Search results for: nutrients uptake
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1189

Search results for: nutrients uptake

799 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria

Authors: Ayodele A. Otaiku

Abstract:

Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.

Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture

Procedia PDF Downloads 269
798 Microbial Resource Research Infrastructure: A Large-Scale Research Infrastructure for Microbiological Services

Authors: R. Hurtado-Ortiz, D. Clermont, M. Schüngel, C. Bizet, D. Smith, E. Stackebrandt

Abstract:

Microbiological resources and their derivatives are the essential raw material for the advancement of human health, agro-food, food security, biotechnology, research and development in all life sciences. Microbial resources, and their genetic and metabolic products, are utilised in many areas such as production of healthy and functional food, identification of new antimicrobials against emerging and resistant pathogens, fighting agricultural disease, identifying novel energy sources on the basis of microbial biomass and screening for new active molecules for the bio-industries. The complexity of public collections, distribution and use of living biological material (not only living but also DNA, services, training, consultation, etc.) and service offer, demands the coordination and sharing of policies, processes and procedures. The Microbial Resource Research Infrastructure (MIRRI) is an initiative within the European Strategy Forum Infrastructures (ESFRI), bring together 16 partners including 13 European public microbial culture collections and biological resource centres (BRCs), supported by several European and non-European associated partners. The objective of MIRRI is to support innovation in microbiology by provision of a one-stop shop for well-characterized microbial resources and high quality services on a not-for-profit basis for biotechnology in support of microbiological research. In addition, MIRRI contributes to the structuring of microbial resources capacity both at the national and European levels. This will facilitate access to microorganisms for biotechnology for the enhancement of the bio-economy in Europe. MIRRI will overcome the fragmentation of access to current resources and services, develop harmonised strategies for delivery of associated information, ensure bio-security and other regulatory conditions to bring access and promote the uptake of these resources into European research. Data mining of the landscape of current information is needed to discover potential and drive innovation, to ensure the uptake of high quality microbial resources into research. MIRRI is in its Preparatory Phase focusing on governance and structure including technical, legal governance and financial issues. MIRRI will help the Biological Resources Centres to work more closely with policy makers, stakeholders, funders and researchers, to deliver resources and services needed for innovation.

Keywords: culture collections, microbiology, infrastructure, microbial resources, biotechnology

Procedia PDF Downloads 444
797 Growth and Yield Response of an Indian Wheat Cultivar (HD 2967) to Ozone and Water Stress in Open-Top Chambers with Emphasis on Its Antioxidant Status, Photosynthesis and Nutrient Allocation

Authors: Annesha Ghosh, S. B. Agrawal

Abstract:

Agricultural sector is facing a serious threat due to climate change and exacerbation of different atmospheric pollutants. Tropospheric ozone (O₃) is considered as a dynamic air pollutant imposing substantial phytotoxicity to natural vegetations and agriculture worldwide. Naturally, plants are exposed to different environmental factors and their interactions. Amongst such interactions, studies related to O₃ and water stress are still rare. In the present experiment, wheat cultivar HD2967 were grown in open top chambers (OTC) under two O₃ concentration; ambient O₃ level (A) and elevated O₃ (E) (ambient + 20 ppb O₃) along with two different water supply; well-watered (W) and 50% water stress conditions (WS), with an aim to assess the individual and interactive effect of two most prevailing stress factors in Indo-Gangetic Plains of India. Exposure to elevated O₃ dose caused early senescence symptoms and reduction in growth and biomass of the test cultivar. The adversity was more pronounced under the combined effect of EWS. Significant reduction of stomatal conductance (gs) and assimilation rate were observed under combined stress condition compared to the control (AW). However, plants grown under individual stress conditions displayed higher gs, biomass, and antioxidant defense mechanism compared to the plants grown under the presence of combined stresses. Higher induction in most of the enzyme activities of catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POD) and superoxide dismutase (SOD) was displayed by HD 2967 under EW while, under the presence of combined stresses (EWS), a moderate increment of APX and CAT activity was observed only at its vegetative phase. Furthermore, variations in nutrient uptake and redistribution to different plants parts were also observed in the present study. Reduction in water availability has checked nutrient uptake (N, K, P, Ca, Cu, Mg, Zn) in above-ground parts (leaf) and below-ground parts (root). On the other hand, carbon (C) accumulation with subsequent C-N ratio was observed to be higher in the leaves under EWS. Such major nutrient check and limitation in carbon fixation due to lower gs under combined stress conditions might have weakened the defense mechanisms of the test cultivar. Grain yield was significantly reduced under EWS followed by AWS and EW as compared to their control, exhibiting an additive effect on the grain yield.

Keywords: antioxidants, open-top chambers, ozone, water stress, wheat, yield

Procedia PDF Downloads 117
796 Optimization and Evaluation of 177lu-Dotatoc as a Potential Agent for Peptide Receptor Radionuclide Therapy

Authors: H. Yousefnia, MS. Mousavi-Daramoroudi, S. Zolghadri, F. Abbasi-Davani

Abstract:

High expression of somatostatin receptors on a wide range of human tumours makes them as potential targets for peptide receptor radionuclide tomography. A series of octreotide analogues were synthesized while [DOTA-DPhe1, Tyr3]octreotide (DOTATOC) indicated advantageous properties in tumour models. In this study, 177Lu-DOTATOC was prepared with the radiochemical purity of higher than 99% in 30 min at the optimized condition. Biological behavior of the complex was studied after intravenous injection into the Syrian rats. Major difference uptake was observed compared to 177LuCl3 solution especially in somatostatin receptor-positive tissues such as pancreas and adrenal.

Keywords: Biodistribution, 177Lu, Octreotide, Syrian rats

Procedia PDF Downloads 448
795 Fatty Acid Translocase (Cd36), Energy Substrate Utilization, and Insulin Signaling in Brown Adipose Tissue in Spontaneously Hypertensive Rats

Authors: Michal Pravenec, Miroslava Simakova, Jan Silhavy

Abstract:

Brown adipose tissue (BAT) plays an important role in lipid and glucose metabolism in rodents and possibly also in humans. Recently, using systems genetics approach in the BAT from BXH/HXB recombinant inbred strains, derived from the SHR (spontaneously hypertensive rat) and BN (Brown Norway) progenitors, we identified Cd36 (fatty acid translocase) as the hub gene of co-expression module associated with BAT relative weight and function. An important aspect of BAT biology is to better understand the mechanisms regulating the uptake and utilization of fatty acids and glucose. Accordingly, BAT function in the SHR that harbors mutant nonfunctional Cd36 variant (hereafter referred to as SHR-Cd36⁻/⁻) was compared with SHR transgenic line expressing wild type Cd36 under control of a universal promoter (hereafter referred to as SHR-Cd36⁺/⁺). BAT was incubated in media containing insulin and 14C-U-glucose alone or 14C-U-glucose together with palmitate. Incorporation of glucose into BAT lipids was significantly higher in SHR-Cd36⁺/⁺ versus SHR-Cd36⁻/⁻ rats when incubation media contained glucose alone (SHR-Cd36⁻/⁻ 591 ± 75 vs. SHR-Cd36⁺/⁺ 1036 ± 135 nmol/gl./2h; P < 0.005). Adding palmitate into incubation media had no effect in SHR-Cd36⁻/⁻ rats but significantly reduced glucose incorporation into BAT lipids in SHR-Cd36⁺/⁺ (SHR-Cd36⁻/⁻ 543 ± 55 vs. SHR-Cd36⁺/⁺ 766 ± 75 nmol/gl./2h; P < 0.05 denotes significant Cd36 x palmitate interaction determined by two-way ANOVA). This Cd36-dependent reduced glucose uptake in SHR-Cd36⁺/⁺ BAT was likely secondary to increased palmitate incorporation and utilization due to the presence of wild type Cd36 fatty acid translocase in transgenic rats. This possibility is supported by increased incorporation of 14C-U-palmitate into BAT lipids in the presence of both palmitate and glucose in incubation media (palmitate alone: SHR-Cd36⁻/⁻ 870 ± 21 vs. SHR-Cd36⁺/⁺ 899 ± 42; glucose+palmitate: SHR-Cd36⁻/⁻ 899 ± 47 vs. SHR-Cd36⁺/⁺ 1460 ± 111 nmol/palm./2h; P < 0.05 denotes significant Cd36 x glucose interaction determined by two-way ANOVA). It is possible that addition of glucose into the incubation media increased palmitate incorporation into BAT lipids in SHR-Cd36⁺/⁺ rats because of glucose availability for glycerol phosphate production and increased triglyceride synthesis. These changes in glucose and palmitate incorporation into BAT lipids were associated with significant differential expression of Irs1, Irs2, Slc2a4 and Foxo1 genes involved in insulin signaling and glucose metabolism only in SHR-Cd36⁺/⁺ rats which suggests Cd36-dependent effects on insulin action. In conclusion, these results provide compelling evidence that Cd36 plays an important role in BAT insulin signaling and energy substrate utilization.

Keywords: brown adipose tissue, Cd36, energy substrate utilization, insulin signaling, spontaneously hypertensive rat

Procedia PDF Downloads 139
794 Perception, Knowledge and Practices on Balanced Diet among Adolescents, Their Parents and Frontline Functionaries in Rural Sites of Banda, Varanasi and Allahabad, Uttar Pradesh,India

Authors: Gunjan Razdan, Priyanka Sreenath, Jagannath Behera, S. K. Mishra, Sunil Mehra

Abstract:

Uttar Pradesh is one of the poor performing states with high Malnutrition and Anaemia among adolescent girls resulting in high MMR, IMR and low birth weight rate. The rate of anaemia among adolescent girls has doubled in the past decade. Adolescents gain around 15-20% of their optimum height, 25-50% of the ideal adult weight and 45% of the skeletal mass by the age of 19. Poor intake of energy, protein and other nutrients is one of the factors for malnutrition and anaemia. METHODS: The cross-sectional survey using a mixed method (quantitative and qualitative) was adopted in this study. The respondents (adolescents, parents and frontline health workers) were selected randomly from 30 villages and surveyed through a semi-structured questionnaire for qualitative information and FGDs and IDIs for qualitative information. A 24 hours dietary recall method was adopted to estimate their dietary practices. A total of 1069 adolescent girls, 1067 boys, 1774 parents and 69 frontline functionaries were covered under the study. Percentages and mean were calculated for quantitative variable, and content analysis was carried out for qualitative data. RESULTS: Over 80 % of parents provided assertions that they understood the term balanced diet and strongly felt that their children were having balanced diet. However, only negligible 1.5 % of parents could correctly recount essential eight food groups and 22% could tell about four groups which was the minimum response expected to say respondents had fair knowledge on a balanced diet. Only 10 percent of parents could tell that balanced diet helps in physical and mental growth and only 2% said it has a protective role. Besides, qualitative data shows that the perception regarding balanced diet is having costly food items like nuts and fruits. The dietary intake of adolescents is very low despite the increased iron needs associated with physical growth and puberty.The consumption of green leafy vegetables (less than 35 %) and citrus fruits (less than 50%) was found to be low. CONCLUSIONS: The assertions on an understanding of term balanced diet are contradictory to the actual knowledge and practices. Knowledge on essential food groups and nutrients is crucial to inculcate healthy eating practices among adolescents. This calls for comprehensive communication efforts to improve the knowledge and dietary practices among adolescents.

Keywords: anemia, knowledge, malnutrition, perceptions

Procedia PDF Downloads 400
793 Investigation of the Possible Correlation of Earthquakes with a Red Tide Occurrence in the Persian Gulf and Oman Sea

Authors: Hadis Hosseinzadehnaseri

Abstract:

The red tide is a kind of algae blooming, caused different problems at different sizes for the human life and the environment, so it has become one of the serious global concerns in the field of Oceanography in few recent decades. This phenomenon has affected on Iran's water, especially the Persian Gulf's since last few years. Collecting data associated with this phenomenon and comparison in different parts of the world is significant as a practical way to study this phenomenon and controlling it. Effective factors to occur this phenomenon lead to the increase of the required nutrients of the algae or provide a good environment for blooming. In this study, we examined the probability of relation between the earthquake and the harmful algae blooming in the Persian Gulf's water through comparing the earthquake data and the recorded Red tides. On the one hand, earthquakes can cause changes in seawater temperature that is effective in creating a suitable environment and the other hand, it increases the possibility of water nutrients, and its transportation in the seabed, so it can play a principal role in the development of red tide occurrence. Comparing the distribution spatial-temporal maps of the earthquakes and deadly red tides in the Persian Gulf and Oman Sea, confirms the hypothesis, why there is a meaningful relation between these two distributions. Comparing the number of earthquakes around the world as well as the number of the red tides in many parts of the world indicates the correlation between these two issues. This subject due to numerous earthquakes, especially in recent years and in the southern part of the country should be considered as a warning to the possibility of re-occurrence of a critical state of red tide in a large scale, why in the year 2008, the number of recorded earthquakes have been more than near years. In this year, the distribution value of the red tide phenomenon in the Persian Gulf got measured about 140,000 square kilometers and entire Oman Sea, with 10 months Survival in the area, which is considered as a record among the occurred algae blooming in the world. In this paper, we could obtain a logical and reasonable relation between the earthquake frequency and this phenomenon occurrence, through compilation of statistics relating to the earthquakes in the southern Iran, from 2000 to the end of the first half of 2013 and also collecting statistics on the occurrence of red tide in the region as well as examination of similar data in different parts of the world. As shown in Figure 1, according to a survey conducted on the earthquake data, the most earthquakes in the southern Iran ranks first in the fourth Gregorian calendar month In April, coincided with Ordibehesht and Khordad in Persian calendar and then in the tenth Gregorian calendar month In October, coincided in Aban and Azar in Persian calendar.

Keywords: red tide, earth quake, persian gulf, harmful algae bloom

Procedia PDF Downloads 500
792 Changes in Heavy Metals Bioavailability in Manure-Derived Digestates and Subsequent Hydrochars to Be Used as Soil Amendments

Authors: Hellen L. De Castro e Silva, Ana A. Robles Aguilar, Erik Meers

Abstract:

Digestates are residual by-products, rich in nutrients and trace elements, which can be used as organic fertilisers on soils. However, due to the non-digestibility of these elements and reduced dry matter during the anaerobic digestion process, metal concentrations are higher in digestates than in feedstocks, which might hamper their use as fertilisers according to the threshold values of some country policies. Furthermore, there is uncertainty regarding the required assimilated amount of these elements by some crops, which might result in their bioaccumulation. Therefore, further processing of the digestate to obtain safe fertilizing products has been recommended. This research aims to analyze the effect of applying the hydrothermal carbonization process to manure-derived digestates as a thermal treatment to reduce the bioavailability of heavy metals in mono and co-digestates derived from pig manure and maize from contaminated land in France. This study examined pig manure collected from a novel stable system (VeDoWs, province of East Flanders, Belgium) that separates the collection of pig urine and feces, resulting in a solid fraction of manure with high up-concentration of heavy metals and nutrients. Mono-digestion and co-digestion processes were conducted in semi-continuous reactors for 45 days at mesophilic conditions, in which the digestates were dried at 105 °C for 24 hours. Then, hydrothermal carbonization was applied to a 1:10 solid/water ratio to guarantee controlled experimental conditions in different temperatures (180, 200, and 220 °C) and residence times (2 h and 4 h). During the process, the pressure was generated autogenously, and the reactor was cooled down after completing the treatments. The solid and liquid phases were separated through vacuum filtration, in which the solid phase of each treatment -hydrochar- was dried and ground for chemical characterization. Different fractions (exchangeable / adsorbed fraction - F1, carbonates-bound fraction - F2, organic matter-bound fraction - F3, and residual fraction – F4) of some heavy metals (Cd, Cr, Ni, and Cr) have been determined in digestates and derived hydrochars using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The main results indicated a difference in the heavy metals fractionation between digestates and their derived hydrochars; however, the hydrothermal carbonization operating conditions didn’t have remarkable effects on heavy metals partitioning between the hydrochars of the proposed treatments. Based on the estimated potential ecological risk assessment, there was one level decrease (considerate to moderate) when comparing the HMs partitioning in digestates and derived hydrochars.

Keywords: heavy metals, bioavailability, hydrothermal treatment, bio-based fertilisers, agriculture

Procedia PDF Downloads 100
791 Influence of Probiotics on Dairy Cows Diet

Authors: V. A. Vieira, M. P. Sforcini, V. Endo, G. C. Magioni, M. D. S. Oliveira

Abstract:

The main goal of this paper was evaluate the effect of diets containing different levels of probiotic on performance and milk composition of lactating cows. Eight Holstein cows were distributed in two 4x4 Latin square. The diets were based on corn silage, concentrate and the treatment (0, 3, 6 or 9 grams of probiotic/animal/day). It was evaluated the dry matter intake of nutrients, milk yield and composition. The use of probiotics did not affect the nutrient intake (p>0.05) neither the daily milk production or corrected to 4% fat (p>0.05). However, it was observed that there was a significant fall in milk composition with higher levels of probiotics supplementation. These results emphasize the need of further studies with different experimental designs or improve the number of Latin square with longer periods of adaptation.

Keywords: dairy cow, milk composition, probiotics, daily milk production

Procedia PDF Downloads 261
790 Influence of Sewage Sludge on Agricultural Land Quality and Crop

Authors: Catalina Iticescu, Lucian P. Georgescu, Mihaela Timofti, Gabriel Murariu

Abstract:

Since the accumulation of large quantities of sewage sludge is producing serious environmental problems, numerous environmental specialists are looking for solutions to solve this problem. The sewage sludge obtained by treatment of municipal wastewater may be used as fertiliser on agricultural soils because such sludge contains large amounts of nitrogen, phosphorus and organic matter. In many countries, sewage sludge is used instead of chemical fertilizers in agriculture, this being the most feasible method to reduce the increasingly larger quantities of sludge. The use of sewage sludge on agricultural soils is allowed only with a strict monitoring of their physical and chemical parameters, because heavy metals exist in varying amounts in sewage sludge. Exceeding maximum permitted quantities of harmful substances may lead to pollution of agricultural soil and may cause their removal aside because the plants may take up the heavy metals existing in soil and these metals will most probably be found in humans and animals through food. The sewage sludge analyzed for the present paper was extracted from the Wastewater Treatment Station (WWTP) Galati, Romania. The physico-chemical parameters determined were: pH (upH), total organic carbon (TOC) (mg L⁻¹), N-total (mg L⁻¹), P-total (mg L⁻¹), N-NH₄ (mg L⁻¹), N-NO₂ (mg L⁻¹), N-NO₃ (mg L⁻¹), Fe-total (mg L⁻¹), Cr-total (mg L⁻¹), Cu (mg L⁻¹), Zn (mg L⁻¹), Cd (mg L⁻¹), Pb (mg L⁻¹), Ni (mg L⁻¹). The determination methods were electrometrical (pH, C, TSD) - with a portable HI 9828 HANNA electrodes committed multiparameter and spectrophotometric - with a Spectroquant NOVA 60 - Merck spectrophotometer and with specific Merck parameter kits. The tests made pointed out the fact that the sludge analysed is low heavy metal falling within the legal limits, the quantities of metals measured being much lower than the maximum allowed. The results of the tests made to determine the content of nutrients in the sewage sludge have shown that the existing nutrients may be used to increase the fertility of agricultural soils. Other tests were carried out on lands where sewage sludge was applied in order to establish the maximum quantity of sludge that may be used so as not to constitute a source of pollution. The tests were made on three plots: a first batch with no mud and no chemical fertilizers applied, a second batch on which only sewage sludge was applied, and a third batch on which small amounts of chemical fertilizers were applied in addition to sewage sludge. The results showed that the production increases when the soil is treated with sludge and small amounts of chemical fertilizers. Based on the results of the present research, a fertilization plan has been suggested. This plan should be reconsidered each year based on the crops planned, the yields proposed, the agrochemical indications, the sludge analysis, etc.

Keywords: agricultural use, crops, physico–chemical parameters, sewage sludge

Procedia PDF Downloads 290
789 The Role of Microbes in Organic Sustainable Agriculture and Plant Protection

Authors: Koppula Prawan, Kehinde D. Oyeyemi, Kushal P. Singh

Abstract:

As people become more conscious of the detrimental consequences of conventional agricultural practices on the environment and human health, organic, sustainable agriculture and plant protection employing microorganisms have grown in importance. Although the use of microorganisms in agriculture is a centuries-old tradition, it has recently attracted renewed interest as a sustainable alternative to chemical-based plant protection and fertilization. Healthy soil is the cornerstone of sustainable agriculture, and microbes are essential to this process. Synthetic fertilizers and pesticides can destroy the beneficial microorganisms in the soil, upsetting the ecosystem's equilibrium. By utilizing organic farming's natural practices, such as the usage of microbes, it aims to maintain and improve the health of the soil. Microbes have several functions in agriculture, including nitrogen fixation, phosphorus solubilization, and disease suppression. Nitrogen fixation is the process by which certain microbes, such as rhizobia and Azotobacter, convert atmospheric nitrogen into a form that plants can use. Phosphorus solubilization involves the conversion of insoluble phosphorus into a soluble form that plants can absorb. Disease suppression involves the use of microbes to control plant diseases by competing with pathogenic organisms for resources or by producing antimicrobial compounds. Microbes can be applied to plants through seed coatings, foliar sprays, or soil inoculants. Seed coatings involve applying a mixture of microbes and nutrients to the surface of seeds before planting. Foliar sprays involve applying microbes and nutrients to the leaves of plants during the growing season. Soil inoculants involve adding microbes to the soil before planting. The use of microbes in plant protection and fertilization has several advantages over conventional methods. Firstly, microbes are natural and non-toxic, making them safe for human health and the environment. Secondly, microbes have the ability to adapt to changing environmental conditions, making them more resilient to drought and other stressors. Finally, the use of microbes can reduce the need for synthetic fertilizers and pesticides, reducing costs and minimizing environmental impact. In conclusion, organic, sustainable agriculture and plant protection using microbes are an effective and sustainable alternatives to conventional farming practices. The use of microbes can help to preserve and enhance soil health, increase plant productivity, and reduce the need for synthetic fertilizers and pesticides. As the demand for organic and sustainable agriculture continues to grow, the use of microbes is likely to become more widespread, providing a more environmentally friendly and sustainable future for agriculture.

Keywords: microbes, inoculants, fertilization, soil health, conventional.

Procedia PDF Downloads 83
788 The Stem Cell Transcription Co-factor Znf521 Sustains Mll-af9 Fusion Protein In Acute Myeloid Leukemias By Altering The Gene Expression Landscape

Authors: Emanuela Chiarella, Annamaria Aloisio, Nisticò Clelia, Maria Mesuraca

Abstract:

ZNF521 is a stem cell-associated transcription co-factor, that plays a crucial role in the homeostatic regulation of the stem cell compartment in the hematopoietic, osteo-adipogenic, and neural system. In normal hematopoiesis, primary human CD34+ hematopoietic stem cells display typically a high expression of ZNF521, while its mRNA levels rapidly decrease when these progenitors progress towards erythroid, granulocytic, or B-lymphoid differentiation. However, most acute myeloid leukemias (AMLs) and leukemia-initiating cells keep high ZNF521 expression. In particular, AMLs are often characterized by chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene, which MLL gene includes a variety of fusion oncogenes arisen from genes normally required during hematopoietic development; once they are fused, they promote epigenetic and transcription factor dysregulation. The chromosomal translocation t(9;11)(p21-22;q23), fusing the MLL gene with AF9 gene, results in a monocytic immune phenotype with an aggressive course, frequent relapses, and a short survival time. To better understand the dysfunctional transcriptional networks related to genetic aberrations, AML gene expression profile datasets were queried for ZNF521 expression and its correlations with specific gene rearrangements and mutations. The results showed that ZNF521 mRNA levels are associated with specific genetic aberrations: the highest expression levels were observed in AMLs involving t(11q23) MLL rearrangements in two distinct datasets (MILE and den Boer); elevated ZNF521 mRNA expression levels were also revealed in AMLs with t(7;12) or with internal rearrangements of chromosome 16. On the contrary, relatively low ZNF521 expression levels seemed to be associated with the t(8;21) translocation, that in turn is correlated with the AML1-ETO fusion gene or the t(15;17) translocation and in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. Invitro, we found that the enforced co-expression of ZNF521 in cord blood-derived CD34+ cells induced a significant proliferative advantage, improving MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome profiling of CD34+ cells transduced with either MLL-AF9, ZNF521, or a combination of the two transgenes highlighted specific sets of up- or down-regulated genes that are involved in the leukemic phenotype, including those encoding transcription factors, epigenetic modulators, and cell cycle regulators as well as those engaged in the transport or uptake of nutrients. These data enhance the functional cooperation between ZNF521 and MA9, resulting in the development, maintenance, and clonal expansion of leukemic cells. Finally, silencing of ZNF521 in MLL-AF9-transformed primary CD34+ cells inhibited their proliferation and led to their extinction, as well as ZNF521 silencing in the MLL-AF9+ THP-1 cell line resulted in an impairment of their growth and clonogenicity. Taken together, our data highlight ZNF521 role in the control of self-renewal and in the immature compartment of malignant hematopoiesis, which, by altering the gene expression landscape, contributes to the development and/or maintenance of AML acting in concert with the MLL-AF9 fusion oncogene.

Keywords: AML, human zinc finger protein 521 (hZNF521), mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9), cord blood-derived hematopoietic stem cells (CB-CD34+)

Procedia PDF Downloads 110
787 Assessing Acceptability and Preference of Printed Posters on COVID-19 Related Stigma: A Post-Test Study Among HIV-Focused Health Workers in Greater Accra Region of Ghana

Authors: Jerry Fiave, Dacosta Aboagye, Stephen Ayisi-Addo, Mabel Kissiwah Asafo, Felix Osei-Sarpong, Ebenezer Kye-Mensah, Renee Opare-Otoo

Abstract:

Background: Acceptability and preference of social and behaviour change (SBC) materials by target audiences is an important determinant of effective health communication outcomes. In Ghana, however, pre-test and post-test studies on acceptability and preference of specific SBC materials for specific audiences are rare. The aim of this study was therefore to assess the acceptability and preference of printed posters on COVID-19 related stigma as suitable SBC materials for health workers to influence behaviours that promote uptake of HIV-focused services. Methods: A total of 218 health workers who provide HIV-focused services were purposively sampled in 16 polyclinics where the posters were distributed in the Greater Accra region of Ghana. Data was collected in March 2021 using an adapted self-administered questionnaire in Google forms deployed via WhatsApp to participants. The data were imported into SPSS version 27 where chi-square test and regression analyses were performed to establish association as well as strength of association between variables respectively. Results: A total of 142 participants (physicians, nurses, midwives, lab scientists, health promoters, diseases control officers) made up of 85(60%) females and 57(40%) males responded to the questionnaire, giving a response rate of 65.14%. Only 88 (61.97%) of the respondents were exposed to the posters. The majority of those exposed said the posters were informative [82(93.18%)], relevant [85(96.59%)] and attractive [83(94.32%)]. They [82(93.20%)] also rated the material as acceptable with no statistically significant association between category of health worker and acceptability of the posters (X =1.631, df=5, p=0.898). However, participants’ most preferred forms of material on COVID-19 related stigma were social media [38(26.76%)], television [33(23.24%)], SMS [19(13.38%)], and radio [18(12.70%)]. Clinical health workers were 4.88 times more likely to prefer online or electronic versions of SBC materials than nonclinical health workers [AOR= 4.88 (95% CI= 0.31-0.98), p=0.034]. Conclusions: Printed posters on COVID-19 related stigma are acceptable SBC materials in communicating behaviour change messages that target health workers in promoting uptake of HIV-focused services. Posters are however, not among the most preferred materials for health workers. It is therefore recommended that material assessment studies are conducted to inform the development of acceptable and preferred materials for target audiences.

Keywords: acceptability, AIDS, HIV, posters, preference, SBC, stigma, social and behaviour change communication

Procedia PDF Downloads 103
786 Removal of Nitenpyram from Farmland Runoff by an Integrated Ecological Ditches with Constructed Wetland System

Authors: Dan Qu, Dezhi Sun, Benhang Li

Abstract:

The removal of Nitenpyram from farmland runoff by an integrated eco-ditches and constructed wetland system was investigated in the case of different HRT. Experimental results show that the removal of COD, N and P was not influenced by the Nitenpyram. When the HRT was 2.5 d, 2 d, and 1 d, the Nitenpyram removal efficiency could reach 100%, 100% and 84%, respectively. The removal efficiency in the ecological ditches was about 38%-40% in the case of different HRT, while that in the constructed wetland was influenced by the HRT variation. The optimum HRT for Nitenpyram and pollutants removal was 2 d. The substrate zeolite with soil and hollow brick layer enabled higher Nitenpyram removal rates, probably due to the cooperative phenomenon of plant uptake and microbiological deterioration as well as the adsorption by the substrate.

Keywords: ecological ditch, vertical flow constructed wetland, hydraulic retention time, Nitenpyram

Procedia PDF Downloads 401
785 Removal of Brilliant Green in Environmental Samples by Poly Ethylene Terephthalate Granule

Authors: Homayon Ahmad Panahi, Nika Shakerin, Farahnaz Zolriasatain, Elham Moniri

Abstract:

In this research, poly-ethylene terephthalate granule was prepared from Tak Corporation. The granule was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on brilliant green sorption such as pH, contact time were studied. The optimum pH value for sorption of brilliant green was 6. The sorption capacity of the granule for brilliant green was 4.6 mg g−1. The profile of brilliant green uptake on this sorbent reflects a good accessibility of the chelating sites in the poly-ethylene terephthalate granule. The developed method was utilized for the determination of brilliant green in environmental water samples by UV/Vis spectrophotometry with satisfactory results.

Keywords: poly-ethylene terephthalate granule, brilliant green, environmental sample, removal

Procedia PDF Downloads 431
784 Phytoremediation Potential of Tomato for Cd and Cr Removal from Polluted Soils

Authors: Jahanshah Saleh, Hossein Ghasemi, Ali Shahriari, Faezeh Alizadeh, Yaaghoob Hosseini

Abstract:

Cadmium and chromium are toxic to most organisms and different mechanisms have been developed for overcoming with the toxic effects of these heavy metals. We studied the uptake and distribution of cadmium and chromium in different organs of tomato (Lycopersicon esculentum L.) plants in nine heavy metal polluted soils in western Hormozgan province, Iran. The accumulation of chromium was in increasing pattern of fruit peel

Keywords: cadmium, chromium, phytoextraction, phytostabilization, tomato

Procedia PDF Downloads 347
783 Proximate Composition and Mineral Contents of Ocimum gratissimum Leaves (African Basil)

Authors: Adebola Ajayi

Abstract:

Ocimum gratissimum belongs to the Lamiaceae family and is know generally as African Basil. Ocimum gratissimum leaves are widely used as local condiments in diets. The leaves were destalked sorted, washed with potable water to remove dirts, air dried for 14 days under ambient temperature and milled into powder. The proximate composition and mineral contents of Ocimum gratissimum leaves were investigated. The proximate analysis showed the moisture, crude, protein, total ash, crude fiber, crude lipid and total carbohydrate contents were 10.72±0.01%, 12.98±0.10%, 10.95±0.42, 10.21±0.04%, 4.81±0.04% and 49.01±0.25% respectively. The results of the analysis showed that Ocimum gratissimum could be a good source of important food nutrients.

Keywords: African Basil, drying, Ocimum gratissimum, proximate

Procedia PDF Downloads 200
782 Radioprotective Effects of Super-Paramagnetic Iron Oxide Nanoparticles Used as Magnetic Resonance Imaging Contrast Agent for Magnetic Resonance Imaging-Guided Radiotherapy

Authors: Michael R. Shurin, Galina Shurin, Vladimir A. Kirichenko

Abstract:

Background. Visibility of hepatic malignancies is poor on non-contrast imaging for daily verification of liver malignancies prior to radiation therapy on MRI-guided Linear Accelerators (MR-Linac). Ferumoxytol® (Feraheme, AMAG Pharmaceuticals, Waltham, MA) is a SPION agent that is increasingly utilized off-label as hepatic MRI contrast. This agent has the advantage of providing a functional assessment of the liver based upon its uptake by hepatic Kupffer cells proportionate to vascular perfusion, resulting in strong T1, T2 and T2* relaxation effects and enhanced contrast of malignant tumors, which lack Kupffer cells. The latter characteristic has been recently utilized for MRI-guided radiotherapy planning with precision targeting of liver malignancies. However potential radiotoxicity of SPION has never been addressed for its safe use as an MRI-contrast agent during liver radiotherapy on MRI-Linac. This study defines the radiomodulating properties of SPIONs in vitro on human monocyte and macrophage cell lines exposed to 60Go gamma-rays within clinical radiotherapy dose range. Methods. Human monocyte and macrophages cell line in cultures were loaded with a clinically relevant concentration of Ferumoxytol (30µg/ml) for 2 and 24 h and irradiated to 3Gy, 5Gy and 10Gy. Cells were washed and cultured for additional 24 and 48 h prior to assessing their phenotypic activation by flow cytometry and function, including viability (Annexin V/PI assay), proliferation (MTT assay) and cytokine expression (Luminex assay). Results. Our results reveled that SPION affected both human monocytes and macrophages in vitro. Specifically, iron oxide nanoparticles decreased radiation-induced apoptosis and prevented radiation-induced inhibition of human monocyte proliferative activity. Furthermore, Ferumoxytol protected monocytes from radiation-induced modulation of phenotype. For instance, while irradiation decreased polarization of monocytes to CD11b+CD14+ and CD11bnegCD14neg phenotype, Ferumoxytol prevented these effects. In macrophages, Ferumoxytol counteracted the ability of radiation to up-regulate cell polarization to CD11b+CD14+ phenotype and prevented radiation-induced down-regulation of expression of HLA-DR and CD86 molecules. Finally, Ferumoxytol uptake by human monocytes down-regulated expression of pro-inflammatory chemokines MIP-1α (Macrophage inflammatory protein 1α), MIP-1β (CCL4) and RANTES (CCL5). In macrophages, Ferumoxytol reversed the expression of IL-1RA, IL-8, IP-10 (CXCL10) and TNF-α, and up-regulates expression of MCP-1 (CCL2) and MIP-1α in irradiated macrophages. Conclusion. SPION agent Ferumoxytol increases resistance of human monocytes to radiation-induced cell death in vitro and supports anti-inflammatory phenotype of human macrophages under radiation. The effect is radiation dose-dependent and depends on the duration of Feraheme uptake. This study also finds strong evidence that SPIONs reversed the effect of radiation on the expression of pro-inflammatory cytokines involved in initiation and development of radiation-induced liver damage. Correlative translational work at our institution will directly assess the cyto-protective effects of Ferumoxytol on human Kupfer cells in vitro and ex vivo analysis of explanted liver specimens in a subset of patients receiving Feraheme-enhanced MRI-guided radiotherapy to the primary liver tumors as a bridge to liver transplant.

Keywords: superparamagnetic iron oxide nanoparticles, radioprotection, magnetic resonance imaging, liver

Procedia PDF Downloads 72
781 Role of Selenite and Selenate Uptake by Maize Plants in Chlorophyll A and B Content

Authors: F. Garousi, S. Veres, É. Bódi, S. Várallyay, B. Kovács

Abstract:

Extracting and determining chlorophyll pigments (chlorophyll a and b) in green leaves are the procedures based on the solvent extraction of pigments in samples using N,N-dimethylformamide as the extractant. In this study, two species of soluble inorganic selenium forms, selenite (Se( IV)) and selenate (Se( VI)) at different concentrations were investigated on maize plants that were growing in nutrient solutions during 2 weeks and at the end of the experiment, amounts of chlorophyll a and b for first and second leaves of maize were measured. In accordance with the results we observed that our regarded Se concentrations in both forms of Se( IV) and Se( VI) were not effective on maize plants’ chlorophyll a and b significantly although high level of 3 mg.kg-1 Se( IV) had negative affect on growth of the samples that had been treated by it but about Se( VI) samples we did not observe this state and our different considered Se( VI) concentrations were not toxic for maize plants.

Keywords: maize, sodium selenate, sodium selenite, chlorophyll a and b

Procedia PDF Downloads 400
780 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection

Authors: Pukhrambam Helena Chanu, Janardan Yadav

Abstract:

This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.

Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.

Procedia PDF Downloads 49
779 Extracellular Laccase Production by Co-culture between Galactomyces reesii IFO 10823 and Filamentous Fungal Strains Isolated from Fungus Comb Using Natural Inducer

Authors: P. Chaijak, M. Lertworapreecha, C. Sukkasem

Abstract:

Extracellular laccases are copper-containing microbial enzymes with many industrial biotechnological applications. This study evaluated the ability of nutrients in coconut coir to enhance the yield of extracellular laccase of Galactomyces reesii IFO 10823 and develop a co-culture between this yeast and other filamentous fungi isolated from the fungus comb of Macrotermes sp. The co-culture between G. reesii IFO 10823 and M. indicus FJ-M-5 (G3) gave the highest activity at 580.20 U/mL. When grown in fermentation media prepared from coconut coir and distilled water at 70% of initial moisture without supplement addition, G3 produced extracellular laccase of 113.99 U/mL.

Keywords: extracellular laccase, production, yeast, natural inducer

Procedia PDF Downloads 266
778 Biofiltration Odour Removal at Wastewater Treatment Plant Using Natural Materials: Pilot Scale Studies

Authors: D. Lopes, I. I. R. Baptista, R. F. Vieira, J. Vaz, H. Varela, O. M. Freitas, V. F. Domingues, R. Jorge, C. Delerue-Matos, S. A. Figueiredo

Abstract:

Deodorization is nowadays a need in wastewater treatment plants. Nitrogen and sulphur compounds, volatile fatty acids, aldehydes and ketones are responsible for the unpleasant odours, being ammonia, hydrogen sulphide and mercaptans the most common pollutants. Although chemical treatments of the air extracted are efficient, these are more expensive than biological treatments, namely due the use of chemical reagents (commonly sulphuric acid, sodium hypochlorite and sodium hydroxide). Biofiltration offers the advantage of avoiding the use of reagents (only in some cases, nutrients are added in order to increase the treatment efficiency) and can be considered a sustainable process when the packing medium used is of natural origin. In this work the application of some natural materials locally available was studied both at laboratory and pilot scale, in a real wastewater treatment plant. The materials selected for this study were indigenous Portuguese forest materials derived from eucalyptus and pinewood, such as woodchips and bark, and coconut fiber was also used for comparison purposes. Their physico-chemical characterization was performed: density, moisture, pH, buffer and water retention capacity. Laboratory studies involved batch adsorption studies for ammonia and hydrogen sulphide removal and evaluation of microbiological activity. Four pilot-scale biofilters (1 cubic meter volume) were installed at a local wastewater treatment plant treating odours from the effluent receiving chamber. Each biofilter contained a different packing material consisting of mixtures of eucalyptus bark, pine woodchips and coconut fiber, with added buffering agents and nutrients. The odour treatment efficiency was monitored over time, as well as other operating parameters. The operation at pilot scale suggested that between the processes involved in biofiltration - adsorption, absorption and biodegradation - the first dominates at the beginning, while the biofilm is developing. When the biofilm is completely established, and the adsorption capacity of the material is reached, biodegradation becomes the most relevant odour removal mechanism. High odour and hydrogen sulphide removal efficiencies were achieved throughout the testing period (over 6 months), confirming the suitability of the materials selected, and mixtures thereof prepared, for biofiltration applications.

Keywords: ammonia hydrogen sulphide and removal, biofiltration, natural materials, odour control in wastewater treatment plants

Procedia PDF Downloads 302
777 Automated Resin Transfer Moulding of Carbon Phenolic Composites

Authors: Zhenyu Du, Ed Collings, James Meredith

Abstract:

The high cost of composite materials versus conventional materials remains a major barrier to uptake in the transport sector. This is exacerbated by a shortage of skilled labour which makes the labour content of a hand laid composite component (~40 % of total cost) an obvious target for reduction. Automation is a method to remove labour cost and improve quality. This work focuses on the challenges and benefits to automating the manufacturing process from raw fibre to trimmed component. It will detail the experimental work required to complete an automation cell, the control strategy used to integrate all machines and the final benefits in terms of throughput and cost.

Keywords: automation, low cost technologies, processing and manufacturing technologies, resin transfer moulding

Procedia PDF Downloads 292
776 Study the Relationship amongst Digital Finance, Renewable Energy, and Economic Development of Least Developed Countries

Authors: Fatima Sohail, Faizan Iftikhar

Abstract:

This paper studies the relationship between digital finance, renewable energy, and the economic development of Pakistan and least developed countries from 2000 to 2022. The paper used panel analysis and generalized method of moments Arellano-Bond approaches. The findings show that under the growth model, renewable energy (RE) has a strong and favorable link with fixed broadband and mobile subscribers. However, FB and MD have a strong but negative association with the uptake of renewable energy (RE) in the average and simple model. This paper provides valuable insights for policymakers, investors of the digital economy.

Keywords: digital finance, renewable energy, economic development, mobile subscription, fixed broadband

Procedia PDF Downloads 40
775 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming

Authors: Milind Chaudhari, Suhail Balasinor

Abstract:

Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.

Keywords: big data, IoT, vertical farming, indoor farming

Procedia PDF Downloads 175
774 An Audit of the Process of Care in Surveillance Services for Children with Sickle Cell Disease in Wales

Authors: Charlie Jeffkins

Abstract:

Sickle cell disease is a serious life-limiting condition which can reduce the quality of life for many patients. Public Health England (PHE), in partnership with the Sickle Cell Society (SCS), has created guidelines to prevent severe complications from sickle cell disease. Data was collected from Children’s Hospital for Wales between 15/03/21-26/03/21. Methods: A manual search of patient records for children under the care of Rocket Ward and a key term search of online records was used. Results: Penicillin prophylaxis was given at 90 days for 89%, 77% of TCDs scans were done at 2-3 years, and 72% have had a scan in the last year. 53% of patients have had discussions about hydroxycarbamide, whilst 65% have started it. PPV vaccination was documented for 19%. Conclusion: Overall, none of the four standards were reached; however, TCD uptake has improved. There is a need for better documentation of treatment and annual re-audits.

Keywords: paediatric, haematology, sickle cell, audit

Procedia PDF Downloads 221
773 Evaluation of Different Cropping Systems under Organic, Inorganic and Integrated Production Systems

Authors: Sidramappa Gaddnakeri, Lokanath Malligawad

Abstract:

Any kind of research on production technology of individual crop / commodity /breed has not brought sustainability or stability in crop production. The sustainability of the system over years depends on the maintenance of the soil health. Organic production system includes use of organic manures, biofertilizers, green manuring for nutrient supply and biopesticides for plant protection helps to sustain the productivity even under adverse climatic condition. The study was initiated to evaluate the performance of different cropping systems under organic, inorganic and integrated production systems at The Institute of Organic Farming, University of Agricultural Sciences, Dharwad (Karnataka-India) under ICAR Network Project on Organic Farming. The trial was conducted for four years (2013-14 to 2016-17) on fixed site. Five cropping systems viz., sequence cropping of cowpea – safflower, greengram– rabi sorghum, maize-bengalgram, sole cropping of pigeonpea and intercropping of groundnut + cotton were evaluated under six nutrient management practices. The nutrient management practices are NM1 (100% Organic farming (Organic manures equivalent to 100% N (Cereals/cotton) or 100% P2O5 (Legumes), NM2 (75% Organic farming (Organic manures equivalent to 75% N (Cereals/cotton) or 100% P2O5 (Legumes) + Cow urine and Vermi-wash application), NM3 (Integrated farming (50% Organic + 50% Inorganic nutrients, NM4 (Integrated farming (75% Organic + 25% Inorganic nutrients, NM5 (100% Inorganic farming (Recommended dose of inorganic fertilizers)) and NM6 (Recommended dose of inorganic fertilizers + Recommended rate of farm yard manure (FYM). Among the cropping systems evaluated for different production systems indicated that the Groundnut + Hybrid cotton (2:1) intercropping system found more remunerative as compared to Sole pigeonpea cropping system, Greengram-Sorghum sequence cropping system, Maize-Chickpea sequence cropping system and Cowpea-Safflower sequence cropping system irrespective of the production systems. Production practices involving application of recommended rates of fertilizers + recommended rates of organic manures (Farmyard manure) produced higher net monetary returns and higher B:C ratio as compared to integrated production system involving application of 50 % organics + 50 % inorganic and application of 75 % organics + 25 % inorganic and organic production system only Both the two organic production systems viz., 100 % Organic production system (Organic manures equivalent to 100 % N (Cereals/cotton) or 100 % P2O5 (Legumes) and 75 % Organic production system (Organic manures equivalent to 75 % N (Cereals) or 100 % P2O5 (Legumes) + Cow urine and Vermi-wash application) are found to be on par. Further, integrated production system involving application of organic manures and inorganic fertilizers found more beneficial over organic production systems.

Keywords: cropping systems, production systems, cowpea, safflower, greengram, pigeonpea, groundnut, cotton

Procedia PDF Downloads 199
772 Cytotoxicological Evaluation of a Folate Receptor Targeting Drug Delivery System Based on Cyclodextrins

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

For chemotherapy, a drug delivery system should be able to specifically target cancer cells and deliver the therapeutic dose without affecting normal cells. Folate receptors (FR) can be considered key targets since they are commonly over-expressed in cancer cells and they are the molecular marker used in this study. Here, cyclodextrin (CD) has being studied as a vehicle for delivering the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within the CD cavity. In this study, β-CD has been modified using folic acid so as to specifically target the FR molecular marker. Thus, the system studied here for drug delivery consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 9.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 10.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 8.5 for A549 and 132.6 µM ± 12.1 and 288.1 µM ± 16.3 for BEAS-2B. These results demonstrate that MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug.

Keywords: cyclodextrins, cancer treatment, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 301
771 Estimation of Soil Nutrient Content Using Google Earth and Pleiades Satellite Imagery for Small Farms

Authors: Lucas Barbosa Da Silva, Jun Okamoto Jr.

Abstract:

Precision Agriculture has long being benefited from crop fields’ aerial imagery. This important tool has allowed identifying patterns in crop fields, generating useful information to the production management. Reflectance intensity data in different ranges from the electromagnetic spectrum may indicate presence or absence of nutrients in the soil of an area. Different relations between the different light bands may generate even more detailed information. The knowledge of the nutrients content in the soil or in the crop during its growth is a valuable asset to the farmer that seeks to optimize its yield. However, small farmers in Brazil often lack the resources to access this kind information, and, even when they do, it is not presented in a comprehensive and/or objective way. So, the challenges of implementing this technology ranges from the sampling of the imagery, using aerial platforms, building of a mosaic with the images to cover the entire crop field, extracting the reflectance information from it and analyzing its relationship with the parameters of interest, to the display of the results in a manner that the farmer may take the necessary decisions more objectively. In this work, it’s proposed an analysis of soil nutrient contents based on image processing of satellite imagery and comparing its outtakes with commercial laboratory’s chemical analysis. Also, sources of satellite imagery are compared, to assess the feasibility of using Google Earth data in this application, and the impacts of doing so, versus the application of imagery from satellites like Landsat-8 and Pleiades. Furthermore, an algorithm for building mosaics is implemented using Google Earth imagery and finally, the possibility of using unmanned aerial vehicles is analyzed. From the data obtained, some soil parameters are estimated, namely, the content of Potassium, Phosphorus, Boron, Manganese, among others. The suitability of Google Earth Imagery for this application is verified within a reasonable margin, when compared to Pleiades Satellite imagery and to the current commercial model. It is also verified that the mosaic construction method has little or no influence on the estimation results. Variability maps are created over the covered area and the impacts of the image resolution and sample time frame are discussed, allowing easy assessments of the results. The final results show that easy and cheaper remote sensing and analysis methods are possible and feasible alternatives for the small farmer, with little access to technological and/or financial resources, to make more accurate decisions about soil nutrient management.

Keywords: remote sensing, precision agriculture, mosaic, soil, nutrient content, satellite imagery, aerial imagery

Procedia PDF Downloads 175
770 Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization

Authors: Shahrukh Ahmad, Purnendu Bose

Abstract:

Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment.

Keywords: algal bacterial photobioreactor, domestic wastewater, nutrient removal, led bulbs

Procedia PDF Downloads 79