Search results for: cost deviation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6907

Search results for: cost deviation

2677 Economical and Technical Analysis of Urban Transit System Selection Using TOPSIS Method According to Constructional and Operational Aspects

Authors: Ali Abdi Kordani, Meysam Rooyintan, Sid Mohammad Boroomandrad

Abstract:

Nowadays, one the most important problems in megacities is public transportation and satisfying citizens from this system in order to decrease the traffic congestions and air pollution. Accordingly, to improve the transit passengers and increase the travel safety, new transportation systems such as Bus Rapid Transit (BRT), tram, and monorail have expanded that each one has different merits and demerits. That is why comparing different systems for a systematic selection of public transportation systems in a big city like Tehran, which has numerous problems in terms of traffic and pollution, is essential. In this paper, it is tried to investigate the advantages and feasibility of using monorail, tram and BRT systems, which are widely used in most of megacities in all over the world. In Tehran, by using SPSS statistical analysis software and TOPSIS method, these three modes are compared to each other and their results will be assessed. Experts, who are experienced in the transportation field, answer the prepared matrix questionnaire to select each public transportation mode (tram, monorail, and BRT). The results according to experts’ judgments represent that monorail has the first priority, Tram has the second one, and BRT has the third one according to the considered indices like execution costs, wasting time, depreciation, pollution, operation costs, travel time, passenger satisfaction, benefit to cost ratio and traffic congestion.

Keywords: BRT, costs, monorail, pollution, tram

Procedia PDF Downloads 162
2676 The Economic Impact of Mediation: An Analysis in Time of Crisis

Authors: C. M. Cebola, V. H. Ferreira

Abstract:

In the past decade mediation has been legally implemented in European legal systems, especially after the publication by the European Union of the Directive 2008/52/EC on certain aspects of mediation in civil and mercantile matters. Developments in international trade and globalization in this new century have led to an increase of the number of litigations, often cross-border, and the courts have failed to respond adequately. We do not advocate that mediation should be promoted as the solution for all justice problems, but as a means with its own specificities that the parties may choose to consider as the best way to resolve their disputes. Thus, the implementation of mediation should be based on the advantages of its application. From the economic point of view, competitive negotiation can generate negative external effects in social terms. A solution reached in a court of law is not always the most efficient one considering all elements of society (economic social benefit). On the other hand, the administration of justice adds in economic terms transaction costs that can be mitigated by the application of other forms of conflict resolution, such as mediation. In this paper, the economic benefits of mediation will be analysed in the light of various studies on the functioning of justice. Several theoretical arguments will be confronted with empirical studies to demonstrate that mediation has significant positive economic effects. The objective is to contribute to the dissemination of mediation between companies and citizens, but also to demonstrate the cost to governments and states of still limited use of mediation, particularly in the current economic crisis and propose actions to develop the application of mediation.

Keywords: economic impact, litigation costs, mediation, solutions

Procedia PDF Downloads 270
2675 Prospective Future of Frame Fire Tests

Authors: Chung-Hao Wu, Tung-Dju Lin, Ming-Chin Ho, Minehiro Nishiyama

Abstract:

This paper discusses reported fire tests of concrete beams and columns, future fire tests of beam/column frames, and an innovative concept for designing a beam/column furnace. The proposed furnace could be designed to maximize the efficiency of fire test procedures and minimize the cost of furnace construction and fuel consumption. ASTM E119 and ISO 834 standards were drafted based on prescriptive codes and have several weaknesses. The first involves a provision allowing the support regions of a test element to be protected from fire exposure. The second deals with the L/30 deflection end point instead of the structural end point (collapse) in order to protect the hydraulic rams from fire damage. Furthermore, designers commonly use the measured fire endurances of interior columns to assess fire ratings of edge and corner columns of the same building. The validity of such an engineering practice is theoretically unsound. Performance-Based Codes (PBC) require verification tests of structural frames including the beam/column joints to overcome these weaknesses but allow the use of element test data as reference only. In the last 30 years, PBC have gained global popularity because the innovative design and flexibility in achieving an ultimate performance goal.

Keywords: fire resistance, concrete structure, beam/column frame, fire tests

Procedia PDF Downloads 318
2674 PLC Based Automatic Railway Crossing System for India

Authors: Tapan Upadhyay, Aqib Siddiqui, Sameer Khan

Abstract:

Railway crossing system in India is a manually operated level crossing system, either manned or unmanned. The main aim is to protect pedestrians and vehicles from colliding with trains, which pass at regular intervals, as India has the largest and busiest railway network. But because of human error and negligence, every year thousands of lives are lost due to accidents at railway crossings. To avoid this, we suggest a solution, by using Programmable Logical Controller (PLC) based automatic system, which will automatically control the barrier as well as roadblocks to stop people from crossing while security warning is given. Often people avoid security warning, and pass two-wheelers from beneath the barrier, while the train is at a distance away. This paper aims at reducing the fatality and accident rate by controlling barrier and roadblocks using sensors which sense the incoming train and vehicles and sends a signal to PLC. The PLC in return sends a signal to barrier and roadblocks. Once the train passes, the barrier and roadblocks retrieve back, and the passage is clear for vehicles and pedestrians to cross. PLC’s are used because they are very flexible, cost effective, space efficient, reduces complexity and minimises errors. Supervisory Control And Data Acquisition (SCADA) is used to monitor the functioning.

Keywords: level crossing, PLC, sensors, SCADA

Procedia PDF Downloads 409
2673 Optimization of Double-Layered Microchannel Heat Sinks

Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang

Abstract:

This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.

Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance

Procedia PDF Downloads 479
2672 Principles and Practice of Therapeutic Architecture

Authors: Umedov Mekhroz, Griaznova Svetlana

Abstract:

The quality of life and well-being of patients, staff and visitors are central to the delivery of health care. Architecture and design are becoming an integral part of the healing and recovery approach. The most significant point that can be implemented in hospital buildings is the therapeutic value of the artificial environment, the design and integration of plants to bring the natural world into the healthcare environment. The hospital environment should feel like home comfort. The techniques that therapeutic architecture uses are very cheap, but provide real benefit to patients, staff and visitors, demonstrating that the difference is not in cost but in design quality. The best environment is not necessarily more expensive - it is about special use of light and color, rational use of materials and flexibility of premises. All this forms innovative concepts in modern hospital architecture, in new construction, renovation or expansion projects. The aim of the study is to identify the methods and principles of therapeutic architecture. The research methodology consists in studying and summarizing international experience in scientific research, literature, standards, methodological manuals and project materials on the research topic. The result of the research is the development of graphic-analytical tables based on the system analysis of the processed information; 3d visualization of hospital interiors based on processed information.

Keywords: therapeutic architecture, healthcare interiors, sustainable design, materials, color scheme, lighting, environment.

Procedia PDF Downloads 104
2671 Internet of Things Edge Device Power Modelling and Optimization Simulator

Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh

Abstract:

Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.

Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting

Procedia PDF Downloads 113
2670 Considering Effect of Wind Turbines in the Distribution System

Authors: Majed Ahmadi

Abstract:

In recent years, the high penetration of different types of renewable energy sources (RESs) has affected most of the available strategies. The main motivations behind the high penetration of RESs are clean energy, modular system and easy installation. Among different types of RESs, wind turbine (WT) is an interesting choice referring to the availability of wind in almost any area. The new technologies of WT can provide energy from residential applications to wide grid connected applications. Regarding the WT, advantages such as reducing the dependence on fossil fuels and enhancing the independence and flexibility of large power grid are the most prominent. Nevertheless, the high volatile nature of wind speed injects much uncertainty in the grid that if not managed optimally can put the analyses far from the reality.the aim of this project is scrutiny and to offer proper ways for renewing distribution networks with envisage the effects of wind power plants and uncertainties related to distribution systems including wind power generating plants output rate and consumers consuming rate and also decrease the incidents of the whole network losses, amount of pollution, voltage refraction and cost extent.to solve this problem we use dual point estimate method.And algorithm used in this paper is reformed bat algorithm, which will be under exact research furthermore the results.

Keywords: order renewal, wind turbines, bat algorithm, outspread production, uncertainty

Procedia PDF Downloads 267
2669 Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production

Authors: Premrudee Promdet, Fan Cui, Gi Byoung Hwang, Ka Chuen To, Sanjayan Sathasivam, Claire J. Carmalt, Ivan P. Parkin

Abstract:

A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites.

Keywords: photocatalysis, photoelectrochemical cell (PEC), aerosol-assisted chemical vapor deposition (AACVD), surface plasmon resonance (SPR)

Procedia PDF Downloads 202
2668 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite

Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala

Abstract:

The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.

Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂

Procedia PDF Downloads 117
2667 Effective Leadership in the Engineering, Technology, and Construction Industry

Authors: David W. Farler, Perry Haan

Abstract:

This paper explores what effective leadership is being employed in the engineering, technology, and construction (ETC) industry. Organizations need to understand what character traits are being used and what leadership styles work to promote sustainability and improve the triple bottom line. This paper looks at multiple publications on leadership and character traits effective for managers and leaders in the ETC industry. The ETC industry is a trillion-dollar industry, and understanding ways to improve leadership is vital for organizations' successful outcomes. With improvements to the managerial and leadership, there could be ways for organizations to profit more and cut down on cost costs. Finding ways to improve motivation can help organizations improve safety, improve culture, and increase employee motivation. From the research, this paper has found that situational leadership, transformational, and transactional are the most effective leadership styles that individuals can use in the ETC industry for leadership. Character traits that are the most effective have been identified in this research paper. This research has contributed to the ways individuals who start in the engineering and technology industry can improve upon their leadership skills as they are promoted into managerial and leadership roles. The need for managerial positions in the ETC industry, such as project and construction managers, to improve is vital for successful outcomes and creating a high-level performance. The study helps provide a gap in the limited research available to improve ETC leadership for all organizations' present and future.

Keywords: construction, effective leadership, engineering, technology

Procedia PDF Downloads 123
2666 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors

Authors: Katawut Kaewbanjong

Abstract:

We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.

Keywords: prediction model, statistical analysis, software project, user satisfaction factor

Procedia PDF Downloads 107
2665 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System

Authors: Ahmed Shinkafi, Craig Lawson

Abstract:

There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.

Keywords: aircraft, de-icing system, electro-thermal, in-flight icing

Procedia PDF Downloads 495
2664 Strategic Fit between Higher Education Funding and the National Development Goals in Kazakhstan

Authors: Ali Ait Si Mhamed, Rita Kasa, Hans Vossensteyn

Abstract:

Kazakhstan is the eight largest country on the globe, in terms of the territory, it is rich in natural resources and is developing dynamically. Kazakhstan strives to become one of the top 30 global economies by 2050. This goal preconditions intensive reforms in all sectors of economy, including higher education. This paper focuses on the higher education funding reforms that take place in Kazakhstan and their alignment with the strategic goals of national development. Currently, the government funds higher education costs for only a limited number of students while the majority of students pay full cost covering tuition fees. Only students with high examination scores at the end of the secondary education are eligible to be admitted to publically funded study places in higher education. While this merit-based higher education funding model is overall well-received in the country, there is also a discourse calling to change the existing approach of higher education funding. This paper draws on interviews with national policy makers and leadership at institutions of higher education in Kazakhstan collected during 2016. It seeks to answer a question about how well the current higher education funding mechanism is aligned with the strategic development goals in higher education. The paper discusses how stakeholders see the fit between the current higher education funding mechanism and the ability of higher education institutions to achieve the aims of national strategic development.

Keywords: higher education reform, higher education funding, higher education policy, Kazakhstan

Procedia PDF Downloads 266
2663 Comparative Study of Outcome of Patients with Wilms Tumor Treated with Upfront Chemotherapy and Upfront Surgery in Alexandria University Hospitals

Authors: Golson Mohamed, Yasmine Gamasy, Khaled EL-Khatib, Anas Al-Natour, Shady Fadel, Haytham Rashwan, Haytham Badawy, Nadia Farghaly

Abstract:

Introduction: Wilm's tumor is the most common malignant renal tumor in children. Much progress has been made in the management of patients with this malignancy over the last 3 decades. Today treatments are based on several trials and studies conducted by the International Society of Pediatric Oncology (SIOP) in Europe and National Wilm's Tumor Study Group (NWTS) in the USA. It is necessary for us to understand why do we follow either of the protocols, NWTS which follows the upfront surgery principle or the SIOP which follows the upfront chemotherapy principle in all stages of the disease. Objective: The aim of is to assess outcome in patients treated with preoperative chemotherapy and patients treated with upfront surgery to compare their effect on overall survival. Study design: to decide which protocol to follow, study was carried out on records for patients aged 1 day to 18 years old suffering from Wilm's tumor who were admitted to Alexandria University Hospital, pediatric oncology, pediatric urology and pediatric surgery departments, with a retrospective survey records from 2010 to 2015, Design and editing of the transfer sheet with a (PRISMA flow study) Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Data were fed to the computer and analyzed using IBM SPSS software package version 20.0. (11) Qualitative data were described using number and percent. Quantitative data were described using Range (minimum and maximum), mean, standard deviation and median. Comparison between different groups regarding categorical variables was tested using Chi-square test. When more than 20% of the cells have expected count less than 5, correction for chi-square was conducted using Fisher’s Exact test or Monte Carlo correction. The distributions of quantitative variables were tested for normality using Kolmogorov-Smirnov test, Shapiro-Wilk test, and D'Agstino test, if it reveals normal data distribution, parametric tests were applied. If the data were abnormally distributed, non-parametric tests were used. For normally distributed data, a comparison between two independent populations was done using independent t-test. For abnormally distributed data, comparison between two independent populations was done using Mann-Whitney test. Significance of the obtained results was judged at the 5% level. Results: A significantly statistical difference was observed for survival between the two studied groups favoring the upfront chemotherapy(86.4%)as compared to the upfront surgery group (59.3%) where P=0.009. As regard complication, 20 cases (74.1%) out of 27 were complicated in the group of patients treated with upfront surgery. Meanwhile, 30 cases (68.2%) out of 44 had complications in patients treated with upfront chemotherapy. Also, the incidence of intraoperative complication (rupture) was less in upfront chemotherapy group as compared to upfront surgery group. Conclusion: Upfront chemotherapy has superiority over upfront surgery.As the patient who started with upfront chemotherapy shown, higher survival rate, less percent in complication, less percent needed for radiotherapy, and less rate in recurrence.

Keywords: Wilm's tumor, renal tumor, chemotherapy, surgery

Procedia PDF Downloads 309
2662 Evaluation of the Effect Rare Earth Metal on the Microstructure and Properties of Zn-ZnO-Y2O3 Coating of Mild Steel

Authors: A. P. I. Popoola, O. S. I. Fayomi, V. S. Aigbodion

Abstract:

Mild steel has found many engineering applications due to its great formability, availability, low cost and good mechanical properties among others. However its functionality and durability is subject of concern due to corrosion deterioration. Based on these Yttrium is selected as reinforcing particles using electroplating process in this work to enhance the corrosion resistance. Bath formulation of zinc-yttrium was prepared at moderated temperature and pH, to coat mild steel sample. Corrosion and wear behaviour were analyzed using electrochemical potentiostat and abrasive test rig. The composition and microstructure of coated films were investigated standard method. The microstructure of the deposited plate obtained from optimum (10%Yttrium) bath revealed fine-grained deposit of the alloy in the presence of condensation product and hence modified the morphology of zinc–yttrium alloy deposit. It is demonstrated that by adding yttria particles, mild steel can be strengthened with improved polarization behaviour and higher resistance to corrosive in sodium chloride solutions. Microhardness of the coating compared to plain mild steel have increased before and after heat treatment, and an increased wear resistance was also obtained from the modified coating of zinc-yttrium.

Keywords: microhardness, zinc-yttrium, coating, mild steel, microstructure, wear, corrosion

Procedia PDF Downloads 272
2661 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.

Procedia PDF Downloads 100
2660 Effect of Halloysite on Heavy Metals Fate during Solid Waste Pyrolysis: A Combinatorial Experimental/Computational Study

Authors: Tengfei He, Mengjie Zhang, Baosheng Jin

Abstract:

In this study, the low-cost halloysite (Hal) was utilized for the first time to enhance the solid-phase enrichment and stability of heavy metals (HMs) during solid waste pyrolysis through experimental and theoretical methods, and compared with kaolinite (Kao). Experimental results demonstrated that Hal was superior to Kao in improving the solid-phase enrichment of HMs. Adding Hal reduced the proportion of HMs in the unstable fraction (F1+F2), consequently lowering the environmental risk of biochar and the extractable state of HMs. Through Grand canonical Monte Carlo and Density Functional Theory (DFT) simulations, the adsorption amounts and adsorption mechanisms of Cd/Pb compound on Hal/Kao surfaces were analyzed. The adsorption amounts of HMs by Hal were significantly higher than Kao and decreased with increasing temperature, and the difference in adsorption performance caused by structural bending was negligible. The DFT results indicated that Cd/Pb monomers were stabilized by establishing covalent bonds with OH or reactive O atoms on the Al-(0 0 1) surface, whereas the covalent bonds with ionic bonding properties formed between Cl atoms and unsaturated Al atoms played a crucial role in stabilizing HM chlorides. This study highlights the potential of Hal in stabilizing HMs during pyrolysis without requiring any modifications.

Keywords: heavy metals, halloysite, density functional theory, grand canonical Monte Carlo

Procedia PDF Downloads 60
2659 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller

Procedia PDF Downloads 403
2658 Performance Analysis of Domotics System as Real-Time Non-Intrusive Load Monitoring

Authors: Dauda A. Oladosu, Kamorudeen A Olaiya, Abdurahman Bello

Abstract:

The deployment of smart meters by utility providers to gather fine grained spatiotemporal consumption data has grossly influenced the consumers’ emotion and behavior towards energy utilization. The quest for reduction in power consumption is now a subject of concern and one the methods adopted by the consumers to achieve this is Non-intrusive Load (appliance) Monitoring. Hence, this work presents performance Analysis of Domotics System as a tool for load monitoring when integrated with Consumer Control Unit of residential building. The system was developed with basic elements which enhance remote sensing, DTMF (Dual Tone Multi-frequency) recognition and cryptic messaging when specific task was performed. To demonstrate its applicability and suitability, this prototype was used consistently for six months at different load demands and the utilities consumed were documented. The results obtained shows good response when phone dialed, and the packet delivery of feedback SMS was quite satisfactory, making the implemented system to be of good quality with affordable cost and performs the desired functions. Besides, comparative analysis showed notable reduction in energy consumption and invariably lessened electrical bill of the consumer.

Keywords: automation, domotics, energy, load, remote, schedule

Procedia PDF Downloads 303
2657 Treatment of Poultry Slaughterhouse Wastewater by Mesophilic Static Granular Bed Reactor (SGBR) Coupled with UF Membrane

Authors: Moses Basitere, Marshal Sherene Sheldon, Seteno Karabo Obed Ntwampe, Debbie Dejager

Abstract:

In South Africa, Poultry slaughterhouses consume largest amount of freshwater and discharges high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of bench-scale mesophilic Static Granular Bed Reactor (SGBR) containing fully anaerobic granules coupled with ultra-filtration (UF) membrane as a post-treatment for poultry slaughterhouse wastewater was investigated. The poultry slaughterhouse was characterized by chemical oxygen demand (COD) range between 2000 and 6000 mg/l, average biological oxygen demand (BOD) of 2375 mg/l and average fats, oil and grease (FOG) of 554 mg/l. A continuous SGBR anaerobic reactor was operated for 6 weeks at different hydraulic retention time (HRT) and an Organic loading rate. The results showed an average COD removal was greater than 90% for both the SGBR anaerobic digester and ultrafiltration membrane. The total suspended solids and fats oil and grease (FOG) removal was greater than 95%. The SGBR reactor coupled with UF membrane showed a greater potential to treat poultry slaughterhouse wastewater.

Keywords: chemical oxygen demand, poultry slaughterhouse wastewater, static granular bed reactor, ultrafiltration, wastewater

Procedia PDF Downloads 369
2656 Consumer Preferences for Low-Carbon Futures: A Structural Equation Model Based on the Domestic Hydrogen Acceptance Framework

Authors: Joel A. Gordon, Nazmiye Balta-Ozkan, Seyed Ali Nabavi

Abstract:

Hydrogen-fueled technologies are rapidly advancing as a critical component of the low-carbon energy transition. In countries historically reliant on natural gas for home heating, such as the UK, hydrogen may prove fundamental for decarbonizing the residential sector, alongside other technologies such as heat pumps and district heat networks. While the UK government is set to take a long-term policy decision on the role of domestic hydrogen by 2026, there are considerable uncertainties regarding consumer preferences for ‘hydrogen homes’ (i.e., hydrogen-fueled appliances for space heating, hot water, and cooking. In comparison to other hydrogen energy technologies, such as road transport applications, to date, few studies have engaged with the social acceptance aspects of the domestic hydrogen transition, resulting in a stark knowledge deficit and pronounced risk to policymaking efforts. In response, this study aims to safeguard against undesirable policy measures by revealing the underlying relationships between the factors of domestic hydrogen acceptance and their respective dimensions: attitudinal, socio-political, community, market, and behavioral acceptance. The study employs an online survey (n=~2100) to gauge how different UK householders perceive the proposition of switching from natural gas to hydrogen-fueled appliances. In addition to accounting for housing characteristics (i.e., housing tenure, property type and number of occupants per dwelling) and several other socio-structural variables (e.g. age, gender, and location), the study explores the impacts of consumer heterogeneity on hydrogen acceptance by recruiting respondents from across five distinct groups: (1) fuel poor householders, (2) technology engaged householders, (3) environmentally engaged householders, (4) technology and environmentally engaged householders, and (5) a baseline group (n=~700) which filters out each of the smaller targeted groups (n=~350). This research design reflects the notion that supporting a socially fair and efficient transition to hydrogen will require parallel engagement with potential early adopters and demographic groups impacted by fuel poverty while also accounting strongly for public attitudes towards net zero. Employing a second-order multigroup confirmatory factor analysis (CFA) in Mplus, the proposed hydrogen acceptance model is tested to fit the data through a partial least squares (PLS) approach. In addition to testing differences between and within groups, the findings provide policymakers with critical insights regarding the significance of knowledge and awareness, safety perceptions, perceived community impacts, cost factors, and trust in key actors and stakeholders as potential explanatory factors of hydrogen acceptance. Preliminary results suggest that knowledge and awareness of hydrogen are positively associated with support for domestic hydrogen at the household, community, and national levels. However, with the exception of technology and/or environmentally engaged citizens, much of the population remains unfamiliar with hydrogen and somewhat skeptical of its application in homes. Knowledge and awareness present as critical to facilitating positive safety perceptions, alongside higher levels of trust and more favorable expectations for community benefits, appliance performance, and potential cost savings. Based on these preliminary findings, policymakers should be put on red alert about diffusing hydrogen into the public consciousness in alignment with energy security, fuel poverty, and net-zero agendas.

Keywords: hydrogen homes, social acceptance, consumer heterogeneity, heat decarbonization

Procedia PDF Downloads 99
2655 Potential Micro Hydro at Irrigation Canal in the Gorontalo Province and Modeling Setling Basin for Reduction of Sedimentation Effect

Authors: Arifin Matoka, Nadjamuddin Harun, Salama Manjang, M. Arsyad Thaha

Abstract:

Along irrigation canals in certain areas falling water level height is have potential for micro hydro power plant (MHP), which generally MHP potential valley away from society consumer of electricity and needed a long conductor cable, so that with the MHP Irrigation is ideal are typical with an Open Flume type turbines. This study is divided into two phases research phase of the potential power that exist in irrigation channels at the Gorontalo Province and stages solution sedimentation effects. The total power generated in the irrigation channel of the results of this study at 781.83 Kw, it is quite significant for the 1737 rural households on average consumes 450 watt per household. In the field of observation, sedimentation lifting effect on the quality of electric power, at which time the turbid sediment concentrations occur significant voltage fluctuations causing damage to some household electrical appliances such as electronic equipment and lighting. This problem is solution by modeling the sedimentation tub (setling basin) to reduce sedimentation thus olso can reduce the regulation load control equipment which can minimize the cost of investment and maintenance.

Keywords: irrigation canals, microhydro powerplant, sedimentation, Gorontalo Province

Procedia PDF Downloads 568
2654 Sustainable Material Selection for Buildings: Analytic Network Process Method and Life Cycle Assessment Approach

Authors: Samira Mahmoudkelayeh, Katayoun Taghizade, Mitra Pourvaziri, Elnaz Asadian

Abstract:

Over the recent decades, depletion of resources and environmental concerns made researchers and practitioners present sustainable approaches. Since construction process consumes a great deal of both renewable and non-renewable resources, it is of great significance regarding environmental impacts. Choosing sustainable construction materials is a remarkable strategy presented in many researches and has a significant effect on building’s environmental footprint. This paper represents an assessment framework for selecting best sustainable materials for exterior enclosure in the city of Tehran based on sustainability principles (eco-friendly, cost effective and socio-cultural viable solutions). To perform a comprehensive analysis of environmental impacts, life cycle assessment, a cradle to grave approach is used. A questionnaire survey of construction experts has been conducted to determine the relative importance of criteria. Analytic Network Process (ANP) is applied as a multi-criteria decision-making method to choose sustainable material which consider interdependencies of criteria and sub-criteria. Finally, it prioritizes and aggregates relevant criteria into ultimate assessed score.

Keywords: sustainable materials, building, analytic network process, life cycle assessment

Procedia PDF Downloads 226
2653 Sustainable Solutions for Enhancing Efficiency, Safety, and Quality of Construction Value Chain Services Integration

Authors: Lo Kar Yin

Abstract:

In view of the increasing speed and quantity of the housing supply, building, and civil engineering infrastructure works triggered by the pandemic across the globe, contractors, professional services providers (PSP), including consultants (e.g., architect, project manager, civil/geotechnical/structural engineer, building services engineer, quantity surveyor/cost manager, etc.) and suppliers have faced tremendous challenges of the fierce market, limited manpower, and resources under contract prices fluctuation and competitive fee and price. With qualitative analysis, this paper is to review the available information from the industry stakeholders with a view to finding solutions for enhancing efficiency, safety, and quality of construction value chain services for public and private organizations/companies’ sustainable growth, not limited to checking the deliverables and data transfer from multi-disciplinary parties. Technology, contracts, and people are the key requirements for shaping the construction industry. With the integration of a modern engineering contract (e.g., NEC) collaborative approach, practical workflows are designed to address loopholes together with different levels of people employment/retention and technology adoption to achieve the best value for money.

Keywords: efficiency, safety, quality, technology, contract, people, sustainable solutions, construction, services, integration

Procedia PDF Downloads 112
2652 Produce Large Surface Area Activated Carbon from Biomass for Water Treatment

Authors: Rashad Al-Gaashani

Abstract:

The physicochemical activation method was used to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomass wastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis was used to evaluate the AC samples. AC produced from date seeds has a wide range of pores available, including micro- and nano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metals iron (III) and copper (II) ions were removed from wastewater using the AC produced using a batch adsorption technique. The AC produced from date seeds biomass wastes shows high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, and pH on the removal of heavy metals was studied.

Keywords: activated carbon, date seeds, biomass, heavy metals removal, water treatment

Procedia PDF Downloads 62
2651 Formal Specification of Web Services Applications for Digital Reference Services of Library Information System

Authors: Magaji Zainab Musa, Nordin M. A. Rahman, Julaily Aida Jusoh

Abstract:

This paper discusses the formal specification of web services applications for digital reference services (WSDRS). Digital reference service involves a user requesting for help from a reference librarian and a reference librarian responding to the request of a user all by electronic means. In most cases users do not get satisfied while using digital reference service due to delay of response of the librarians. Another may be due to no response or due to librarian giving an irrelevant solution to the problem submitted by the user. WDSRS is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ need in the reference section of libraries. But informal model is in natural language which is inconsistent and ambiguous that may cause difficulties to the developers of the system. In order to solve this problem we decided to convert the informal specifications into formal specifications. This is supposed to reduce the overall development time and cost. Formal specification can be used to provide an unambiguous and precise supplement to natural language descriptions. It can be rigorously validated and verified leading to the early detection of specification errors. We use Z language to develop the formal model and verify it with Z/EVES theorem prover tool.

Keywords: formal, specifications, web services, digital reference services

Procedia PDF Downloads 362
2650 Assessing the Adaptive Re-Use Potential of Buildings as Part of the Disaster Management Process

Authors: A. Esra İdemen, Sinan M. Şener, Emrah Acar

Abstract:

The technological paradigm of the disaster management field, especially in the case of governmental intervention strategies, is generally based on rapid and flexible accommodation solutions. From various technical solution patterns used to address the immediate housing needs of disaster victims, the adaptive re-use of existing buildings can be considered to be both low-cost and practical. However, there is a scarcity of analytical methods to screen, select and adapt buildings to help decision makers in cases of emergency. Following an extensive literature review, this paper aims to highlight key points and problem areas associated with the adaptive re-use of buildings within the disaster management context. In other disciplines such as real estate management, the adaptive re-use potential (ARP) of existing buildings is typically based on the prioritization of a set of technical and non-technical criteria which are then weighted to arrive at an economically viable investment decision. After a disaster, however, the assessment of the ARP of buildings requires consideration of different/additional layers of analysis which stem from general disaster management principles and the peculiarities of different types of disasters, as well as of their victims. In this paper, a discussion of the development of an adaptive re-use potential (ARP) assessment model is presented. It is thought that governmental and non-governmental decision makers who are required to take quick decisions to accommodate displaced masses following disasters are likely to benefit from the implementation of such a model.

Keywords: adaptive re-use of buildings, disaster management, temporary housing, assessment model

Procedia PDF Downloads 318
2649 Groundwater Monitoring Using a Community: Science Approach

Authors: Shobha Kumari Yadav, Yubaraj Satyal, Ajaya Dixit

Abstract:

In addressing groundwater depletion, it is important to develop evidence base so to be used in assessing the state of its degradation. Groundwater data is limited compared to meteorological data, which impedes the groundwater use and management plan. Monitoring of groundwater levels provides information base to assess the condition of aquifers, their responses to water extraction, land-use change, and climatic variability. It is important to maintain a network of spatially distributed, long-term monitoring wells to support groundwater management plan. Monitoring involving local community is a cost effective approach that generates real time data to effectively manage groundwater use. This paper presents the relationship between rainfall and spring flow, which are the main source of freshwater for drinking, household consumptions and agriculture in hills of Nepal. The supply and withdrawal of water from springs depends upon local hydrology and the meteorological characteristics- such as rainfall, evapotranspiration and interflow. The study offers evidence of the use of scientific method and community based initiative for managing groundwater and springshed. The approach presents a method to replicate similar initiative in other parts of the country for maintaining integrity of springs.

Keywords: citizen science, groundwater, water resource management, Nepal

Procedia PDF Downloads 186
2648 An Investigation on Smartphone-Based Machine Vision System for Inspection

Authors: They Shao Peng

Abstract:

Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.

Keywords: automated visual inspection, deep learning, machine vision, mobile application

Procedia PDF Downloads 109