Search results for: solar cells and solar modules
635 Hyparrhenia hirta: A Potential Protective Agent against DNA Damage and Liver Toxicity of Sodium Nitrate in Adult Rats
Authors: Hanen Bouaziz-Ketata, Ghada Ben Salah, Hichem Ben Salah, Kamel Jamoussi, Najiba Zeghal
Abstract:
The present study investigated the protective role of Hyparrhenia hirta on nitrate-induced liver damage. Experiments were carried out on adult rats divided into 3 groups, a control group and two treated groups. NaNO3 was administered daily by oral gavage at a dose of 400 mg/kg bw in treated groups either alone or coadministered with Hyparrhenia hirta methanolic extract via drinking water at a dose of 200 mg/kg bw for 50 days. Liver toxicity induced by NaNO3 was characterized by higher serum levels of glucose, total cholesterol and triglyceride and lower serum total protein than those of controls. Transaminases and lactate deshydrogenase activities in serum were elevated indicating hepatic cells’ damage after treatment with NaNO3. The hyperbilirubinemia and the increased serum gamma glutamyl transferase activities suggested the presence of cholestasis in NaNO3 exposed rats. In parallel, NaNO3 caused oxidant/antioxidant imbalance in the liver as reflected by the increased lipid peroxidation, the decreased total glutathione content and superoxide dismutase, catalase and glutathione peroxidase activities. Nitrate caused also a significant induction of DNA fragmentation as evidenced by the presence of a smear without ladder formation on agarose gel. Hyparrhenia hirta supplementation showed an improvement of all parameters cited above. We conclude that the present work provides ethnopharmacological relevance of Hyparrhenia hirta against the toxic effect of nitrate, suggesting its role as a potential antioxidant.Keywords: Hyparrhenia hirta, liver, nitrate toxicity, oxidative stress, rat
Procedia PDF Downloads 545634 Understanding Chromosome Movement in Starfish Oocytes
Authors: Bryony Davies
Abstract:
Many cell and tissue culture practices ignore the effects of gravity on cell biology, and little is known about how cell components may move in response to gravitational forces. Starfish oocytes provide an excellent model for interrogating the movement of cell components due to their unusually large size, ease of handling, and high transparency. Chromosomes from starfish oocytes can be visualised by microinjection of the histone-H2B-mCherry plasmid into the oocytes. The movement of the chromosomes can then be tracked by live-cell fluorescence microscopy. The results from experiments using these methods suggest that there is a replicable downward movement of centrally located chromosomes at a median velocity of 0.39 μm/min. Chromosomes nearer the nuclear boundary showed more restricted movement. Chromosome density and shape could also be altered by microinjection of restriction enzymes, primarily Alu1, before imaging. This was found to alter the speed of chromosome movement, with chromosomes from Alu1-injected nuclei showing a median downward velocity of 0.60 μm/min. Overall, these results suggest that there is a non-negligible movement of chromosomes in response to gravitational forces and that this movement can be altered by enzyme activity. Future directions based on these results could interrogate if this observed downward movement extends to other cell components and to other cell types. Additionally, it may be important to understand whether gravitational orientation and vertical positioning of cell components alter cell behaviour. The findings here may have implications for current cell culture practices, which do not replicate cell orientations or external forces experienced in vivo. It is possible that a failure to account for gravitational forces in 2D cell culture alters experimental results and the accuracy of conclusions drawn from them. Understanding possible behavioural changes in cells due to the effects of gravity would therefore be beneficial.Keywords: starfish, oocytes, live-cell imaging, microinjection, chromosome dynamics
Procedia PDF Downloads 104633 Impact of Fly Ash on Soil Quality in Semi-Arid Region
Authors: Anjuri Srivastava, Akhouri Nishant Bhanu
Abstract:
Soil is a natural material with a distinctive form. It is regarded to be a natural source of nutrients and minerals for plants. It meets many of our needs through the crops, trees, and inhabited places that have grown on or underneath it. Productive and rich soil plays a crucial role in both its wealth and well-being. If any external substance changes the soil's composition, it directly impacts the plant that was grown in that soil. If the soil is deficient in one or more essential components, fly ash can be utilized as fertilizer by incorporating it into the soil. This can also increase the porosity of the soil. Fly ash has a sufficient concentration of essential components to promote the growth of plants. The high concentration of elements in fly ash, including C, Na, K, Fe, and Zn, increases crop yields. Hazardous compounds harm plant life as soon as they get into the soil. The US Environmental Protection Agency and other regulatory agencies have found it as non-hazardous. By employing fly ash as a potential fertilizer supplement for degraded soils, the problem of disposing of solid waste can be partially handled. Fly ash's rapid growth can slow down mineralization because it contains a higher proportion of harmful heavy metals. The chemical characteristics, inclusion ratio, and composting process of fly ash have a significant impact on the fly ash compost’s potential to improve soil nutrition. Research institutions and regulatory agencies have been thoroughly investigating fly ash for a long time. Guard cells on plant leaves that accumulate fly ash trigger the regulatory system. Fly ash increases both chemical and physical damage at certain humidity levels. The lengthy sowing period is caused by the high levels of fly ash in the soil, which also slows down seedling germination and growth. For the sake of human health, it is crucial to consider the bioaccumulation of dangerous heavy metals and their necessary concentrations in plant tissues and soil.Keywords: soil, fly ash, plant, fertilizer, composts
Procedia PDF Downloads 97632 Cytotoxic Activity against MCF-7 Breast Cancer Cells and Antioxidant Property of Aqueous Tempe Extracts from Extended Fermentation
Authors: Zatil Athaillah, Anastasia Devi, Dian Muzdalifah, Wirasuwasti Nugrahani, Linar Udin
Abstract:
During tempe fermentation, some chemical changes occurred and they contributed to sensory, appearance, and health benefits of soybeans. Many studies on health properties of tempe have specialized on their isoflavones. In this study, other components of tempe, particularly water soluble chemicals, was investigated for their biofunctionality. The study was focused on the ability to suppress MCF-7 breast cancer cell growth and antioxidant activity, as expressed by DPPH radical scavenging activity, total phenols and total flavonoids, of the water extracts. Fermentation time of tempe was extended up to 120 hr to increase the possibility to find the functional components. Extraction yield and soluble nitrogen content were also quantified as accompanying data. Our findings suggested that yield of water extraction of tempe increased as fermentation was extended up to 120 hr, except for a slight decrease at 72 hr. Water extracts of tempe showed inhibition of MCF-7 breast cancer cell growth, as shown by lower IC50 values when compared to control (unfermented soybeans). Among the varied fermentation timescales, 60-hr period showed the highest activity (IC50 of 8.7 ± 4.95 µg/ml). The anticancer activity of extracts obtained from different fermentation time was positively correlated with total soluble nitrogens, but less relevant with antioxidant data. During 48-72 hr fermentation, at which cancer suppression activity was significant, the antioxidant properties from the three assays were not higher than control. These findings indicated that water extracts of tempe from extended fermentation could inhibit breast cancer cell growth but further study to determine the mechanism and compounds that play important role in the activity should be conducted.Keywords: tempe, anticancer, antioxidant, phenolic compounds
Procedia PDF Downloads 245631 Treatment of Porphyromonas gingivalis Induced Gingivitis in Albino Rats with Tetracycline-Loaded Nanochitosan, an Immunohistochemical Analysis
Authors: Rania Hanafi Said, Rasha Mohamed Taha
Abstract:
Background: By using nanoparticles as drug delivery, it may be possible to avoid the drawbacks of systemic antibiotic dosing, including bacterial antibiotic resistance. The goal of this study was to see how well tetracycline loaded on nanochitosan worked to treat gingival inflammation in albino rats caused by Porphyromonas gingivalis. The study analyzed immunohistochemically the localization of the pro-inflammatory cytokine Interleukin-1beta (IL-1β). Material and methods: In this study, fifty mature male albino rats weighing 150 to 180 grams each were used. They were randomly divided into five groups. We checked for weight changes in rats. Ten male albino rats were included in Group I, which served as a negative control group. Ten rats were included in Group II, where they were exposed once to Porphyromonas. Group III contained ten rats, which were treated the same as Group II plus daily injections of diluted tetracycline powder at the infection sites. Ten rats in Group IV received the same procedure as those in Group II before receiving daily injections of nanochitosan at the injection sites. Finally, Group V, which had ten rats. Following the same protocol as Group II, they received localized injections of tetracycline loaded on nanochitosan once daily. Rats' gingivae were extracted and prepared after they were anesthetized. The biopsies were examined histologically and immunohistochemically by light microscopy. Results: Groups I and V had a nearly normal histological appearance of gingival tissue. In Groups II, III, and IV, degeneration was seen because the epithelial cells were bigger, collagen fibers were pulling away from the lamina propria connective tissue, and the basement membranes had come to an end. There was no discernible difference between groups V and I when they were examined immunohistochemically. Conclusion: The use of nano chitosan as a tetracycline carrier is a novel technique to overcome the drug's rising level of resistance.Keywords: Immunohistochemistry, Nanochitosan, porphyromonas gingivitis, Tetracycline
Procedia PDF Downloads 83630 Microstructural Evolution of Maraging Steels from Powder Particles to Additively Manufactured Samples
Authors: Seyedamirreza Shamsdini, Mohsen Mohammadi
Abstract:
In this research, 18Ni-300 maraging steel powder particles are investigated by studying particle size distribution along with their morphology and grain structure. The powder analysis shows mostly spherical morphologies with cellular structures. A laser-based additive manufacturing process, selective laser melting (SLM) is used to produce samples for further investigation of mechanical properties and microstructure. Several uniaxial tensile tests are performed on the as-built parts to evaluate the mechanical properties. The macroscopic properties, as well as microscopic studies, are then investigated on the printed parts. Hardness measurements, as well as porosity levels, are measured for each sample and are correlated with microstructures through electron microscopy techniques such as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The grain structure is studied for the as-printed specimens and compared to the powder particle microstructure. The cellular structure of the printed samples is observed to have dendritic forms with dendrite width dimensions similar to the powder particle cells. The process parameter is changed, and the study is performed for different powder layer thickness, and the resultant mechanical properties and grain structure are shown to be similar. A phase study is conducted both on the powder and the printed samples using X-Ray Diffraction (XRD) techniques, and the austenite phase is observed to at first decrease due to the manufacturing process and again during the uniaxial tensile deformation. The martensitic structure is formed in the first stage based on the heating cycles of the manufacturing process and the remaining austenite is shown to be transformed to martensite due to different deformation mechanisms.Keywords: additive manufacturing, maraging steel, mechanical properties, microstructure
Procedia PDF Downloads 159629 Nanopharmaceutical: A Comprehensive Appearance of Drug Delivery System
Authors: Mahsa Fathollahzadeh
Abstract:
The various nanoparticles employed in drug delivery applications include micelles, liposomes, solid lipid nanoparticles, polymeric nanoparticles, functionalized nanoparticles, nanocrystals, cyclodextrins, dendrimers, and nanotubes. Micelles, composed of amphiphilic block copolymers, can encapsulate hydrophobic molecules, allowing for targeted delivery. Liposomes, vesicular structures made up of phospholipids, can encapsulate both hydrophobic and hydrophilic molecules, providing a flexible platform for delivering therapeutic agents. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are designed to improve the stability and bioavailability of lipophilic drugs. Polymeric nanoparticles, such as poly(lactic-co-glycolic acid) (PLGA), are biodegradable and can be engineered to release drugs in a controlled manner. Functionalized nanoparticles, coated with targeting ligands or antibodies, can specifically target diseased cells or tissues. Nanocrystals, engineered to have specific surface properties, can enhance the solubility and bioavailability of poorly soluble drugs. Cyclodextrins, doughnut-shaped molecules with hydrophobic cavities, can be complex with hydrophobic molecules, allowing for improved solubility and bioavailability. Dendrimers, branched polymers with a central core, can be designed to deliver multiple therapeutic agents simultaneously. Nanotubes and metallic nanoparticles, such as gold nanoparticles, offer real-time tracking capabilities and can be used to detect biomolecular interactions. The use of these nanoparticles has revolutionized the field of drug delivery, enabling targeted and controlled release of therapeutic agents, reduced toxicity, and improved patient outcomes.Keywords: nanotechnology, nanopharmaceuticals, drug-delivery, proteins, ligands, nanoparticles, chemistry
Procedia PDF Downloads 51628 Impact of Totiviridae L-A dsRNA Virus on Saccharomyces Cerevisiae Host: Transcriptomic and Proteomic Approach
Authors: Juliana Lukša, Bazilė Ravoitytė, Elena Servienė, Saulius Serva
Abstract:
Totiviridae L-A virus is a persistent Saccharomyces cerevisiae dsRNA virus. It encodes the major structural capsid protein Gag and Gag-Pol fusion protein, responsible for virus replication and encapsulation. These features also enable the copying of satellite dsRNAs (called M dsRNAs) encoding a secreted toxin and immunity to it (known as killer toxin). Viral capsid pore presumably functions in nucleotide uptake and viral mRNA release. During cell division, sporogenesis, and cell fusion, the virions remain intracellular and are transferred to daughter cells. By employing high throughput RNA sequencing data analysis, we describe the influence of solely L-A virus on the expression of genes in three different S. cerevisiae hosts. We provide a new perception into Totiviridae L-A virus-related transcriptional regulation, encompassing multiple bioinformatics analyses. Transcriptional responses to L-A infection were similar to those induced upon stress or availability of nutrients. It also delves into the connection between the cell metabolism and L-A virus-conferred demands to the host transcriptome by uncovering host proteins that may be associated with intact virions. To better understand the virus-host interaction, we applied differential proteomic analysis of virus particle-enriched fractions of yeast strains that harboreither complete killer system (L-A-lus and M-2 virus), M-2 depleted orvirus-free. Our analysis resulted in the identification of host proteins, associated with structural proteins of the virus (Gag and Gag-Pol). This research was funded by the European Social Fund under the No.09.3.3-LMT-K-712-19-0157“Development of Competences of Scientists, other Researchers, and Students through Practical Research Activities” measure.Keywords: totiviridae, killer virus, proteomics, transcriptomics
Procedia PDF Downloads 146627 Anticancer Lantadene Derivatives: Synthesis, Cytotoxic and Docking Studies
Authors: A. Monika, Manu Sharma, Hong Boo Lee, Richa Dhingra, Neelima Dhingra
Abstract:
Nuclear factor-κappa B serve as a molecular lynchpin that links persistent infections and chronic inflammation to increased cancer risk. Inflammation has been recognized as a hallmark and cause of cancer. Natural products present a privileged source of inspiration for chemical probe and drug design. Herbal remedies were the first medicines used by humans due to the many pharmacologically active secondary metabolites produced by plants. Some of the metabolites like Lantadene (pentacyclic triterpenoids) from the weed Lantana camara has been known to inhibit cell division and showed anti-antitumor potential. The C-3 aromatic esters of lantadenes were synthesized, characterized and evaluated for cytotoxicity and inhibitory potential against Tumor necrosis factor alpha-induced activation of Nuclear factor-κappa B in lung cancer cell line A549. The 3-methoxybenzoyloxy substituted lead analogue inhibited kinase activity of the inhibitor of nuclear factor-kappa B kinase in a single-digit micromolar concentration. At the same time, the lead compound showed promising cytotoxicity against A549 lung cancer cells with IC50 ( half maximal inhibitory concentration) of 0.98l µM. Further, molecular docking of 3-methoxybenzoyloxy substituted analogue against Inhibitor of nuclear factor-kappa B kinase (Protein data bank ID: 3QA8) showed hydrogen bonding interaction involving oxygen atom of 3-methoxybenzoyloxy with the Arginine-31 and Glutamine-110. Encouraging results indicate the Lantadene’s potential to be developed as anticancer agents.Keywords: anticancer, lantadenes, pentacyclic triterpenoids, weed
Procedia PDF Downloads 156626 Antiplasmodial Activity of Drimane Sesquiterpene Isolated from Warburgia salutaris
Authors: Mthokozisi Simelane
Abstract:
Background: Malaria remains a life-threatening disease in tropical regions despite the advances in the treatment of this disease, it still remains a significant burden as some parasites have become resistant to the currently available drugs. This has created a necessity for the development of alternative, more efficient antimalarial drugs. Warburgia salutaris is a traditional medicinal plant used in malaria treatment by Zulu traditional healers. Materials and methods: The W. salutaris stem-bark was extracted with dichloromethane and the compound was isolated through column chromatography. The compound was identified and characterized by spectroscopic analysis (1H NMR, 13C NMR, IR and MS) and the structure was also confirmed by x-ray crystallography. The anti-plasmodial activity (in vitro) was studied on NF54 Plasmodium falciparum strain (CQS). Cytotoxicity was measured using the MTT assay on HEK239 and HEPG2 cell lines. Docking of Mukaadial acetate was conducted in AutoDock Vina. Structural modifications were conducted in UCSF Chimera and molecular interactions examined in LigPlot. Results: The compound, Mukaadial Acetate showed appreciable inhibition (IC50 0.44±0.10 µg/ml) of the parasite growth and cytotoxicity activity of 0.124±0.109 and 0.199±0.083 (µg/ml) on HEK293 and HEPG2 cells respectively. Molecular docking revealed that Mukaadial Acetate binds to the purine, pyrophosphate and ribose binding sites of the PfHGXPRT with an optimum binding conformation and forms hydrogen bond, steric and hydrophobic interactions with the residues inhabiting the respective binding sites. Conclusion: It is apparent that W. salutaris contains components (including Mukaadial Acetate) that exhibit antimalarial activity. This study scientifically validates the use of this plant in folk medicine.Keywords: plasmodium falciparum, molecular docking, antimalarial activity, PfHGXPRT, Warburgia salutaris, mukaadial acetate
Procedia PDF Downloads 197625 Receptor-Independent Effects of Endocannabinoid Anandamide on Contractility and Electrophysiological Properties of Rat Ventricular Myocytes
Authors: Lina T. Al Kury, Oleg I. Voitychuk, Ramiz M. Ali, Sehamuddin Galadari, Keun-Hang Susan Yang, Frank Christopher Howarth, Yaroslav M. Shuba, Murat Oz
Abstract:
A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier studies. In the present work, we have hypothesized that the antiarrhythmic effects reported for AEA are due to its negative inotropic effect and altered action potential (AP) characteristics. Therefore, we tested the effects of AEA on contractility and electrophysiological properties of rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) caused a significant decrease in the amplitudes of electrically-evoked myocyte shortening and Ca2+ transients and significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 µg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists). Furthermore, AEA inhibited voltage-activated inward Na+ (INa) and Ca2+ (IL,Ca) currents; major ionic currents shaping the APs in ventricular myocytes, in a voltage and PTX-independent manner. Collectively, the results suggest that AEA depresses ventricular myocyte contractility, by decreasing the action potential duration (APD), and inhibits the function of voltage-dependent Na+ and L-type Ca2+ channels in a manner independent of cannabinoid receptors. This mechanism may be importantly involved in the antiarrhythmic effects of anandamide.Keywords: action potential, anandamide, cannabinoid receptor, endocannabinoid, ventricular myocytes
Procedia PDF Downloads 355624 Industrial Production of the Saudi Future Dwelling: A Saudi Volumetric Solution for Single Family Homes, Leveraging Industry 4.0 with Scalable Automation, Hybrid Structural Insulated Panels Technology and Local Materials
Authors: Bandar Alkahlan
Abstract:
The King Abdulaziz City for Science and Technology (KACST) created the Saudi Future Dwelling (SFD) initiative to identify, localize and commercialize a scalable home manufacturing technology suited to deployment across the Kingdom of Saudi Arabia (KSA). This paper outlines the journey, the creation of the international project delivery team, the product design, the selection of the process technologies, and the outcomes. A target was set to remove 85% of the construction and finishing processes from the building site as these activities could be more efficiently completed in a factory environment. Therefore, integral to the SFD initiative is the successful industrialization of the home building process using appropriate technologies, automation, robotics, and manufacturing logistics. The technologies proposed for the SFD housing system are designed to be energy efficient, economical, fit for purpose from a Saudi cultural perspective, and will minimize the use of concrete, relying mainly on locally available Saudi natural materials derived from the local resource industries. To this end, the building structure is comprised of a hybrid system of structural insulated panels (SIP), combined with a light gauge steel framework manufactured in a large format panel system. The paper traces the investigative process and steps completed by the project team during the selection process. As part of the SFD Project, a pathway was mapped out to include a proof-of-concept prototype housing module and the set-up and commissioning of a lab-factory complete with all production machinery and equipment necessary to simulate a full-scale production environment. The prototype housing module was used to validate and inform current and future product design as well as manufacturing process decisions. A description of the prototype design and manufacture is outlined along with valuable learning derived from the build and how these results were used to enhance the SFD project. The industrial engineering concepts and lab-factory detailed design and layout are described in the paper, along with the shop floor I.T. management strategy. Special attention was paid to showcase all technologies within the lab-factory as part of the engagement strategy with private investors to leverage the SFD project with large scale factories throughout the Kingdom. A detailed analysis is included in the process surrounding the design, specification, and procurement of the manufacturing machinery, equipment, and logistical manipulators required to produce the SFD housing modules. The manufacturing machinery was comprised of a combination of standardized and bespoke equipment from a wide range of international suppliers. The paper describes the selection process, pre-ordering trials and studies, and, in some cases, the requirement for additional research and development by the equipment suppliers in order to achieve the SFD objectives. A set of conclusions is drawn describing the results achieved thus far, along with a list of recommended ongoing operational tests, enhancements, research, and development aimed at achieving full-scale engagement with private sector investment and roll-out of the SFD project across the Kingdom.Keywords: automation, dwelling, manufacturing, product design
Procedia PDF Downloads 121623 Preparation of Flurbiprofen Derivative for Enhanced Brain Penetration
Authors: Jungkyun Im
Abstract:
Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective for relieving pain and reducing inflammation. They are nonselective inhibitors of two isoforms of COX, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), and thereby inhibiting the production of hormone-like lipid compounds such as, prostaglandins and thromboxanes which cause inflammation, pain, fever, platelet aggregation, etc. In addition, recently there are many research articles reporting the neuroprotective effect of NSAIDs in neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the clinical use of NSAIDs in these diseases is limited by low brain distribution. Therefore, in order to assist the in-depth investigation on the pharmaceutical mechanism of flurbiprofen in neuroprotection and to make flurbiprofen a more potent drug to prevent or alleviate neurodegenerative diseases, delivery of flurbiprofen to brain should be effective and sufficient amount of flurbiprofen must penetrate the BBB thus gaining access into the patient’s brain. We have recently developed several types of guanidine-rich molecular carriers with high molecular weights and good water solubility that readily cross the blood-brain barrier (BBB) and display efficient distributions in the mouse brain. The G8 (having eight guanidine groups) molecular carrier based on D-sorbitol was found to be very effective in delivering anticancer drugs to a mouse brain. In the present study, employing the same molecular carrier, we prepared the flurbiprofen conjugate and studied its BBB permeation by mouse tissue distribution study. Flurbiprofen was attached to a molecular carrier with a fluorescein probe and multiple terminal guanidiniums. The conjugate was found to internalize into live cells and readily cross the BBB to enter the mouse brain. Our novel synthetic flurbiprofen conjugate will hopefully delivery NSAIDs into brain, and is therefore applicable to the neurodegenerative diseases treatment or prevention.Keywords: flurbiprofen, drug delivery, molecular carrier, organic synthesis
Procedia PDF Downloads 231622 Characterization of Natural Polymers for Guided Bone Regeneration Applications
Authors: Benedetta Isella, Aleksander Drinic, Alissa Heim, Phillip Czichowski, Lisa Lauts, Hans Leemhuis
Abstract:
Introduction: Membranes for guided bone regeneration are essential to perform a barrier function between the soft and the regenerating bone tissue. Bioabsorbable membranes are desirable in this field as they do not require a secondary surgery for removal, decreasing patient surgical risk. Collagen was the first bioabsorbable alternative introduced on the market, but its degradation time may be too fast to guarantee bone regeneration, and optimisation is needed. Silk fibroin, being biocompatible, slowly bioabsorbable, and processable into different scaffold types, could be a promising alternative. Objectives: The objective is to compare the general performance of a silk fibroin membrane for guided bone regeneration to current collagen alternatives developing suitable standardized tests for the mechanical and morphological characterization. Methods: Silk fibroin and collagen-based membranes were compared from the morphological and chemical perspective, with techniques such as SEM imaging and from the mechanical point of view with techniques such as tensile and suture retention strength (SRS) tests. Results: Silk fibroin revealed a high degree of reproducibility in surface density. The SRS of silk fibroin (0.76 ± 0.04 N), although lower than collagen, was still comparable to native tissues such as the internal mammary artery (0.56 N), and the same can be extended to general mechanical behaviour in tensile tests. The SRS could be increased by an increase in thickness. Conclusion: Silk fibroin is a promising material in the field of guided bone regeneration, covering the interesting position of not being considered a product containing cells or tissues of animal origin from the regulatory perspective and having longer degradation times with respect to collagen.Keywords: guided bone regeneration, mechanical characterization, membrane, silk fibroin
Procedia PDF Downloads 42621 Acanthopanax koreanum and Major Ingredient, Impressic Acid, Possess Matrix Metalloproteinase-13 Down-Regulating Capacity and Protect Cartilage Destruction
Authors: Hyun Lim, Dong Sook Min, Han Eul Yun, Kil Tae Kim, Ya Nan Sun, Young Ho Kim, Hyun Pyo Kim
Abstract:
Matrix metalloproteinase (MMP)-13 has an important role for degrading cartilage materials under inflammatory conditions such as arthritis. Since the 70% ethanol extract of Acanthopanax koreanum inhibited MMP-13 expression in IL-1β-treated human chondrocyte cell line, SW1353, two major constituents including acanthoic acid and impressic acid were initially isolated from the same plant materials and their MMP-13 down-regulating capacity was examined. In IL-1β-treated SW1353 cells, acanthoic acid and impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 10 – 100 μM and 0.5 – 10 μM, respectively. The potent one, impressic acid, was found to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among cellular signaling pathway involved, but did not affect the activation of mitogen-activated protein kinases (MAPKs) and nuclear transcription factor-κB (NF-κB). Further, impressic acid was also found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10 μM), the glycosaminoglycan release (42.2% reduction at 10 μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. For a further study, 21 impressic acid derivatives were isolated from the same plant materials and their suppressive activities against MMP-13 expression were examined. Among the derivatives, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F and acantrifoside A clearly down-regulated MMP-13 expression, but impressic acid being most potent. All these results suggest that impressic acid, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F, acantrifoside A and A. koreanum may have a potential for therapeutic agents to prevent cartilage degradation possibly by inhibiting matrix protein degradation.Keywords: acanthoic acid, Acanthopanax koreanum, cartilage, impressic acid, matrix metalloproteinase
Procedia PDF Downloads 361620 Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique
Authors: A. U. Moreh, M. Momoh, H. N. Yahya, B. Hamza, I. G. Saidu, S. Abdullahi
Abstract:
This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity ( ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.Keywords: CuAlS2, evaporation, sulfurisation, thickness, resistivity, crystalline
Procedia PDF Downloads 483619 Night Shift Work as an Oxidative Stressor: A Systematic Review
Authors: Madeline Gibson
Abstract:
Night shift workers make up an essential part of the modern workforce. However, night shift workers have higher incidences of late in life diseases and earlier mortality. Night shift workers are exposed to constant light and experience circadian rhythm disruption. Sleep disruption is thought to increase oxidative stress, defined as an imbalance of excess pro-oxidative factors and reactive oxygen species over anti-oxidative activity. Oxidative stress can damage cells, proteins and DNA and can eventually lead to varied chronic diseases such as cancer, diabetes, cardiovascular disease, Alzheimer’s and dementia. This review aimed to understand whether night shift workers were at greater risk of oxidative stress and to contribute to a consensus on this relationship. Twelve studies published in 2001-2019 examining 2,081 workers were included in the review. Studies compared both the impact of working a single shift and in comparisons between those who regularly work night shifts and only day shifts. All studies had evidence to support this relationship across a range of oxidative stress indicators, including increased DNA damage, reduced DNA repair capacity, increased lipid peroxidation, higher levels of reactive oxygen species, and to a lesser extent, a reduction in antioxidant defense. This research supports the theory that melatonin and the sleep-wake cycle mediate the relationship between shift work and oxidative stress. It is concluded that night shift work increases the risk for oxidative stress and, therefore, future disease. Recommendations are made to promote the long-term health of shift workers considering these findings.Keywords: night shift work, coxidative stress, circadian rhythm, melatonin, disease, circadian rhythm disruption
Procedia PDF Downloads 266618 Manipulating The PAAR Proteins of Acinetobacter Baumannii
Authors: Irene Alevizos, Jessica Lewis, Marina Harper, John Boyce
Abstract:
Acinetobacter baumannii causes a range of severe nosocomial-acquired infections, and many strains are multi-drug resistant. A. baumannii possesses survival mechanisms allowing it to thrive in competitive polymicrobial environments, including a Type VI Secretion System (T6SS) that injects effector proteins into other bacteria to give a competitive advantage. The effects of T6SS firing are broad and depend entirely on the effector that is delivered. Effects can include toxicity against prokaryotic or eukaryotic cells and the acquisition of essential nutrients. The T6SS of some species can deliver ‘specialised effectors’ that are fused directly to T6SS components, such as PAAR proteins. PAAR proteins are predicted to form the piercing tip of the T6SS and are essential for T6SS function. Although no specialised effectors have been identified in A. baumannii, many strains encode multiple PAAR proteins. Analysis of PAAR proteins across the species identified 12 families of PAAR proteins with distinct C-terminal extensions. A. baumannii AB307-0294 encodes two PAAR proteins, one of which has a C-terminal extension. Mutation of one or both of the PAAR-encoding genes in this strain showed that expression of either PAAR protein was sufficient for T6SS function. We employed a heterologous expression approach and determined that PAAR proteins from different A. baumannii strains, as well as the closely related A. baylyi species, could complement the A. baumannii ∆paar mutant and restore T6SS function. Furthermore, we showed that PAAR fusions could be used to deliver artificially cloned protein fragments by generating Histidine- and Streptavidin- tagged PAAR specialised effectors, which restored T6SS activity. This provides evidence that the fusion of protein fragments onto PAAR proteins in A. baumannii is compatible with a functional T6SS. Successful delivery by this mechanism extends the scope of what the T6SS can deliver, including user designed proteins.Keywords: A. baumannii, effectors, PAAR, T6SS
Procedia PDF Downloads 97617 Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities
Authors: Jung-Hwan Oh, Rajesh Kumar, Il-Kwon Oh
Abstract:
Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure.Keywords: CO oxidation, hydrogen storage, nanocomposites, porous graphene
Procedia PDF Downloads 372616 “MaxSALIVA-II” Advancing a Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection, Regeneration and Repair in a Head and Neck Cancer Pre-Clinical Murine Model
Authors: Ziyad S. Haidar
Abstract:
Background: Saliva plays a major role in maintaining oral, dental, and general health and well-being; where it normally bathes the oral cavity acting as a clearing agent. This becomes more apparent when the amount and quality of saliva are significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the 5th most common malignancy worldwide, during which the salivary glands are included within the radiation field/zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely as they become malnourished and experience a significant decrease in their QoL. Accordingly, the formulation of a radio-protection/-prevention modality and development of an alternative Rx to restore damaged salivary gland tissue is eagerly awaited and highly desirable. Objectives: Assess the pre-clinical radio-protective effect and reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs, followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.Keywords: cancer, head and neck, oncology, drug development, drug delivery systems, nanotechnology, nanoncology
Procedia PDF Downloads 79615 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation
Authors: Arezoo Assarian, Reza Javaherdashti
Abstract:
Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)
Procedia PDF Downloads 167614 Effect of Bactocellon White Leg Shrimp (Litopenaeusvannamei) Growth Performance and the Shrimp Survival to Vibrio paraheamolyticus
Authors: M. Soltani, K. Pakzad, A. Haghigh-Khiyabani, M. Alavi, R. Naderi, M. Castex
Abstract:
Effect of probiotic Bactocell (Pediococcus acidilactici) as a supplementary diet was studied on post-larvae 12-15 of white leg shrimp (Litopenaeus vannamei) (150000 PL/0.5 h pond, average body weight=0.02 g) growth performance under farm condition for 102 days at water quality parameters consisting of temperature at 30.5-36οC, dissolved oxygen 4.1-6.6 mg/l, salinity 40-54 g/l, turbidity 35-110 cm, ammonia 0.1-0.8 mg/l and nitrite 0.1-0.9 mg/l. Also, the resistance level of the treated shrimps was assessed against a virulent strain of Vibrio paraheamolyticus as intramuscular injection route at 1.4 x 106 cells/shrimp. Significantly higher growth rate (11.3±1.54 g) and lower feed conversion ratio (1.1) were obtained in shrimps fed diets supplemented with Bactocell at 350 g/ tone feed compared to other treatments of 250 g Bactocell/ton feed (10.8±2 g, 1.3), 500 g Bactocell/ton feed (10.3±1.7 g, 1.3) and untreated control (10.1±2 g, 1.4). Also, thermal growth coefficient (0.057%) and protein efficiency ratio (2.13) were significantly improved in shrimps fed diets supplemented with Bactocell at 350 g/ton feed compare to other groups. Shrimps fed diet supplemented with Bactocell at 350 g/tone feed showed significantly higher protein content (72.56%) in their carcass composition than treatments of 250 g/ton feed (65.9%), 500 g/ton feed (67.5%) and control group (65.9%), while the carcass contents of moisture, lipid and ash in all shrimp groups were not significantly affected by different concentrations of Bactocell. No mortality occurred in the experimentally infected shrimps fed with Bactocell at 500 g/tone feed after 7 hours post-challenge with V. parahemolyticus. The mortality levels of 100%, 40%, 50% and 70% were obtained in shrimps fed with 0.0, 500 g/tone feed, 350 g/ton feed and 250 g/ton feed, respectively 14 hours post-infection. Also, the cumulative mortalities were achieved in 100%, 92% and 81% in shrimps few with Bactocell at 500 g/ton feed, 250 g/ton feed and 350 g/ton feed, respectively.Keywords: litopenaeus vannamei, vibrio paraheamolyticus, pediococcus acidilactici, growth performance, bactocell
Procedia PDF Downloads 675613 Shape Memory Alloy Structural Damper Manufactured by Selective Laser Melting
Authors: Tiziana Biasutti, Daniela Rigamonti, Lorenzo Palmiotti, Adelaide Nespoli, Paolo Bettini
Abstract:
Aerospace industry is based on the continuous development of new technologies and solutions that allows constant improvement of the systems. Shape Memory Alloys are smart materials that can be used as dampers due to their pseudoelastic effect. The purpose of the research was to design a passive damper in Nitinol, manufactured by Selective Laser Melting, for space applications to reduce vibration between different structural parts in space structures. The powder is NiTi (50.2 at.% of Ni). The structure manufactured by additive technology allows us to eliminate the presence of joint and moving parts and to have a compact solution with high structural strength. The designed dampers had single or double cell structures with three different internal angles (30°, 45° and 60°). This particular shape has damping properties also without the pseudoelastic effect. For this reason, the geometries were reproduced in different materials, SS316L and Ti6Al4V, to test the geometry loss factor. The mechanical performances of these specimens were compared to the ones of NiTi structures, pointing out good damping properties of the designed structure and the highest performances of the NiTi pseudoelastic effect. The NiTi damper was mechanically characterized by static and dynamic tests and with DSC and microscope observations. The experimental results were verified with numerical models and with some scaled steel specimens in which optical fibers were embedded. The realized structure presented good mechanical and damping properties. It was observed that the loss factor and the dissipated energy increased with the angles of the cells.Keywords: additive manufacturing, damper, nitinol, pseudo elastic effect, selective laser melting, shape memory alloys
Procedia PDF Downloads 107612 Laboratory Scale Purification of Water from Copper Waste
Authors: Mumtaz Khan, Adeel Shahid, Waqas Khan
Abstract:
Heavy metals presence in water streams is a big danger for aquatic life and ultimately effects human health. Removal of copper (Cu) by ispaghula husk, maize fibre, and maize oil cake from synthetic solution in batch conditions was studied. Different experimental parameters such as contact time, initial solution pH, agitation rate, initial Cu concentration, biosorbent concentration, and biosorbent particle size has been studied to quantify the Cu biosorption. The rate of adsorption of metal ions was very fast at the beginning and became slow after reaching the saturation point, followed by a slower active metabolic uptake of metal ions into the cells. Up to a certain point, (pH=4, concentration of Cu = ~ 640 mg/l, agitation rate = ~ 400 rpm, biosorbent concentration = ~ 0.5g, 3g, 3g for ispaghula husk, maize fiber and maize oil cake, respectively) increasing the pH, concentration of Cu, agitation rate, and biosorbent concentration, increased the biosorption rate; however the sorption capacity increased by decreasing the particle size. At optimized experimental parameters, the maximum Cu biosorption by ispaghula husk, maize fibre and maize oil cake were 86.7%, 59.6% and 71.3%, respectively. Moreover, the results of the kinetics studies demonstrated that the biosorption of copper on ispaghula husk, maize fibre, and maize oil cake followed pseudo-second order kinetics. The results of adsorption were fitted to both the Langmuir and Freundlich models. The Langmuir model represented the sorption process better than Freundlich, and R² value ~ 0.978. Optimizations of physical and environmental parameters revealed, ispaghula husk as more potent copper biosorbent than maize fibre, and maize oil cake. The sorbent is cheap and available easily, so this study can be applied to remove Cu impurities on pilot and industrial scale after certain modifications.Keywords: biosorption, copper, ispaghula husk, maize fibre, maize oil cake, purification
Procedia PDF Downloads 410611 A Proteomic Approach for Discovery of Microbial Cellulolytic Enzymes
Authors: M. S. Matlala, I. Ignatious
Abstract:
Environmental sustainability has taken the center stage in human life all over the world. Energy is the most essential component of our life. The conventional sources of energy are non-renewable and have a detrimental environmental impact. Therefore, there is a need to move from conventional to non-conventional renewable energy sources to satisfy the world’s energy demands. The study aimed at screening for microbial cellulolytic enzymes using a proteomic approach. The objectives were to screen for microbial cellulases with high specific activity and separate the cellulolytic enzymes using a combination of zymography and two-dimensional (2-D) gel electrophoresis followed by tryptic digestion, Matrix-assisted Laser Desorption Ionisation-Time of Flight (MALDI-TOF) and bioinformatics analysis. Fungal and bacterial isolates were cultured in M9 minimal and Mandel media for a period of 168 hours at 60°C and 30°C with cellobiose and Avicel as carbon sources. Microbial cells were separated from supernatants through centrifugation, and the crude enzyme from the cultures was used for the determination of cellulase activity, zymography, SDS-PAGE, and two-dimensional gel electrophoresis. Five isolates, with lytic action on carbon sources studied, were a bacterial strain (BARK) and fungal strains (VCFF1, VCFF14, VCFF17, and VCFF18). Peak cellulase production by the selected isolates was found to be 3.8U/ml, 2.09U/ml, 3.38U/ml, 3.18U/ml, and 1.95U/ml, respectively. Two-dimensional gel protein maps resulted in the separation and quantitative expression of different proteins by the microbial isolates. MALDI-TOF analysis and database search showed that the expressed proteins in this study closely relate to different glycoside hydrolases produced by other microbial species with an acceptable confidence level of 100%.Keywords: cellulases, energy, two-dimensional gel electrophoresis, matrix-assisted laser desorption ionisation-time of flight, MALDI-TOF MS
Procedia PDF Downloads 134610 The Prediction Mechanism of M. cajuputi Extract from Lampung-Indonesia, as an Anti-Inflammatory Agent for COVID-19 by NFκβ Pathway
Authors: Agustyas Tjiptaningrum, Intanri Kurniati, Fadilah Fadilah, Linda Erlina, Tiwuk Susantiningsih
Abstract:
Coronavirus disease-19 (COVID-19) is still one of the health problems. It can be a severe condition that is caused by a cytokine storm. In a cytokine storm, several proinflammatory cytokines are released massively. It destroys epithelial cells, and subsequently, it can cause death. The anti-inflammatory agent can be used to decrease the number of severe Covid-19 conditions. Melaleuca cajuputi is a plant that has antiviral, antibiotic, antioxidant, and anti-inflammatory activities. This study was carried out to analyze the prediction mechanism of the M. cajuputi extract from Lampung, Indonesia, as an anti-inflammatory agent for COVID-19. This study constructed a database of protein host target that was involved in the inflammation process of COVID-19 using data retrieval from GeneCards with the keyword “SARS-CoV2”, “inflammation,” “cytokine storm,” and “acute respiratory distress syndrome.” Subsequent protein-protein interaction was generated by using Cytoscape version 3.9.1. It can predict the significant target protein. Then the analysis of the Gene Ontology (GO) and KEGG pathways was conducted to generate the genes and components that play a role in COVID-19. The result of this study was 30 nodes representing significant proteins, namely NF-κβ, IL-6, IL-6R, IL-2RA, IL-2, IFN2, C3, TRAF6, IFNAR1, and DOX58. From the KEGG pathway, we obtained the result that NF-κβ has a role in the production of proinflammatory cytokines, which play a role in the COVID-19 cytokine storm. It is an important factor for macrophage transcription; therefore, it will induce inflammatory gene expression that encodes proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. In conclusion, the blocking of NF-κβ is the prediction mechanism of the M. cajuputi extract as an anti-inflammation agent for COVID-19.Keywords: antiinflammation, COVID-19, cytokine storm, NF-κβ, M. cajuputi
Procedia PDF Downloads 87609 A Low Cost Education Proposal Using Strain Gauges and Arduino to Develop a Balance
Authors: Thais Cavalheri Santos, Pedro Jose Gabriel Ferreira, Alexandre Daliberto Frugoli, Lucio Leonardo, Pedro Americo Frugoli
Abstract:
This paper presents a low cost education proposal to be used in engineering courses. The engineering education in universities of a developing country that is in need of an increasing number of engineers carried out with quality and affordably, pose a difficult problem to solve. In Brazil, the political and economic scenario requires academic managers able to reduce costs without compromising the quality of education. Within this context, the elaboration of a physics principles teaching method with the construction of an electronic balance is proposed. First, a method to develop and construct a load cell through which the students can understand the physical principle of strain gauges and bridge circuit will be proposed. The load cell structure was made with aluminum 6351T6, in dimensions of 80 mm x 13 mm x 13 mm and for its instrumentation, a complete Wheatstone Bridge was assembled with strain gauges of 350 ohms. Additionally, the process involves the use of a software tool to document the prototypes (design circuits), the conditioning of the signal, a microcontroller, C language programming as well as the development of the prototype. The project also intends to use an open-source I/O board (Arduino Microcontroller). To design the circuit, the Fritizing software will be used and, to program the controller, an open-source software named IDE®. A load cell was chosen because strain gauges have accuracy and their use has several applications in the industry. A prototype was developed for this study, and it confirmed the affordability of this educational idea. Furthermore, the goal of this proposal is to motivate the students to understand the several possible applications in high technology of the use of load cells and microcontroller.Keywords: Arduino, load cell, low-cost education, strain gauge
Procedia PDF Downloads 303608 Protective Coating Layers via Phosphazene Compounds for Stabilizing Silicon Anode Materials
Authors: Adjmal Ghaur, Christoph Peschel, Iris Dienwiebel, Lukas Haneke, Leilei Du , Laurin Profanter, Tobias Placke, Martin Winter
Abstract:
In recent years, lithium-ion batteries (LIBs)are widely used in electric vehicles (EVs) and mobile energy storage devices (ESDs), which has led to higher requirements for energy density. To fulfill these requirements, tremendous attention has been paid to design advanced LIBs with various siliconactive materials as alternative negative electrodes to replace graphite (372 mAh g⁻¹)due to their high theoretical gravimetric capacity (4200mAh g⁻¹). However, silicon as potential anode material suffers from huge volume changes during charging and discharging and has poor electronicconductivity which negatively impacts the long-term performance and preventshigh silicon contents from practical application. Additionally, an unstable crystalline silicon structure tends to pulverization during the (de)lithiation process. To compensate for the volume changes, alleviate pulverization, and maintain high electronicconductivity, silicon-doped graphite composites with protecting coating layers are a promising approach. In this context, phosphazene compounds are investigated concerning their silicon protecting properties in silicon-doped graphite composites. In detail, electrochemical performance measurements in pouch full-cells(NCM523||SiOx/C), supressing gas formation properties, and post-mortem analyzes were carried out to characterize phosphazene compounds as additive materials. The introduction of the dual-additive approach in state-of-the-art electrolytes leads to synergistic effects between FEC and phosphazene compounds which accelerate the durability of silicon particles and results in enhanced electrochemical performance.Keywords: silicon, phosphazene, solid electrolyte interphase, electrolyte, gasmeasurements
Procedia PDF Downloads 166607 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies
Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo
Abstract:
Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system
Procedia PDF Downloads 36606 Characterization of Novel Bi-Directional Promoter from Begomovirus: A Breakthrough in Plant Genomics
Authors: Zainul A. Khan, Malik Z. Abdin, Jawaid A. Khan
Abstract:
Begomoviruses belonging to the family Geminiviridae, have single-stranded circular DNA genomes that are monopartite or bipartite. The large intergenic region (LIR) of the monopartite and common region (CR) of bipartite begomoviruses possess promoter activity in their genomes. In this study, we have characterized novel bidirectional promoters from Cotton leaf curl Burewala virus (CLCuBuV) genome using high-throughput software and analyzed with PlantCARE, PLACE, Cister and PlantPAN databases. The promoters (Rep and CP promoters) were assayed both in stable and transient expression systems in tobacco as well as cotton plants. Rep and CP-based promoters from the LIR sequence of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were tagged with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes to check the efficacy of the promoters. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed higher GUS expression driven by CLCuBuV Rep (complimentary sense) promoter as compared to conventional CaMV 35S promoter and CLCuBuV CP (virion sense) promoter, respectively. GUS activity in individual plant cells driven by CLCuBuV Rep, CLCuBuV CP, and CaMV 35S promoter were quantified through fluorometric GUS assay and reverse transcription quantitative real-time PCR (RT-qPCR). The expression level of GUS tagged with CLCuBuV Rep promoter in the transformed tobacco plants was obtained 2 to 4 fold higher than CaMV 35S promoter. When CLCuBuV CP promoter was used, lower expression level was monitored than that by CaMV 35S promoter. The expression of GFP-tagged with CLCuBuV promoters was also investigated through agroinfiltration. The CLCuBuV Rep promoters showed stronger consistent transient expression in the leaves of N. benthamiana, N. tabacum and Gossypium hirsutum plants when compared with CaMV 35S and CLCuBuV CP promoter.Keywords: Begmovirus, bidirectional promoter, CaMV 35S promoter, GFP, GUS, qPCR
Procedia PDF Downloads 332