintaining a healthy living for individuals. Sustainability of performing venues has rarely been discussed when compared with residential, office, and other popular building types. Life-cycle carbon emission due to the high standard requirements in acoustics, stage engineering, HVAC, and building structure need to be carefully examined. This can be complicated by social-economic and cultural concerns in addition to technical excellence. This paper reported case-based study and statistics of performing venues regarding urban connectivity and spatial layouts in enhancing facility usage and promoting cultural vitality. Interviews conducted for a major venue at Taipei indicated high linkage with surrounding leisure activity and the need for quality pedestrian and additional spaces open to the general public. Statistics of venues with various size and function suggested the possibility and strategies limit the size and height of reception and foyer spaces, and to maximize their use when there are no performances. Design strategies are identified to increase visual contact or facility sharing between the artists and the audience or the general public in reducing facility size and promoting potential involvement in cultural activities.Keywords: sustainability, performing venue, design, operation
Procedia PDF Downloads 1263361 A Multilevel Authentication Protocol: MAP in VANET for Human Safety
Authors: N. Meddeb, A. M. Makhlouf, M. A. Ben Ayed
Abstract:
Due to the real-time requirement of message in Vehicular Ad hoc NETworks (VANET), it is necessary to authenticate vehicles to achieve security, efficiency, and conditional privacy-preserving. Privacy is of utmost relevance in VANETs. For this reason, we have proposed a new protocol called ‘Multilevel Authentication Protocol’ (MAP) that considers different vehicle categories. The proposed protocol is based on our Multilevel Authentication protocol for Vehicular networks (MAVnet). But the MAP leads to human safety, where the priority is given to the ambulance vehicles. For evaluation, we used the Java language to develop a demo application and deployed it on the Network Security Simulation (Nessi2). Compared with existing authentication protocols, MAP markedly enhance the communication overhead and decreases the delay of exchanging messages while preserving conditional privacy.Keywords: Vehicular Ad hoc NETworks (VANET), vehicle categories, safety, databases, privacy, authentication, throughput, delay
Procedia PDF Downloads 3033360 Optimization and Operation of Charging and Discharging Stations for Hybrid Cars and their Effects on the Electricity Distribution Network
Authors: Ali Heydarimoghim
Abstract:
In this paper, the optimal placement of charging and discharging stations is done to determine the location and capacity of the stations, reducing the cost of electric vehicle owners' losses, reducing the cost of distribution system losses, and reducing the costs associated with the stations. Also, observing the permissible limits of the bus voltage and the capacity of the stations and their distance are considered as constraints of the problem. Given the traffic situation in different areas of a city, we estimate the amount of energy required to charge and the amount of energy provided to discharge electric vehicles in each area. We then introduce the electricity distribution system of the city in question. Following are the scenarios for introducing the problem and introducing the objective and constraint functions. Finally, the simulation results for different scenarios are compared.Keywords: charging & discharging stations, hybrid vehicles, optimization, replacement
Procedia PDF Downloads 1413359 Biodiesel Production from Broiler Chicken Waste
Authors: John Abraham, Ramesh Saravana Kumar, Francis, Xavier, Deepak Mathew
Abstract:
Broiler slaughter waste has become a major source of pollution throughout the world. Utilization of broiler slaughter waste by dry rendering process produced Rendered Chicken Oil (RCO) a cheap raw material for biodiesel production and Carcass Meal a feed ingredient for pets and fishes. Conversion of RCO into biodiesel may open new vistas for generating wealth from waste besides controlling the major havoc of environmental pollution. A two-step process to convert RCO to good quality Biodiesel was invented. Acid catalysed esterification of FFA followed by base catalysed transesterification of triglycerides was carried out after meticulously standardising the methanol molar ratio, catalyst concentration, reaction temperature and reaction time to obtain the maximum biodiesel yield of 97.62% and lowest glycerol yield of 6.96%. RCO biodiesel blended was tested in a Mahindra Scorpio CRDI engine. The results revealed that the blending of commercial diesel with 20% RCO biodiesel lead to less engine wear, a quieter engine and better fuel economy. The better lubricating qualities of RCO B20 prevented over heating of engine, which prolongs the engine life. The blending of biodiesel at 20% to commercial diesel can reduce the import of costly crude oil and simultaneously, substantially reduce the engine emissions as proved by significantly lower smoke levels, thus mitigating climatic changes.Keywords: broiler waste, rendered chicken oil, biodiesel, engine testing
Procedia PDF Downloads 4433358 Deep Reinforcement Learning Model for Autonomous Driving
Authors: Boumaraf Malak
Abstract:
The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning
Procedia PDF Downloads 883357 Synthesis of a Hybrid Material (PVA/SiO₂/TiO₂) by Sol-Gel Method
Authors: Gueridi Bachir, Dadache Derradji, Rouabah Farid
Abstract:
This work is focused on the preparation and characterization of poly (vinyl alcohol)/silica gel/Nano-TiO₂, and the study of titanium dioxide (TiO₂) nanoparticles 1% on the properties of poly (vinyl alcohol) (PVA)/silica films. Fourier transform infrared (FT-IR), water contact angle, ultraviolet-visible spectrometry (UV-VIS)) were used to characterize the hybrid films obtained. The PVA/SiO₂/Nano-TiO₂ films were successfully synthesized. Owing to the FT-IR Analysis, the chemical bonds have clearly shown that the PVA backbone is linked to the (SiO₂-TiO₂) network. UV-VIS tests indicated that the hybrid films' UV shielding properties were drastically enhanced as a result of the addition of TiO₂. The water contact angle results revealed that TiO₂ nanoparticles used as a doping compound possess an important influence on the hydrophilicity of PVA/SiO₂ as thin films.Keywords: sol-gel method, hybrid materials, PVA/SIO₂/TiO₂, spectroscopical characterization
Procedia PDF Downloads 193356 A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence
Authors: Li Qiang, Yang Ze-Ming, Liu Bao-Xu, Jiang Zheng-Wei
Abstract:
With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.Keywords: reasoning, Bayesian networks, cyber-attack attribution, Kill Chain, threat intelligence
Procedia PDF Downloads 4553355 Analytical Study of Data Mining Techniques for Software Quality Assurance
Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar
Abstract:
Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.Keywords: data mining, defect prediction, missing requirements, software quality
Procedia PDF Downloads 4723354 Analyzing the Characteristics and Shifting Patterns of Creative Hubs in Bandung
Authors: Fajar Ajie Setiawan, Ratu Azima Mayangsari, Bunga Aprilia
Abstract:
The emergence of creative hubs around the world, including in Bandung, was primarily driven by the needs of collaborative-innovative spaces for creative industry activities such as the Maker Movement and the Coworking Movement. These activities pose challenges for identification and formulation of sets of indicators for modeling creative hubs in Bandung to help stakeholders in formulating strategies. This study intends to identify their characteristics. This research was conducted using a qualitative approach comparing three concepts of creative hub categorization and integrating them into a single instrument to analyze 12 selected creative hubs. Our results showed three new functions of creative hubs in Bandung: (1) cultural, (2) retail business, and (3) community network. Results also suggest that creative hubs in Bandung are commonly established for networking and community activities. Another result shows that there was a shifting pattern of creative hubs before the 2000s and after the 2000s, which also creates a hybrid group of creative hubs.Keywords: creative industry, creative hubs, Ngariung, Bandung
Procedia PDF Downloads 1813353 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 4873352 Domain-Specific Languages Evaluation: A Literature Review and Experience Report
Authors: Sofia Meacham
Abstract:
In this abstract paper, the Domain-Specific Languages (DSL) evaluation will be presented based on existing literature and years of experience developing DSLs for several domains. The domains we worked on ranged from AI, business applications, and finances/accounting to health. In general, DSLs have been utilised in many domains to provide tailored and efficient solutions to address specific problems. Although they are a reputable method among highly technical circles and have also been used by non-technical experts with success, according to our knowledge, there isn’t a commonly accepted method for evaluating them. There are some methods that define criteria that are adaptations from the general software engineering quality criteria. Other literature focuses on the DSL usability aspect of evaluation and applies methods such as Human-Computer Interaction (HCI) and goal modeling. All these approaches are either hard to introduce, such as the goal modeling, or seem to ignore the domain-specific focus of the DSLs. From our experience, the DSLs have domain-specificity in their core, and consequently, the methods to evaluate them should also include domain-specific criteria in their core. The domain-specific criteria would require synergy between the domain experts and the DSL developers in the same way that DSLs cannot be developed without domain-experts involvement. Methods from agile and other software engineering practices, such as co-creation workshops, should be further emphasised and explored to facilitate this direction. Concluding, our latest experience and plans for DSLs evaluation will be presented and open for discussion.Keywords: domain-specific languages, DSL evaluation, DSL usability, DSL quality metrics
Procedia PDF Downloads 1053351 Visual Template Detection and Compositional Automatic Regular Expression Generation for Business Invoice Extraction
Authors: Anthony Proschka, Deepak Mishra, Merlyn Ramanan, Zurab Baratashvili
Abstract:
Small and medium-sized businesses receive over 160 billion invoices every year. Since these documents exhibit many subtle differences in layout and text, extracting structured fields such as sender name, amount, and VAT rate from them automatically is an open research question. In this paper, existing work in template-based document extraction is extended, and a system is devised that is able to reliably extract all required fields for up to 70% of all documents in the data set, more than any other previously reported method. The approaches are described for 1) detecting through visual features which template a given document belongs to, 2) automatically generating extraction rules for a given new template by composing regular expressions from multiple components, and 3) computing confidence scores that indicate the accuracy of the automatic extractions. The system can generate templates with as little as one training sample and only requires the ground truth field values instead of detailed annotations such as bounding boxes that are hard to obtain. The system is deployed and used inside a commercial accounting software.Keywords: data mining, information retrieval, business, feature extraction, layout, business data processing, document handling, end-user trained information extraction, document archiving, scanned business documents, automated document processing, F1-measure, commercial accounting software
Procedia PDF Downloads 1343350 The Structure of Invariant Manifolds after a Supercritical Hamiltonian Hopf Bifurcation
Authors: Matthaios Katsanikas
Abstract:
We study the structure of the invariant manifolds of complex unstable periodic orbits of a family of periodic orbits, in a 3D autonomous Hamiltonian system of galactic type, after a transition of this family from stability to complex instability (Hamiltonian Hopf bifurcation). We consider the case of a supercritical Hamiltonian Hopf bifurcation. The invariant manifolds of complex unstable periodic orbits have two kinds of structures. The first kind is represented by a disk confined structure on the 4D space of section. The second kind is represented by a complicated central tube structure that is associated with an extended network of tube structures, strips and flat structures of sheet type on the 4D space of section.Keywords: dynamical systems, galactic dynamics, chaos, phase space
Procedia PDF Downloads 1413349 Balancing the Need for Closure: A Requirement for Effective Mood Development in Flow
Authors: Cristian Andrei Nica
Abstract:
The state of flow relies on cognitive elements that sustain openness for information processing in order to promote goal attainment. However, the need for closure may create mental constraints, which can impact affectivity levels. This study aims to observe the extent in which need for closure moderates the interaction between flow and affectivity, taking into account the mediating role of the mood repair motivation in the interaction process between need for closure and affectivity. Using a non-experimental, correlational design, n=73 participants n=18 men and n=55 women, ages between 19-64 years (m= 28.02) (SD=9.22), completed the Positive Affectivity-Negative Affectivity Schedule, the need for closure scale-revised, the mood repair items and an adapted version of the flow state scale 2, in order to assess the trait aspects of flow. Results show that need for closure significantly moderates the flow-affectivity process, while the tolerance of ambiguity sub-scale is positively associated with negative affectivity and negatively to positive affectivity. At the same time, mood repair motivation significantly mediates the interaction between need for closure and positive affectivity, whereas the mediation process for negative affectivity is insignificant. Need for closure needs to be considered when promoting the development of positive emotions. It has been found that the motivation to repair one’s mood mediates the interaction between need for closure and positive affectivity. According to this study, flow can trigger positive emotions when the person is willing to engage in mood regulation strategies and approach meaningful experiences with an open mind.Keywords: flow, mood regulation, mood repair motivation, need for closure, negative affectivity, positive affectivity
Procedia PDF Downloads 1273348 Depositional Facies, High Resolution Sequence Stratigraphy, Reservoir Characterization of Early Oligocene Carbonates (Mukta Formation) Of North & Northwest of Heera, Mumbai Offshore
Authors: Almas Rajguru, Archana Kamath, Rachana Singh
Abstract:
The study aims to determine the depositional facies, high-resolution sequence stratigraphy, and diagenetic processes of Early Oligocene carbonates in N & N-W of Heera, Mumbai Offshore. Foraminiferal assemblage and microfacies from cores of Well A, B, C, D and E are indicative of facies association related to four depositional environments, i.e., restricted inner lagoons-tidal flats, shallow open lagoons, high energy carbonate bars-shoal complex and deeper mid-ramps of a westerly dipping homoclinal carbonate ramp. Two high-frequency (4th Order) depositional sequences bounded by sequence boundary, DS1 and DS2, displaying hierarchical stacking patterns, are identified and correlated across wells. Vadose zone diagenesis effect during short diastem/ subaerial exposure has rendered good porosity due to dissolution in HST carbonates and occasionally affected underlying TST sediments (Well D, C and E). On mapping and correlating the sequences, the presence of thin carbonate bars that can be potential reservoirs are envisaged along NW-SE direction, towards north and south of Wells E, D and C. A more pronounced development of these bars in the same orientation can be anticipated towards the west of the study area.Keywords: sequence stratigraphy, depositional facies, diagenesis petrography, early Oligocene, Mumbai offshore
Procedia PDF Downloads 823347 Contribution to the Development of a New Design of Dentist's Gowns: A Case Study of Using Infra-Red Technology and Pressure Sensors
Authors: Tran Thi Anh Dao, M. Arnold, L. Schacher, D. C. Adolphe, G. Reys
Abstract:
During tooth extraction or implant surgery, dentists are in contact with numerous infectious germs from patients' saliva and blood. For that reason, dentist's clothes have to play their role of protection from contamination. In addition, dentist's apparels should be not only protective but also comfortable and breathable because dentists have to perform many operations and treatments on patients throughout the day with high concentration and intensity. However, this type of protective garments has not been studied scientifically, whereas dentists are facing new risks and eager for looking for a comfortable personal protective equipment. For that reason, we have proposed some new designs of dentist's gown. They were expected to diminish heat accumulation that are considered as an important factor in reducing the level of comfort experienced by users. Experiments using infra-red technology were carried out in order to compare the breathable properties between a traditional gown and a new design with open zones. Another experiment using pressure sensors was also carried out to study ergonomic aspects trough the flexibility of movements of sleeves. The sleeves-design which is considered comfortable and flexible will be chosen for the further step. The results from the two experiments provide valuable information for the development of a new design of dentists' gowns in order to achieve maximum levels of cooling and comfort for the human body.Keywords: garment, dentists, comfort, design, protection, thermal
Procedia PDF Downloads 2233346 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays
Authors: Sabri Arik
Abstract:
In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis
Procedia PDF Downloads 5323345 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya
Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia
Abstract:
Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service
Procedia PDF Downloads 164