Search results for: size charts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5955

Search results for: size charts

5565 Impact of Ownership Structure on Financial Performance of Listed Industrial Goods Firms in Nigeria

Authors: Muhammad Shehu Garba

Abstract:

The financial statements of the firms between the periods of 2013 and 2022 were collected using the secondary method of data collection, and the study aims to investigate the effect of ownership structure on the financial performance of listed industrial goods companies in Nigeria. 10 firms were used as the study's sample size. The study used panel data variables of the study. The ownership structure is measured with managerial ownership, institutional ownership and foreign ownership, while financial performance is measured with return on asset and return on equity; the study made use of control variables leverage and firm size. The result shows a multivariate relationship that exists between variables of the study, which shows ROA has a positive correlation with ROE (0.4053), MO (0.2001), and FS (0.3048). It has a negative correlation with FO (-0.1933), IO (-0.0919), and LEV (-0.3367). ROE has a positive correlation with ROA (0.4053), MO (0.2001), and FS (0.2640). It has a negative correlation with FO (-0.1864), IO (-0.1847), and LEV (-0.0319). It is recommended that firms should focus on increasing their ROA. Firms should also consider increasing their MO, as this can help to align the interests of managers and shareholders. Firms should also be aware of the potential impact of FO and IO on their ROA.

Keywords: firm size, ownership structure, financial performance, leaverage

Procedia PDF Downloads 68
5564 Respiratory Bioaerosol Dynamics: Impact of Salinity on Evaporation

Authors: Akhil Teja Kambhampati, Mark A. Hoffman

Abstract:

In the realm of infectious disease research, airborne viral transmission stands as a paramount concern due to its pivotal role in propagating pathogens within densely populated regions. However, amidst this landscape, the phenomenon of hygroscopic growth within respiratory bioaerosols remains relatively underexplored. Unlike pure water aerosols, the unique composition of respiratory bioaerosols leads to varied evaporation rates and hygroscopic growth patterns, influenced by factors such as ambient humidity, temperature, and airflow. This study addresses this gap by focusing on the behaviors of single respiratory bioaerosol utilizing salinity to induce saliva-like hygroscopic behavior. By employing mass, momentum, and energy equations, the study unveils the intricate interplay between evaporation and hygroscopic growth over time. The numerical model enables temporal analysis of bioaerosol characteristics, including size, temperature, and trajectory. The analysis reveals that due to evaporation, there is a reduction in initial size, which shortens the lifetime and distance traveled. However, when hygroscopic growth begins to influence the bioaerosol size, the rate of size reduction slows significantly. The interplay between evaporation and hygroscopic growth results in bioaerosol size within the inhalation range of humans and prolongs the traveling distance. Findings procured from the analysis are crucial for understanding the spread of infectious diseases, especially in high-risk environments such as healthcare facilities and public transportation systems. By elucidating the nuanced behaviors of respiratory bioaerosols, this study seeks to inform the development of more effective preventative strategies against pathogens propagation in the air, thereby contributing to public health efforts on a global scale.

Keywords: airborne viral transmission, high-risk environments, hygroscopic growth, evaporation, numerical modeling, pathogen propagation, preventative strategies, public health, respiratory bioaerosols

Procedia PDF Downloads 41
5563 Effect of Roughness and Microstructure on Tribological Behaviour of 35NCD16 Steel

Authors: A. Jourani, C. Trevisiol, S. Bouvier

Abstract:

The aim of this work is to study the coupled effect of microstructure and surface roughness on friction coefficient, wear resistance and wear mechanisms. Friction tests on 35NCD16 steel are performed under different normal loads (50-110 N) on a pin-on-plane configuration at cyclic sliding with abrasive silicon carbide grains ranging from 35 µm to 200 µm. To vary hardness and microstructure, the specimens are subjected to water quenching and tempering at various temperatures from 200°C to 600°C. The evolution of microstructures and wear mechanisms of worn surfaces are analyzed using scanning electron microscopy (SEM). For a given microstructure and hardness, the friction coefficient decreases with increasing of normal load and decreasing of the abrasive particle size. The wear rate increase with increasing of normal load and abrasive particle size. The results also reveal that there is a critical hardness Hcᵣᵢₜᵢcₐₗ around 430 Hv which maximizes the friction coefficient and wear rate. This corresponds to a microstructure transition from martensite laths to carbides and equiaxed grains, for a tempering around 400°C. Above Hcᵣᵢₜᵢcₐₗ the friction coefficient and the amount of material loss decrease with an increase of hardness and martensite volume fraction. This study also shows that the debris size and the space between the abrasive particles decrease with a reduction in the particle size. The coarsest abrasive grains lost their cutting edges, accompanied by particle damage and empty space due to the particle detachment from the resin matrix. The compact packing nature of finer abrasive papers implicates lower particle detachment and facilitates the clogging and the transition from abrasive to adhesive wear.

Keywords: martensite, microstructure, friction, wear, surface roughness

Procedia PDF Downloads 159
5562 Seismic History and Liquefaction Resistance: A Comparative Study of Sites in California

Authors: Tarek Abdoun, Waleed Elsekelly

Abstract:

Introduction: Liquefaction of soils during earthquakes can have significant consequences on the stability of structures and infrastructure. This study focuses on comparing two liquefaction case histories in California, namely the response of the Wildlife site in the Imperial Valley to the 2010 El-Mayor Cucapah earthquake (Mw = 7.2, amax = 0.15g) and the response of the Treasure Island Fire Station (F.S.) site in the San Francisco Bay area to the 1989 Loma Prieta Earthquake (Mw = 6.9, amax = 0.16g). Both case histories involve liquefiable layers of silty sand with non-plastic fines, similar shear wave velocities, low CPT cone penetration resistances, and groundwater tables at similar depths. The liquefaction charts based on shear wave velocity field predict liquefaction at both sites. However, a significant difference arises in their pore pressure responses during the earthquakes. The Wildlife site did not experience liquefaction, as evidenced by piezometer data, while the Treasure Island F.S. site did liquefy during the shaking. Objective: The primary objective of this study is to investigate and understand the reason for the contrasting pore pressure responses observed at the Wildlife site and the Treasure Island F.S. site despite their similar geological characteristics and predicted liquefaction potential. By conducting a detailed analysis of similarities and differences between the two case histories, the objective is to identify the factors that contributed to the higher liquefaction resistance exhibited by the Wildlife site. Methodology: To achieve this objective, the geological and seismic data available for both sites were gathered and analyzed. Then their soil profiles, seismic characteristics, and liquefaction potential as predicted by shear wave velocity-based liquefaction charts were analyzed. Furthermore, the seismic histories of both regions were examined. The number of previous earthquakes capable of generating significant excess pore pressures for each critical layer was assessed. This analysis involved estimating the total seismic activity that the Wildlife and Treasure Island F.S. critical layers experienced over time. In addition to historical data, centrifuge and large-scale experiments were conducted to explore the impact of prior seismic activity on liquefaction resistance. These findings served as supporting evidence for the investigation. Conclusions: The higher liquefaction resistance observed at the Wildlife site and other sites in the Imperial Valley can be attributed to preshaking by previous earthquakes. The Wildlife critical layer was subjected to a substantially greater number of seismic events capable of generating significant excess pore pressures over time compared to the Treasure Island F.S. layer. This crucial disparity arises from the difference in seismic activity between the two regions in the past century. In conclusion, this research sheds light on the complex interplay between geological characteristics, seismic history, and liquefaction behavior. It emphasizes the significant impact of past seismic activity on liquefaction resistance and can provide valuable insights for evaluating the stability of sandy sites in other seismic regions.

Keywords: liquefaction, case histories, centrifuge, preshaking

Procedia PDF Downloads 76
5561 Preparation of Nanocrystalline Mesoporous ThO2 Via Surfactant Assisted Sol-gel Procedure

Authors: N. Mohseni, S. Janitabar, S.J. Ahmadi, M. Roshanzamir, M. Thaghizadeh

Abstract:

There has been proposed a technique for getting thorium dioxide mesoporous nanocrystalline. In this paper thorium dioxide powder was synthesized through the sol-gel method using hydrated thorium nitrate and ammonium hydroxide as starting materials and Triton X100 as surfactant. ThO2 gel was characterized by thermogravimetric (TG), and prepared ThO2 powder was subjected to scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emett-Teller (BET) analyses studies. Detailed analyses show that prepared powder consisted of phase with the space group Fm3m of thoria and its crystalline size was 27 nm. The thoria possesses 16.7 m2/g surface area and the pore volume and size calculated to be 0.0423 cc/g and 1.947 nm, respectively.

Keywords: mesoporous, nanocrystalline, sol-gel, thoria

Procedia PDF Downloads 282
5560 Inhibition of Crystallization Lithiasis Phosphate (Struvite) by Extracts Zea mays

Authors: N. Benahmed, A. Cheriti

Abstract:

Kidney stones of infectious origin, in particular, the phosphate amoniaco-magnesian hexahydrate or struvite are one of the risk factors that most often leads of renal insufficiency. Many plants species, described in pharmacopoeias of several countries is used as a remedy for urinary stones, the latter is a disease resulting from the presence of stones in the kidneys or urinary tract. Our research is based on the existing relationship between the effect of extracts of medicinal plant used for the cure of urinary tract diseases in the region of Algeria south-west on urolithiasis especially Ammonium-Magnesium Phosphate Hexahydrate (Struvite). We have selected Zea mays L. (POACEAE) for this study. On the first stage, we have studied the crystallisation of struvite 'in vitro' without inhibitors, after we have compared to crystallization with inhibitors. Most of The organic and aqueous extracts of this plant give an effect on the crystal size of struvite. It is a very significant reduction in the size of the crystals of struvite in the presence of hexane and ethanol extract (12 to 5-6 μm). We’ve observed a decrease in the size of the aggregates in the presence of all the extracts. This reduction is important for the aqueous, acetone and chloroform extract (45 to 10-16μm). Finally, a deep study was conducted on the effective extract of Zea mays L.; for determine the influence of inhibitory phytochemical compounds.

Keywords: medicinal plants, struvite, urolithiasis, zea mays

Procedia PDF Downloads 450
5559 Electron Microscopical Analysis of Arterial Line Filters During Cardiopulmonary Bypass

Authors: Won-Gon Kim

Abstract:

Introduction: The clinical value of arterial line filters is still a controversial issue. Proponents of arterial line filtration argue that filters remove particulate matter and undissolved gas from circulation, while opponents argue the absence of conclusive clinical data. We conducted scanning electron microscope (SEM) studies of arterial line filters used clinically in the CPB circuits during adult cardiac surgery and analyzed the types and characteristics of materials entrapped in the arterial line filters. Material and Methods: Twelve arterial line filters were obtained during routine hypothermic cardiopulmonary bypass in 12 adult cardiac patients. The arterial line filter was a screen type with a pore size of 40 ㎛ (Baxter Health care corporation Bentley division, Irvine, CA, U.S.A.). After opening the housing, the woven polyester strands were examined with SEM. Results and Conclusion: All segments examined(120 segments, each 2.5 X 2.5 cm in size) contained no embolic particles larger in their cross-sectional area than the pore size of the filter(40 ㎛). The origins of embolic particulates were mostly from environmental foreign bodies. This may suggest a possible need for more aggressive filtration of smaller particulates than is generally carried out at the present time.

Keywords: arterial line filter, tubing wear, scanning electron microscopy, SEM

Procedia PDF Downloads 448
5558 Chemical Vapor Deposition (CVD) of Molybdenum Disulphide (MoS2) Monolayers

Authors: Omar Omar, Yuan Jun, Hong Jinghua, Jin Chuanhong

Abstract:

In this work molybdenum dioxide (MoO2) and sulphur powders are used to grow MoS2 mono layers at elevated temperatures T≥800 °C. Centimetre scale continues thin films with grain size up to 410 µm have been grown using chemical vapour deposition. To our best knowledge, these domains are the largest that have been grown so far. Advantage of our approach is not only because of the high quality films with large domain size one can produce, but also the procedure is potentially less hazardous than other methods tried. The thin films have been characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy.

Keywords: molybdenum disulphide (MoS2), monolayers, chemical vapour deposition (CVD), growth and characterization

Procedia PDF Downloads 329
5557 Biopolymer Nanoparticles Loaded with Calcium as a Source of Fertilizer

Authors: Erwin San Juan Martinez, Miguel Angel Aguilar Mendez, Manuel Sandoval Villa, Libia Iris Trejo Tellez

Abstract:

Some nanomaterials may improve the vegetal growth in certain concentration intervals, and could be used as nanofertilizers in order to increase crops yield, and decreasing the environmental pollution due to non-controlled use of conventional fertilizers, therefore the present investigation’s objective was to synthetize and characterize gelatin nanoparticles loaded with calcium generated through pulverization technique and be used as nanofertilizers. To obtain these materials, a fractional factorial design 27-4 was used in order to evaluate the largest number of factors (concentration of Ca2+, temperature and agitation time of the solution and calcium concentration, drying temperature, and % spray) with a possible effect on the size, distribution and morphology of nanoparticles. For the formation of nanoparticles, a Nano Spray-Dryer B - 90® (Buchi, Flawil, Switzerland), equipped with a spray cap of 4 µm was used. Size and morphology of the obtained nanoparticles were evaluated using a scanning electron microscope (JOEL JSM-6390LV model; Tokyo, Japan) equipped with an energy dispersive x-ray X (EDS) detector. The total quantification of Ca2+ as well as its release by the nanoparticles was carried out in an equipment of induction atomic emission spectroscopy coupled plasma (ICP-ES 725, Agilent, Mulgrave, Australia). Of the seven factors evaluated, only the concentration of fertilizer, % spray and concentration of polymer presented a statistically significant effect on particle size. Micrographs of SEM from six of the eight conditions evaluated in this research showed particles separated and with a good degree of sphericity, while in the other two particles had amorphous morphology and aggregation. In all treatments, most of the particles showed smooth surfaces. The average size of smallest particle obtained was 492 nm, while EDS results showed an even distribution of Ca2+ in the polymer matrix. The largest concentration of Ca2+ in ICP was 10.5%, which agrees with the theoretical value calculated, while the release kinetics showed an upward trend within 24 h. Using the technique employed in this research, it was possible to obtain nanoparticles loaded with calcium, of good size, sphericity and with release controlled properties. The characteristics of nanoparticles resulted from manipulation of the conditions of synthesis which allow control of the size and shape of the particles, and provides the means to adapt the properties of the materials to an specific application.

Keywords: calcium, controlled release, gelatin, nano spraydryer, nanofertilizer

Procedia PDF Downloads 182
5556 Powder Flow with Normalized Powder Particles Size Distribution and Temperature Analyses in Laser Melting Deposition: Analytical Modelling and Experimental Validation

Authors: Muhammad Arif Mahmood, Andrei C. Popescu, Mihai Oane, Diana Chioibascu, Carmen Ristoscu, Ion N. Mihailescu

Abstract:

Powder flow and temperature distributions are recognized as influencing factors during laser melting deposition (LMD) process, that not only affect the consolidation rate but also characteristics of the deposited layers. Herewith, two simplified analytical models will be presented to simulate the powder flow with the inclusion of powder particles size distribution in Gaussian form, under three powder jet nozzles, and temperature analyses during LMD process. The output of the 1st model will serve as the input in the 2nd model. The models will be validated with experimental data, i.e., weight measurement method for powder particles distribution and infrared imaging for temperature analyses. This study will increase the cost-efficiency of the LMD process by adjustment of the operating parameters for reaching optimal powder debit and energy. This research has received funds under the Marie Sklodowska-Curie grant agreement No. 764935, from the European Union’s Horizon 2020 research and innovation program.

Keywords: laser additive manufacturing, powder particles size distribution in Gaussian form, powder stream distribution, temperature analyses

Procedia PDF Downloads 136
5555 Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil

Authors: Bushra Suhail, Laith Kadim

Abstract:

The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 40%, and an uplift pressure decrease of 10% to 30%.

Keywords: expansive soil, piles, under reamed, structural and geotechnical engineering

Procedia PDF Downloads 321
5554 Role of Process Parameters on Pocket Milling with Abrasive Water Jet Machining Technique

Authors: T. V. K. Gupta, J. Ramkumar, Puneet Tandon, N. S. Vyas

Abstract:

Abrasive Water Jet Machining (AWJM) is an unconventional machining process well known for machining hard to cut materials. The primary research focus on the process was for through cutting and a very limited literature is available on pocket milling using AWJM. The present work is an attempt to use this process for milling applications considering a set of various process parameters. Four different input parameters, which were considered by researchers for part separation, are selected for the above application i.e. abrasive size, flow rate, standoff distance, and traverse speed. Pockets of definite size are machined to investigate surface roughness, material removal rate, and pocket depth. Based on the data available through experiments on SS304 material, it is observed that higher traverse speeds gives a better finish because of reduction in the particle energy density and lower depth is also observed. Increase in the standoff distance and abrasive flow rate reduces the rate of material removal as the jet loses its focus and occurrence of collisions within the particles. ANOVA for individual output parameter has been studied to know the significant process parameters.

Keywords: abrasive flow rate, surface finish, abrasive size, standoff distance, traverse speed

Procedia PDF Downloads 306
5553 Biodiesel Production from Animal Fat Using Trans-Esterification Process with Zeolite as a Solid Catalyst to Improve the Efficiency of Production

Authors: Dinda A. Utami, Muhammad N. Alfarizi

Abstract:

The purpose of this study was to determine the ability of zeolite catalyst for the trans- esterification reaction in biodiesel production from animal fat. The ability of the zeolite as a catalyst is determined by the structure and composition of the zeolite. An important factor that determines the properties of zeolites in catalysis includes adsorption capability to the compound of the reactants. Zeolites with a pore size of specific properties selectively adsorbing molecules. A molecule can be adsorbed by either the zeolite cavities if the size and shape of the molecule in accordance with the size and shape of the cavity in the zeolite. At this time, it is common to use homogeneous catalysts for biodiesel. We know these catalysts have some disadvantages in its use. Such as the difficulty of separation of the product with the catalyst, the generation of waste that is harmful to the environment due to residual catalysts can’t be reused, and the difficulty of handling and storage. But nowadays, solid catalyst developed technically to improve the efficiency of biodiesel production. In this case of study, we used trans-esterification process wherein the triglyceride is reacted with an alcohol with zeolite as a solid catalyst and it will produce biodiesel and glycerol as a byproduct. Development of solid catalyst seems to be the perfect solution to address the problems associated with homogeneous catalysts.

Keywords: biodiesel, animal fat, trans esterification, zeolite catalyst

Procedia PDF Downloads 263
5552 Dynamic Mechanical Analysis of Supercooled Water in Nanoporous Confinement and Biological Systems

Authors: Viktor Soprunyuk, Wilfried Schranz, Patrick Huber

Abstract:

In the present work, we show that Dynamic Mechanical Analysis (DMA) with a measurement frequency range f= 0.2 - 100 Hz is a rather powerful technique for the study of phase transitions (freezing and melting) and glass transitions of water in geometrical confinement. Inserting water into nanoporous host matrices, like e.g. Gelsil (size of pores 2.6 nm and 5 nm) or Vycor (size of pores 10 nm) allows one to study size effects occurring at the nanoscale conveniently in macroscopic bulk samples. One obtains valuable insight concerning confinement induced changes of the dynamics by measuring the temperature and frequency dependencies of the complex Young's modulus Y* for various pore sizes. Solid-liquid transitions or glass-liquid transitions show up in a softening or the real part Y' of the complex Young's modulus, yet with completely different frequency dependencies. Analysing the frequency dependent imaginary part of the Young´s modulus in the glass transition regions for different pore sizes we find a clear-cut 1/d-dependence of the calculated glass transition temperatures which extrapolates to Tg(1/d=0)=136 K, in agreement with the traditional value of water. The results indicate that the main role of the pore diameter is the relative amount of water molecules that are near an interface within a length scale of the order of the dynamic correlation length x. Thus we argue that the observed strong pore size dependence of Tg is an interfacial effect, rather than a finite size effect. We obtained similar signatures of Y* near glass transitions in different biological objects (fruits, vegetables, and bread). The values of the activation energies for these biological materials in the region of glass transition are quite similar to the values of the activation energies of supercooled water in the nanoporous confinement in this region. The present work was supported by the Austrian Science Fund (FWF, project Nr. P 28672 – N36).

Keywords: biological systems, liquids, glasses, amorphous systems, nanoporous materials, phase transition

Procedia PDF Downloads 240
5551 Chitosan-Whey Protein Isolate Core-Shell Nanoparticles as Delivery Systems

Authors: Zahra Yadollahi, Marjan Motiei, Natalia Kazantseva, Petr Saha

Abstract:

Chitosan (CS)-whey protein isolate (WPI) core-shell nanoparticles were synthesized through self-assembly of whey protein isolated polyanions and chitosan polycations in the presence of tripolyphosphate (TPP) as a crosslinker. The formation of this type of nanostructures with narrow particle size distribution is crucial for developing delivery systems since the functional characteristics highly depend on their sizes. To achieve this goal, the nanostructure was optimized by varying the concentrations of WPI, CS, and TPP in the reaction mixture. The chemical characteristics, surface morphology, and particle size of the nanoparticles were evaluated.

Keywords: whey protein isolated, chitosan, nanoparticles, delivery system

Procedia PDF Downloads 94
5550 Characterization and Comparative Analysis of North Bengal Sand

Authors: Marzia Hoque Tania, Oishy Roy, ASW Kurny, Fahmida Gulshan

Abstract:

This paper presents results of the investigation on the characterization of silica sand of northern region of Bangladesh on the basis of material composition, particle shape, and size, density, transportation, crystallinity, etc. before and after upgradation. The raw sand samples collected from Nilphamari and Lalmonirhat district were studied and compared for the prospect silica as a high valued commodity rather than heavy minerals. The raw sand particles were colorful in appearance with varying particle size distribution. Scanning Electron Microscopy (SEM) showed uniformity in grain size and mineralogical composition. X-ray fluorescence (XRF) analysis indicated the silica content of the as-received sample to be 75%. Thermogravimetric and Differential Thermal Analysis (DTA) did not detect the presence of any organic material. These tests revealed the sample to be alpha-quartz. Samples were washed with organic and inorganic acid with a combination of varying rotation speed, concentration, solid-liquid ratio. Experiments showed the silica content could be enhanced to more than 85% by washing with 15% sulphuric acid in room temperature. Beneficiation can be improved in further work considering the effect of varying temperature or advanced technology.

Keywords: beneficiation, characterization, commercial grade sand, glass sand, silica, upgradation

Procedia PDF Downloads 136
5549 Mixture of Polymers and Coating Fullerene Soft Nanoparticles

Authors: L. Bouzina, A. Bensafi, M. Duval, C. Mathis, M. Rawiso

Abstract:

We study the stability and structural properties of mixtures of model nanoparticles and non-adsorbing polymers in the 'protein limit', where the size of polymers exceeds the particle size substantially. We have synthesized in institute (Charles Sadron Strasbourg) model nanoparticles by coating fullerene C60 molecules with low molecular weight polystyrene (PS) chains (6 PS chains with a degree of polymerization close to 25 and 50 are grafted on each fullerene C60 molecule. We will present a Small Angle Neutron scattering (SANS) study of Tetrahydrofuran (THF) solutions involving long polystyrene (PS) chains and fullerene (C60) nanoparticles. Long PS chains and C60 nanoparticles with different arm lengths were synthesized either hydrogenated or deuteriated. They were characterized through Size Exclusion Chromatography (SEC) and Quasielastic Light Scattering (QLS). In this way, the solubility of the C60 nanoparticles in the usual good solvents of PS was controlled. SANS experiments were performed by use of the contrast variation method in order to measure the partial scattering functions related to both components. They allow us to obtain information about the dispersion state of the C60 nanoparticles as well as the average conformation of the long PS chains. Specifically, they show that the addition of long polymer chains leads to the existence of an additional attractive interaction in between soft nanoparticles.

Keywords: fulleren nanoparticles, polymer, small angle neutron scattering, solubility

Procedia PDF Downloads 376
5548 Ta-doped Nb2O5: Synthesis and Photocatalytic Activity

Authors: Mahendrasingh J. Pawar, M. D. Gaoner

Abstract:

Ta-doped Nb2O5 (Ta content 0.5-2% mole fraction) nanoparticles in the range of 20-40 nm were synthesized by combustion technique. The crystalline phase, morphology and size of the nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. The specific surface area of the nanoparticles was measured by nitrogen adsorption (BET analysis). The undoped Nb2O5 nanoparticles were found to have the particles size in the range of 50−80 nm. The photocatalytic performance of the samples was characterized by degrading 20 mg/L toluene under UV−Vis irradiation. The results show that the Ta-doped Nb2O5 nanoparticles exhibit a significant increase in photocatalytic performance over the undoped Nb2O5 nanoparticles, and the Nb2O5 nanoparticles doped with 1.5% Ta and calcined at 450°C show the best photocatalytic performance.

Keywords: Nb2O5, Ta-doped Nb2O5, photodegradation of Toluene, combustion method

Procedia PDF Downloads 565
5547 Preparation of Ceramic Membranes from Syrian Sand Loaded with Silver Nanoparticles for Water Treatment

Authors: Abdulrazzaq Hammal

Abstract:

In this study, Syrian sand was used to create ceramic membranes. The process of preparing the membranes involved several steps, starting with the purification of the studied sand using hydrochloric acid, sorting according to granular size, and mixing the sand with liquid sodium silicates as a binder. Next, the effects of binder ratio, pressure formation, treatment temperature, and sand grain size were studied. Further, nanoparticles of silver were added to the formed membranes to improve their ability to purify bacterially polluted water. Prepared membranes were quite successful in removing bacteria and chemicals from water, and the water's requirements were brought up to level with Syrian drinking water standards.

Keywords: ceramic, membrane, water, wastewater

Procedia PDF Downloads 66
5546 Impact of Board Characteristics on Financial Performance: A Study of Manufacturing Sector of Pakistan

Authors: Saad Bin Nasir

Abstract:

The research will examine the role of corporate governance (CG) practices on firm’s financial performance. Population of this research will be manufacture sector of Pakistan. For the purposes of measurement of impact of corporate governance practices such as board size, board independence, ceo/chairman duality, will take as independent variables and for the measurement of firm’s performance return on assets and return on equity will take as dependent variables. Panel data regression model will be used to estimate the impact of CG on firm performance.

Keywords: corporate governance, board size, board independence, leadership

Procedia PDF Downloads 525
5545 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy

Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang

Abstract:

This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.

Keywords: liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion

Procedia PDF Downloads 577
5544 Utilizing Street Medicine to Reduce Communicable Disease Prevalence in a Cost-Effective Way

Authors: Bailey Hall, Athena Hoppe, Tevyn Kagele, Anna Nichols, Breeanna Messner

Abstract:

The Spokane Street Medicine (SSM) Program aims to deliver medical care to people experiencing homelessness in Spokane, Washington. Street medicine is designed to function in a non-traditional setting to help deliver healthcare to a largely underserved population. In this analysis, the SSM Program’s medical charts from street and shelter encounters in early 2021 were reviewed in order to identify illness and diseases in people experiencing homelessness in Spokane. More than half of the prescriptions written during these encounters were for either an antibacterial, an antibiotic, or an antifungal. Estimates of the cost to the local healthcare system are included. Initiating treatment for communicable diseases in people experiencing homelessness via street medicine efforts greatly reduces economic costs while improving health outcomes.

Keywords: ethical issues in public health, equity issues in public health, health economics, health disparities, healthcare costs, medical public health, public health ethics, street medicine

Procedia PDF Downloads 190
5543 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm

Authors: Jiawen Wang, Qijun Chen

Abstract:

The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.

Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size

Procedia PDF Downloads 130
5542 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles

Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty

Abstract:

It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.

Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles

Procedia PDF Downloads 151
5541 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry

Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu

Abstract:

The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.

Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS

Procedia PDF Downloads 282
5540 Neutron Contamination in 18 MV Medical Linear Accelerator

Authors: Onur Karaman, A. Gunes Tanir

Abstract:

Photon radiation therapy used to treat cancer is one of the most important methods. However, photon beam collimator materials in Linear Accelerator (LINAC) head generally contains heavy elements is used and the interaction of bremsstrahlung photon with such heavy nuclei, the neutron can be produced inside the treatment rooms. In radiation therapy, neutron contamination contributes to the risk of secondary malignancies in patients, also physicians working in this field. Since the neutron is more dangerous than photon, it is important to determine neutron dose during radiotherapy treatment. In this study, it is aimed to analyze the effect of field size, distance from axis and depth on the amount of in-field and out-field neutron contamination for ElektaVmat accelerator with 18 MV nominal energy. The photon spectra at the distance of 75, 150, 225, 300 cm from target and on the isocenter of beam were scored for 5x5, 10x10, 20x20, 30x30 and 40x40 cm2 fields. Results demonstrated that the neutron spectra and dose are dependent on field size and distances. Beyond 225 cm of isocenter, the dependence of the neutron dose on field size is minimal. As a result, it is concluded that as the open field increases, neutron dose determined decreases. It is important to remember that when treating with high energy photons, the dose from contamination neutrons must be considered as it is much greater than the photon dose.

Keywords: radiotherapy, neutron contamination, linear accelerators, photon

Procedia PDF Downloads 348
5539 A Software Tool for Computer Forensic Investigation Using Client-Side Web History Visualization

Authors: Francisca Onaolapo Oladipo, Peter Afam Ugwu

Abstract:

Records of user activities which are valuable for forensic investigation purposes are provided by web browsers -these records in most cases are not in visual formats that are easily understood, thereby requiring some extra processes. This paper describes the implementation of a software tool for client-side web history visualization providing suitable forensic evidence for investigative purposes. Visual C#, Perl and gnuplot were deployed on Windows Operating System (OS) environment to implement the system and the resulting tool parses and transforms a web browser history into a visual format that enables an investigator to quickly and efficiently explore, understand, and interpret the user online activities in the context of a specific investigation. The system was tested using two forensic cases: the client-side web history files generated by Mozilla Firefox browser was extracted using MozillaHistoryView utility, then parsed and visualized using bar and stacked column charts. From the visual representation, results of user web activities across various productive and non-productive websites were obtained.

Keywords: history, forensics, visualization, web activities

Procedia PDF Downloads 298
5538 Corporate Governance and Bank Performance: A Study on Indian Banks

Authors: Arjun S.

Abstract:

This study examines the impact of corporate governance on financial performance of Indian banks during five years (from 2010 to 2015). Based on 218 observations, a quantitative method of data analysis was employed to investigate the relevance of corporate governance mechanisms. The first finding reveals a significant and negative impact of board size on the performance of Indian banks. The research also finds a significant and negative relationship between CEO duality and bank performance. Finally, the correlation results reveal that there is a significant and negative correlation of Bank size and bank performance.

Keywords: Indian banks, financial performance, corporate governance, banksize

Procedia PDF Downloads 359
5537 Green Synthesis and Characterisation of Gold Nanoparticles from the Stem Bark and Leaves of Khaya Senegalensis and Its Cytotoxicity on MCF7 Cell Lines

Authors: Stephen Daniel Iduh, Evans Chidi Egwin, Oluwatosin Kudirat Shittu

Abstract:

The process for the development of reliable and eco-friendly metallic Nanoparticles is an important step in the field of Nanotechnology for biomedical application. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold Nanoparticles using aqueous leave and stembark extracts of K. senegalensis has been attempted. The gold Nanoparticles produced were characterized using High Resolution scanning electron microscopy, Ultra Violet–Visible spectroscopy, zeta-sizer Nano, Energy-Dispersive X-ray (EDAX) Spectroscopy and Fourier Transmission Infrared (FTIR) Spectroscopy. The cytotoxicity of the synthesized gold nanoparticles on MCF-7 cell line was evaluated using MTT assay. The result showed a rapid development of Nano size and shaped particles within 5 minutes of reaction with Surface Plasmon Resonance at 520 and 525nm respectively. An average particle size of 20-90nm was confirmed. The amount of the extracts determines the core size of the AuNPs. The core size of the AuNPs decreases as the amount of extract increases and it causes the shift of Surface Plasmon Resonance band. The FTIR confirms the presence of biomolecules serving as reducing and capping agents on the synthesised gold nanoparticles. The MTT assay shows a significant effect of gold nanoparticles which is concentration dependent. This environment-friendly method of biological gold Nanoparticle synthesis has the potential and can be directly applied in cancer therapy.

Keywords: biosynthesis, gold nanoparticles, characterization, calotropis procera, cytotoxicity

Procedia PDF Downloads 492
5536 Design and Characterization of Aromatase Inhibitor Loaded Nanoparticles for the Treatment of Breast Cancer

Authors: Harish K. Chandrawanshi, Mithun S. Rajput, Neelima Choure, Purnima Dey Sarkar, Shailesh Jain

Abstract:

The present research study aimed to fabricate and evaluate biodegradable nanoparticles of aromatase inhibitor letrozole, intended for breast cancer therapy. Letrozole loaded poly(D,L-lactide-co-glycolide acid) nanoparticles were prepared by solvent evaporation method using dichlorometane as solvent (oil phase) and polyvinyl alcohol (PVA) as aqueous phase. Prepared nanoparticles were characterized by particle size, infrared spectra, drug loading efficiency, drug entrapment efficiency and in vitro release and also evaluated for in vivo anticancer activity. The high speed homogenizer was used to produce stable nanoparticles of mean size range 198.35 ± 0.04 nm with high entrapment efficiency (69.86 ± 2.78%). Percentage of drug and homogenization speed significantly influenced the particle size, entrapment efficiency and release (p<0.05). The nanoparticles show significant in vivo anticancer activity against Ehrlich ascites carcinoma in mice. The significant system sustained the release of letrozole drug effectively and further investigation could exhibit its potential usefulness in breast cancer therapy.

Keywords: breast cancer/therapy, letrozole, nanoparticles, PLGA

Procedia PDF Downloads 580