Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 755

Search results for: harmful algae bloom

755 Effects of Macrophyte Vallisneria asiatica Biomasses on the Algae Community

Authors: Caixia Kang, Takahiro Kuba, Aimin Hao, Yasushi Iseri, Chunjie Li, Zhenjia Zhang

Abstract:

To improve the water quality of lakes and control algae blooms, The effects of Vallisneria asiatica which is one of aquatic plants spread over Lake Taihu. With different biomasses on the water quality and algae communities were researched. The results indicated that V. asiatica could control an excess of Microcystis spp. When the V. asiatica biomass was larger than 50g in the tank with 30L solution in the laboratory, Planktonic and epiphytic algae responded differently to V. asiatica. The presence of macrophyte V. asiatica in eutrophic waters has a positive effect on algae compositions because of different sensitivities of algae species to allelopathic substances released by macrophyte V. asiatica. That is, V. asiatica could inhibit the growth of Microcystis spp. effectively and was benefited to the diatom on the condition in the laboratory.

Keywords: algae bloom, algae community, Microcystis spp., Vallisneria asiatica

Procedia PDF Downloads 308
754 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom

Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou

Abstract:

The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.

Keywords: microbial community, harmful algal bloom, ecological process, network

Procedia PDF Downloads 49
753 Growth Rates of Planktonic Organisms in “Yerevanyan Lich” Reservoir and the Hrazdan River in Yerevan City, Armenia

Authors: G. A. Gevorgyan, A. S. Mamyan, L. G. Stepanyan, L. R. Hambaryan

Abstract:

Bacterio- and phytoplankton growth rates in 'Yerevanyan lich' reservoir and the Hrazdan river in Yerevan city, Armenia were investigated in April and June-August, 2015. Phytoplankton sampling and analysis were performed by the standard methods accepted in hydrobiological studies. The quantitative analysis of aerobic, coliform and E. coli bacteria is done by the 'RIDA COUNT' medium sheets (coated with ready-to-use culture medium). The investigations showed that the insufficient management of household discharges in Yerevan city caused the organic and fecal pollution of the Hrazdan river in this area which in turn resulted in an increase in bacterial count and increased sanitary and pathogenic risks to the environment and human health. During the investigation in April, the representatives of diatom algae prevailed quantitatively in the coastal area of 'Yerevanyan lich' reservoir, nevertheless, a significant change in the phytoplankton community in June occurred: due to green algae bloom in the reservoir, the quantitative parameters of phytoplankton increased significantly. This was probably conditioned by a seasonal increase in the water temperature in the conditions of the sufficient concentration of nutrients. However, a succession in phytoplankton groups during July-August occurred, and a dominant group (according to quantitative parameters) in the phytoplankton community was changed as follows: green algae-diatom algae-blue-green algae. Rapid increase in the quantitative parameters of diatom and blue-green algae in the reservoir may have been conditioned by increased organic matter level resulted from green algae bloom. Algal bloom in 'Yerevanyan lich' reservoir caused changes in phytoplankton community and an increase in bacterioplankton count not only in the reservoir but also in the Hrazdan river sites located in the downstream from the reservoir. Thus, the insufficient management of urban discharges and aquatic ecosystems in Yerevan city led to unfavorable changes in water quality and microbial and phytoplankton communities in “Yerevanyan lich” reservoir and the Hrazdan river which in turn caused increased sanitary and pathogenic risks to the environment and human health.

Keywords: algal bloom, bacterioplankton, phytoplankton, Hrazdan river, Yerevanyan lich reservoir

Procedia PDF Downloads 205
752 The Role of Phycoremediation in the Sustainable Management of Aquatic Pollution

Authors: Raymond Ezenweani, Jeffrey Ogbebor

Abstract:

The menace of aquatic pollution has become increasingly of great concern and the effects of this pollution as a result of anthropogenic activities cannot be over emphasized. Phycoremediation is the application of algal remediation technology in the removal of harmful products from the environment. Harmful products also known as pollutants are usually introduced into the environment through variety of processes such as industrial discharge, agricultural runoff, flooding, and acid rain. This work has to do with the capability of algae in the efficient removal of different pollutants, ranging from hydrocarbons, eutrophication, agricultural chemicals and wastes, heavy metals, foul smell from septic tanks or dumps through different processes such as bioconversion, biosorption, bioabsorption and biodecomposition. Algae are capable of bioconversion of environmentally persistent compounds to degradable compounds and also capable of putting harmful bacteria growth into check in waste water remediation. Numerous algal organisms such as Nannochloropsis spp, Chlorella spp, Tetraselmis spp, Shpaerocystics spp, cyanobacteria and different macroalgae have been tested by different researchers in laboratory scale and shown to have 100% efficiency in environmental remediation. Algae as a result of their photosynthetic capacity are also efficient in air cleansing and management of global warming by sequestering carbon iv oxide in air and converting it into organic carbon, thereby making food available for the other organisms in the higher trophic level of the aquatic food chain. Algae play major role in the sustenance of the aquatic ecosystem by their virtue of being photosynthetic. They are the primary producers and their role in environmental sustainability is remarkable.

Keywords: Algae , Pollutant, ., Phycoremediation, Aquatic, Sustainability

Procedia PDF Downloads 41
751 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 112
750 Investigation of the Possible Correlation of Earthquakes with a Red Tide Occurrence in the Persian Gulf and Oman Sea

Authors: Hadis Hosseinzadehnaseri

Abstract:

The red tide is a kind of algae blooming, caused different problems at different sizes for the human life and the environment, so it has become one of the serious global concerns in the field of Oceanography in few recent decades. This phenomenon has affected on Iran's water, especially the Persian Gulf's since last few years. Collecting data associated with this phenomenon and comparison in different parts of the world is significant as a practical way to study this phenomenon and controlling it. Effective factors to occur this phenomenon lead to the increase of the required nutrients of the algae or provide a good environment for blooming. In this study, we examined the probability of relation between the earthquake and the harmful algae blooming in the Persian Gulf's water through comparing the earthquake data and the recorded Red tides. On the one hand, earthquakes can cause changes in seawater temperature that is effective in creating a suitable environment and the other hand, it increases the possibility of water nutrients, and its transportation in the seabed, so it can play a principal role in the development of red tide occurrence. Comparing the distribution spatial-temporal maps of the earthquakes and deadly red tides in the Persian Gulf and Oman Sea, confirms the hypothesis, why there is a meaningful relation between these two distributions. Comparing the number of earthquakes around the world as well as the number of the red tides in many parts of the world indicates the correlation between these two issues. This subject due to numerous earthquakes, especially in recent years and in the southern part of the country should be considered as a warning to the possibility of re-occurrence of a critical state of red tide in a large scale, why in the year 2008, the number of recorded earthquakes have been more than near years. In this year, the distribution value of the red tide phenomenon in the Persian Gulf got measured about 140,000 square kilometers and entire Oman Sea, with 10 months Survival in the area, which is considered as a record among the occurred algae blooming in the world. In this paper, we could obtain a logical and reasonable relation between the earthquake frequency and this phenomenon occurrence, through compilation of statistics relating to the earthquakes in the southern Iran, from 2000 to the end of the first half of 2013 and also collecting statistics on the occurrence of red tide in the region as well as examination of similar data in different parts of the world. As shown in Figure 1, according to a survey conducted on the earthquake data, the most earthquakes in the southern Iran ranks first in the fourth Gregorian calendar month In April, coincided with Ordibehesht and Khordad in Persian calendar and then in the tenth Gregorian calendar month In October, coincided in Aban and Azar in Persian calendar.

Keywords: red tide, earth quake, persian gulf, harmful algae bloom

Procedia PDF Downloads 431
749 Effect of Non-Fat Solid Ratio on Bloom Formation in Untempered Chocolate

Authors: Huanhuan Zhao, Bryony J. James

Abstract:

The relationship between the non-fat solid ratio and bloom formation in untempered chocolate was investigated using two types of chocolate: model chocolate made of varying cocoa powder ratios (46, 49.5 and 53%) and cocoa butter, and commercial Lindt chocolate with varying cocoa content (70, 85 and 90%). X-ray diffraction and colour measurement techniques were used to examine the polymorphism of cocoa butter and the surface whiteness index (WI), respectively. The polymorphic transformation of cocoa butter was highly correlated with the changes of WI during 30 days of storage since it led to the redistribution of fat within the chocolate matrix and resulted in a bloomed surface. The change in WI indicated a similar bloom rate in the chocolates, but the model chocolates with a higher cocoa powder ratio had more pronounced total bloom. This is due to a higher ratio of non-fat solid particles on the surface resulting in microscopic changes in morphology. The ratio of non-fat solids is an important factor in determining the extent of bloom but not the bloom rate.

Keywords: untempered chocolate, microstructure of bloom, polymorphic transformation, surface whiteness

Procedia PDF Downloads 288
748 Revised Bloom’s Taxonomy for Assessment in Engineering Education

Authors: K. Sindhu, V. Shubha Rao

Abstract:

The goal of every faculty is to guide students to learn fundamental concepts and also improve thinking skills. Curriculum questionnaires must be framed, which would facilitate students to improve their thinking skills. Improving thinking skill is a difficult task and one of the ways to achieve this is to frame questionnaires using Bloom’s Taxonomy. Bloom’s Taxonomy helps the faculty to assess the students in a systematic approach which involves students performing successfully at each level in a systematic manner. In this paper, we have discussed on Revised Bloom’s Taxonomy and how to frame our questions based on the taxonomy for assessment. We have also presented mapping the questions with the taxonomy table which shows the mapping of the questions in knowledge and cognitive domain.

Keywords: bloom’s taxonomy, assessment, questions, engineering education

Procedia PDF Downloads 432
747 The Development of Noctiluca scintillans Algal Bloom in Coastal Waters of Muscat, Sulanate of Oman

Authors: Aysha Al Sha'aibi

Abstract:

Algal blooms of the dinoflagellate species Noctiluca scintillans became frequent events in Omani waters. The current study aims at elucidating the abundance, size variation and observations on the feeding mechanism performed by this species during the winter bloom. An attempt was made, to relate observed biological parameters of the Noctiluca population to environmental factors. Field studies spanned the period from December 2014 to April 2015. Samples were collected from Bandar Rawdah (Muscat region) by Bongo nets, twice per week, from the surface and the integrated upper mixed layer. The measured environmental variables were: temperature, salinity, dissolved oxygen, chlorophyll a, turbidity, nitrite, phosphate, wind speed and rainfall. During the winter bloom (from December 2014 through February 2015), the abundance exhibited the highest concentration on 17 February (640.24×106 cell.L-1) in oblique samples and 83.9x103 cell.L-1 in surface samples, with a subsequent decline up to the end of April. The average number of food vacuoles inside Noctiluca cells was 1.5 per cell; the percentage of feeding Noctiluca compared to the entire population varied from 0.01% to 0.03%. Both the surface area of the Noctiluca symbionts (Pedinomonas noctilucae) and cell diameter were maximal in December. In oblique samples the highest average cell diameter and the surface area of symbiont algae were 751.7 µm and 179.2x103 µm2 respectively. In surface samples, highest average cell diameter and the surface area of symbionts were 760 µm and 284.05x103 µm2 respectively. No significant correlations were detected between Noctiluca’s biological parameters and environmental variables except for the correlation between cell diameter and chlorophyll a, also between symbiotic algae surface area and chlorophyll a. The high correlation of chlorophyll a was as a reason of endosymbiotic algae Pedinomonas noctilucae and green Noctiluca enhanced chlorophyll during bloom. All correlations among biological parameters were significant; they are perhaps one of major factors that mediating high growth rates, generating millions of cell per liter in a short time range. The results gained from this study will provide a beneficial background for understanding deeply the development of coastal algal blooms of Noctiluca scintillans. Moreover, results could be used in different applications related to marine environment.

Keywords: abundance, feeding activities, Noctiluca scintillans, Oman

Procedia PDF Downloads 353
746 Toxin-Producing Algae of Nigerian Coast, Gulf of Guinea

Authors: Medina O. Kadiri, Jeffrey U. Ogbebor

Abstract:

Toxin-producing algae are algal species that produce potent toxins, which accumulate in food chains and cause various gastrointestinal and neurological illnesses in humans and other animals. They result in shellfish toxicity, ecosystem alteration, cause fish kills and mortality of other animals and humans, in addition to compromised product quality as well as decreased consumer confidence. Animals, including man, are directly exposed to toxins by absorbing toxins from the water via swimming, drinking water with toxins, or ingestion of algal species via feeding on contaminated seafood. These toxins, algal toxins, undergo bioaccumulation, biotransformation, biotransferrence, and biomagnification through the natural food chains and food webs, thereby endangering animals and humans. The Nigerian coast is situated on the Atlantic Ocean, the Gulf of Guinea, one of Africa’s five large marine ecosystems (LME), and studies on toxic algae in this ecosystem are generally lacking. Algal samples were collected from eight coastal states and ten locations spanning the Bight of Bonny and the Bight of Benin. A total of 70 species of toxin-producing algae were found in the coastal waters of Nigeria. There was a great variety of toxin-producing algae in the coastal waters of Nigeria. They were Domoic acid-producing forms (DSP), Saxitoxin-producing, Gonyautoxin-producing, and Yessotoxin-producing (all PSP). Others were Okadaic acid-producing, Dinophysistoxin-producing, and Palytoxin-producing, which are representatives of DSP; CFP was represented by Ciguatoxin-producing forms and NSP by Brevitoxin-producing species. Emerging or new toxins are comprising of Gymnodimines, Spirolides, Palytoxins, and Prorocentrolidess-producing algae. The CyanoToxin Poisoning (CTP) was represented by Anatoxin-, Microcystin-, Cylindrospermopsis-Lyngbyatoxin-, Nordularin-Applyssiatoxin and Debromoapplatoxin-producing species. The highest group was the Saxitoxin-producing species, followed by Microcystin-producing species, then Anatoxin-producing species. Gonyautoxin (PSP), Palytoxin (DSP), Emerging toxins, and Cylindrospermopsin -producing species had a very substantial representation. Only Ciguatoxin-producing species, Lyngbyatoxin-Nordularin, Applyssiatoxin, and Debromoapplatoxin-producing species were represented by one taxon each. The presence of such overwhelming diversity of toxin-producing algae on the Nigerian coast is a source of concern for fisheries, aquaculture, human health, and ecosystem services. Therefore routine monitoring of toxic and harmful algae is greatly recommended.

Keywords: algal syndromes, Atlantic Ocean, harmful algae, Nigeria

Procedia PDF Downloads 126
745 Assessment of Biotic and Abiotic Water Factors of Antiao and Jiabong Rivers for Benthic Algae

Authors: Geno Paul S. Cumla, Jan Mariel M. Gentiles, M. Brenda Gajelan-Samson

Abstract:

Eutrophication is a process where in there is a surplus of nutrients present in a lake or river. Harmful cyanobacteria, hypoxia, and primarily algae, which contain toxins, grow because of the excess nutrients. Algal blooms can cause fish kills, limiting the light penetration which reduces growth of aquatic organisms, causing die-offs of plants and produce conditions that are dangerous to aquatic and human life. The main cause for eutrophication is the presence of excessive amounts of phosphorus (P) and nitrogen (N). Nitrogen is necessary for the production of the plant tissues and is usually used to synthesize proteins. Nitrate is a compound that contains nitrogen, and at elevated levels it can cause harmful effects. Excessive amounts of phosphorus, displaced through human activity, is the major cause of algae growth and as well as degraded water quality. To accomplish this study the Assessment of Soluble inorganic nitrogen (SIN), Assessment of Soluble reactive phosphate (SRP), Determination of Chlorophyll a (Chl-a) concentration, and Determination of Dominating Taxa were done. The study addresses the high probability of algal blooms in Maqueda Bay by assessing the biotic and abiotic factors of Antiao and Jiabong rivers. The data predicts the overgrowth of algae and to create awareness to prevent the event from taking place. The study assesses the adverse effects that could be prevented by understanding and controlling algae. This should predict future cases of algal blooms and allow government agencies which require data to create programs to prevent and assess these issues.

Keywords: eutrophication, chlorophyll a, nitrogen, phosphorus, red tide, Kjeldahl method, spectrophotometer, assessment of soluble inorganic nitrogen, SIN, assessment of soluble reactive phosphate, SRP

Procedia PDF Downloads 78
744 Intentional Cultivation of Non-toxic Filamentous Cyanobacteria Tolypothrix as an Approach to Treat Eutrophic Waters

Authors: Simona Lucakova, Irena Branyikova

Abstract:

Eutrophication, a condition when water becomes over-enriched with nutrients (P, N), can lead to undesirable excessive growth of phytoplankton, so-called algal bloom. This process results in the accumulation of toxin-producing cyanobacteria and oxygen depletion, both possibly leading to the collapse of the whole ecosystem. In real conditions, the limiting nutrient, which determines the possible growth of harmful algal bloom, is usually phosphorus. Algicides or flocculants have been applied in the eutrophicated waterbody in order to reduce the phytoplankton growth, which leads to the introduction of toxic chemicals into the water. In our laboratory, the idea of the prevention of harmful phytoplankton growth by the intentional cultivation of non-toxic cyanobacteria Tolypothrix tenuis in semi-open floating photobioreactors directly on the surface of phosphorus-rich waterbody is examined. During the process of cultivation, redundant phosphorus is incorporated into cyanobacterial biomass, which can be subsequently used for the production of biofuels, cosmetics, pharmaceuticals, or biostimulants for agricultural use. To determine the ability of phosphorus incorporation, batch-cultivation of Tolypothrix biomass in media simulating eutrophic water (10% BG medium) and in effluent from municipal wastewater treatment plant, both with the initial phosphorus concentration in the range 0.5-1.0 mgP/L was performed in laboratory-scale models of floating photobioreactors. After few hours of cultivation, the phosphorus content was decreased below the target limit of 0.035 mgP/L, which was given as a borderline for the algal bloom formation. Under laboratory conditions, the effect of several parameters on the rate of phosphorus decrease was tested (illumination, temperature, stirring speed/aeration gas flow, biomass to medium ratio). Based on the obtained results, a bench-scale floating photobioreactor was designed and will be tested for Tolypothrix growth in real conditions. It was proved that intentional cultivation of cyanobacteria Tolypothrix could be a suitable approach for extracting redundant phosphorus from eutrophic waters as prevention of algal bloom formation.

Keywords: cyanobacteria, eutrophication, floating photobioreactor, Tolypothrix

Procedia PDF Downloads 84
743 Effects of Alkalinity on the Treatment of Landfill Leachate through Algae Growth

Authors: Tahir Imran Qureshi

Abstract:

This study was aimed at finding out effects of potential influence of alkalinity on the treatment of landfill leachate through the growth of algae at varying dilution rates and toxicity potential. pH control proved to be an effective factor influencing on algal growth. With the use of algae Scenedesmus sp. for the treatment of leachate, a sharp increase in the growth of algae was recorded until pH 9. However, at pH 9.3 and 25 °C temperature, the growing trend of algae population showed a weakening tendency with the increase of total alkalinity in the leachate solution. Highest growth of algae was recorded in the leachate samples with alkalinity ranged at 1500-2500 mg CaCO3/L under neutral condition at pH 7 after 48 hours of cultivation time. Under the similar conditions, total nitrogen and total phosphorous in the leachate also reduced to 80% and 85%, respectively, however, no significant removal of COD was observed during the course of experiment.

Keywords: leachate treatment, microalgae, nutrient removal, ammonia toxicity

Procedia PDF Downloads 258
742 The Influence of Crude Oil on Growth of Freshwater Algae

Authors: Al-Saboonchi Azhar

Abstract:

The effects of Iraqi crude oil on growth of three freshwater algae (Chlorella vulgaris Beij., Scenedesmus acuminatus (Lag.) Chodat. and Oscillatoria princeps Vauch.) were investigated, basing on it's biomass expressed as Chl.a. Growth rate and doubling time of the cell were calculated. Results showed that growth rate and species survival varied with concentrations of crude oil and species type. Chlorella vulgaris and Scenedesmus acuminatus were more sensitive in culture containing crude oil as compared with Oscillatoria princeps cultures. The growth of green algae were significantly inhibited in culture containing (5 mg/l) crude oil, while the growth of Oscillatoria princeps reduced in culture containing (10 mg/l) crude oil.

Keywords: algae, crude oil, green algae, Cyanobacteria

Procedia PDF Downloads 474
741 Improving Students' Critical Thinking in Understanding Reading Material Through Bloom's Critical Thinking Questioning Strategy in English for Specific Purposes (ESP) Class

Authors: Hevriani Sevrika Mayuasti

Abstract:

This research deals in improving college students’ critical thinking at English for Specific Purposes Subject. The strategy that is applied is Bloom’s Critical Thinking Questioning Strategy. The positive side of this strategy is that the given questions are developed based on Bloom’s taxonomy level. It is an action research because the researcher uses own class in doing this research. The processes of this research have been done from April to Mei 2014. There are two cycles and each cycle consists of two meetings. After doing the research, it is gotten that Bloom’s Critical Thinking Questioning Strategy improves college students’ critical thinking. It helps the students to build and elaborate their ideas. Hence, it increases students’ reading comprehension.

Keywords: critical thinking, blooms’ critical thinking, questioning, strategy

Procedia PDF Downloads 410
740 Absorption Capability Examination of Heavy Metals by Spirogyra Alga in Ahvaz Water Treatment Plant

Authors: F. Fakheri Raof, F. Zobeidizadeh

Abstract:

The present study examined the potential capability of Spirogyra algae remove heavy metals Zn, Pb, Cu, and Cr from the water. For this purpose, the water treatment No. 3 of Ahvaz County in Khuzestan Province of Iran was selected as a case study. From 8 sampling stations, 4 stations were dedicated to the water samples and 4 stations to the algae samples. According to the obtained results, the concentration of the heavy metals Cr, Cu, Pb, and Zn in water samples were within the ranges of 1.98-19.53, 0.67-13.45, 1-23.18, and 2.12-83.04 µg/L. Besides, the concentration of heavy metal Cr, Pb, Cu, and Zn in spirogyra algae samples varied between the ranges 2.30-3.61, 2.06-3.43, 2.29-2.56, and 9.88-10.84 µg/L. The highest amount of metal absorption in spirogyra algae samples was related to the zinc. The obtained results also indicated that the last spirogyra algae sample which was at the inlet of Tank 4 absorbed the lowest concentration of metals. This would be due to the treatment process along the course of ponds resulted in completely pure water at the outlet without the existence of algae on the sides. The paper also provides some useful recommendations on this issue.

Keywords: absorption, Ahvaz, heavy metal, spirogyra algae, water treatment plants

Procedia PDF Downloads 193
739 Fungal Flocculation of Single Algae Species and Mixed Algal Communities

Authors: Digby Wrede, Stephen Gray, Syed Hussainy

Abstract:

Microalgae are extremely useful organisms but notoriously hard to harvest. The use of fungal pellets has been found to be an efficient way to flocculate numerous species of algae. However, only the flocculation of single species of algae has been investigated. Algae are generally found in complex communities in the environment comprising of numerous species of algae ranging from simple single cell algae such as Chlorella to more complex or communal algae such as Dictyosphaerium. This study investigated the flocculation capabilities of Aspergillus oryzae to flocculate four species of algae; Chlorella vulgaris, Scenedesmus quadricauda, Scenedesmus acuminatus and Dictyosphaerium sp., and the algal communities in four different types of domestic effluent from a lagoon-based treatment plant; primary effluent, secondary effluent and the high rate algal pond effluent at a natural and at a lowered pH level. Spectrophotometry was used to measure the changes in algal population. C. vulgaris, S. acuminatus and S. quadricauda, had over 90% reduction of algal in suspension after 24 hours. Dictyosphaerium sp. showed a little to no removal after 24 hours. The primary, secondary, and natural pH level HRAP had roughly a 50% removal after 24 hours, the HRAP which was grown at a lower pH level had over a 90% removal after 24 hours. pH has been shown previously to affect fungal flocculation. Fungal and algae pellets have been shown to be able to treat wastewater and can be converted to biofuels in a very similar method to how algae are currently converted. The mixture of both fungi and algae has also been shown to provide a higher yield of oils then separately and are able to more efficiently treat wastewater then algae or fungi by themselves.

Keywords: algae harvesting, Aspergillus oryzae, fungal flocculation, wastewater treatment

Procedia PDF Downloads 94
738 Improving Students' Critical Thinking in Understanding Reading Material Through Bloom's Taxonomy Questioning Strategy in English for Specific Purposes (ESP) Class

Authors: M. Mayuasti, Hevriani Sevrika, Armilia Riza

Abstract:

This research deals in improving college students’ critical thinking at English for Specific Purposes Subject. The strategy that is applied is Bloom’s Critical Thinking Questioning Strategy. The positive side of this strategy is that the given questions are developed based on Bloom’s taxonomy level. It is an action research because the researcher uses own class in doing this research. The processes of this research have been done from April to Mei 2014. There are two cycles and each cycle consists of two meetings. After doing the research, it is gotten that Bloom’s Critical Thinking Questioning Strategy improves college students’ critical thinking. It helps the students to build and elaborate their ideas. Hence, it increases students’ reading comprehension

Keywords: critical thinking, blooms’ critical thinking questioning strategy, specific purposes class, English

Procedia PDF Downloads 413
737 Allergenic Potential of Airborne Algae Isolated from Malaysia

Authors: Chu Wan-Loy, Kok Yih-Yih, Choong Siew-Ling

Abstract:

The human health risks due to poor air quality caused by a wide array of microorganisms have attracted much interest. Airborne algae have been reported as early as 19th century and they can be found in the air of tropic and warm atmospheres. Airborne algae normally originate from water surfaces, soil, trees, buildings and rock surfaces. It is estimated that at least 2880 algal cells are inhaled per day by human. However, there are relatively little data published on airborne algae and its related adverse health effects except sporadic reports of algae associated clinical allergenicity. A collection of airborne algae cultures has been established following a recent survey on the occurrence of airborne algae in indoor and outdoor environments in Kuala Lumpur. The aim of this study was to investigate the allergenic potential of the isolated airborne green and blue-green algae, namely Scenedesmus sp., Cylindrospermum sp. and Hapalosiphon sp.. The suspensions of freeze-dried airborne algae were adminstered into balb-c mice model through intra-nasal route to determine their allergenic potential. Results showed that Scenedesmus sp. (1 mg/mL) increased the systemic Ig E levels in mice by 3-8 fold compared to pre-treatment. On the other hand, Cylindrospermum sp. and Hapalosiphon sp. at similar concentration caused the Ig E to increase by 2-4 fold. The potential of airborne algae causing Ig E mediated type 1 hypersensitivity was elucidated using other immunological markers such as cytokine interleukin (IL)- 4, 5, 6 and interferon-ɣ. When we compared the amount of interleukins in mouse serum between day 0 and day 53 (day of sacrifice), Hapalosiphon sp. (1mg/mL) increased the expression of IL4 and 6 by 8 fold while the Cylindrospermum sp. (1mg/mL) increased the expression of IL4 and IFɣ by 8 and 2 fold respectively. In conclusion, repeated exposure to the three selected airborne algae may stimulate the immune response and generate Ig E in a mouse model.

Keywords: airborne algae, respiratory, allergenic, immune response, Malaysia

Procedia PDF Downloads 162
736 The Effect of Bunch in the Branch on Vegetative Characteristics of Pistacia vera

Authors: Alireza Sohrabi, Hamid Mohammadi

Abstract:

The pistachio fruit is a strategic product in Iran. One of the problems caused the reduction of pistachio proceeds is related to biennial- bearing or alternative bearing. Biennial- bearing is very important and is happened because of the fallen female bloom buds in vintage year. This test was done according to random blocks of 6 orchards in the type of Ahmad Aghaie with 4 iterations. Vegetative properties of branch are investigated. The results are shown that if the bunch numbers are increased, the possibility of falling is increased in bloom buds. The least possibility of falling of bloom buds is specified in trimming of one bunch and has significant difference with other trimming.

Keywords: alternate bearing, pistachio, cluster, bud

Procedia PDF Downloads 327
735 Impact of Gases Derived from Sargassum Algae Biodegradation on Copper Atmospheric Corrosion

Authors: M. Said Ahmed, M. Lebrini, J. Pellé, S. Rioual, B. Lescop, C. Roos

Abstract:

The corrosion behaviour of copper exposed in a marine atmosphere polluted by gases from the decomposition of Sargassum algae and in unpolluted atmosphere was studied using the mass loss method, surface analysis, observation of morphology and electrochemical measurements. Indeed, for several years, the coasts of Martinique have been victims of massive strandings of Sargassum algae. The decomposition of these algae releases mainly hydrogen sulphide (H₂S) and ammonia (NH₃) into the atmosphere. This new phenomenon is added to the tropical climate of Martinique (high TOW, sea spray, high and constant temperatures) which is already very favourable to metal degradation. To study the impact of this on copper corrosion, four sites more or less affected by Sargassum algae strandings were selected. The samples were exposed for up to six months. The results showed that the average corrosion rate of copper was 528 µm/year for the site most affected by Sargassum algae and 9.4 µm/year for the least affected site after three months of exposure, implying that the presence of Sargassum algae cause an important copper degradation. The morphological structures and properties of the corrosion products obtained at the impacted and non-impacted sites differed significantly. In the absence of Sargassum algae we obtained mainly Cu₂O and Cu₂Cl(OH)₃, two products usually obtained in marine atmosphere whereas in atmosphere with Sargassum algae, CuS is the main corrosion product obtained. Electrochemical analyses showed that the protection offered by the corrosion product layer was more important and improved with time for the non-impacted sites, whereas on the impacted sites, this protection deteriorated.

Keywords: atmospheric-corrosion, sargassum algae, copper, electrochemical techniques, SEM/EDX and XRD

Procedia PDF Downloads 13
734 Process for Production of Added-Value Water–Extract from Liquid Biomass

Authors: Lozano Paul

Abstract:

Coupled Membrane Separation Technology (CMST), including Cross Flow Microfiltration (CFM) and Reverse Osmosis (RO), are used to concentrate microalgae biomass or/and to extract and concentrate water-soluble metabolites produced during micro-algae production cycle, as well as water recycling. Micro-algae biomass was produced using different feeding mixtures of ingredients: pure chemical origin compounds and natural/ecological water-extracted components from available local plants. Micro-algae was grown either in conventional plastic bags (100L/unit) or in small-scale innovative bioreactors (75L). Biomass was concentrated as CFM retentate using a P19-60 ceramic membrane (0.2μm pore size), and water-soluble micro-algae metabolites left in the CFM filtrate were concentrated by RO. Large volumes of water (micro-algae culture media) of were recycled by the CMTS for another biomass production cycle.

Keywords: extraction, membrane process, microalgae, natural compound

Procedia PDF Downloads 191
733 Monitoring Spatial Distribution of Blue-Green Algae Blooms with Underwater Drones

Authors: R. L. P. De Lima, F. C. B. Boogaard, R. E. De Graaf-Van Dinther

Abstract:

Blue-green algae blooms (cyanobacteria) is currently a relevant ecological problem that is being addressed by most water authorities in the Netherlands. These can affect recreation areas by originating unpleasant smells and toxins that can poison humans and animals (e.g. fish, ducks, dogs). Contamination events usually take place during summer months, and their frequency is increasing with climate change. Traditional monitoring of this bacteria is expensive, labor-intensive and provides only limited (point sampling) information about the spatial distribution of algae concentrations. Recently, a novel handheld sensor allowed water authorities to quicken their algae surveying and alarm systems. This study converted the mentioned algae sensor into a mobile platform, by combining it with an underwater remotely operated vehicle (also equipped with other sensors and cameras). This provides a spatial visualization (mapping) of algae concentrations variations within the area covered with the drone, and also in depth. Measurements took place in different locations in the Netherlands: i) lake with thick silt layers at the bottom, very eutrophic former bottom of the sea and frequent / intense mowing regime; ii) outlet of waste water into large reservoir; iii) urban canal system. Results allowed to identify probable dominant causes of blooms (i), provide recommendations for the placement of an outlet, day-night differences in algae behavior (ii), or the highlight / pinpoint higher algae concentration areas (iii). Although further research is still needed to fully characterize these processes and to optimize the measuring tool (underwater drone developments / improvements), the method here presented can already provide valuable information about algae behavior and spatial / temporal variability and shows potential as an efficient monitoring system.

Keywords: blue-green algae, cyanobacteria, underwater drones / ROV / AUV, water quality monitoring

Procedia PDF Downloads 128
732 Modeling and Monitoring of Agricultural Influences on Harmful Algal Blooms in Western Lake Erie

Authors: Xiaofang Wei

Abstract:

Harmful Algal Blooms are a recurrent disturbing occurrence in Lake Erie that has caused significant negative impacts on water quality and aquatic ecosystem around Great Lakes areas in the United States. Targeting the recent HAB events in western Lake Erie, this paper utilizes satellite imagery and hydrological modeling to monitor HAB cyanobacteria blooms and analyze the impacts of agricultural activities from Maumee watershed, the biggest watershed of Lake Erie and agriculture dominant.SWAT (Soil & Water Assessment Tool) Model for Maumee watershed was established with DEM, land use data, crop data layer, soil data, and weather data, and calibrated with Maumee River gauge stations data for streamflow and nutrients. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) was applied to remove atmospheric attenuation and cyanobacteria Indices were calculated from Landsat OLI imagery to study the intensity of HAB events in the years 2015, 2017, and 2019. The agricultural practice and nutrients management within the Maumee watershed was studied and correlated with HAB cyanobacteria indices to study the relationship between HAB intensity and nutrient loadings. This study demonstrates that hydrological models and satellite imagery are effective tools in HAB monitoring and modeling in rivers and lakes.

Keywords: harmful algal bloom, landsat OLI imagery, SWAT, HAB cyanobacteria

Procedia PDF Downloads 98
731 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology

Authors: I. F. Ejim, F. L. Kamen

Abstract:

Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.

Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction

Procedia PDF Downloads 266
730 The Use of Simulation Programs of Leakage of Harmful Substances for Crisis Management

Authors: Jiří Barta

Abstract:

The paper deals with simulation programs of spread of harmful substances. Air pollution has a direct impact on the quality of human life and environmental protection is currently a very hot topic. Therefore, the paper focuses on the simulation of release of harmful substances. The first part of article deals with perspectives and possibilities of implementation outputs of simulations programs into the system which is education and of practical training of the management staff during emergency events in the frame of critical infrastructure. The last part shows the practical testing and evaluation of simulation programs. Of the tested simulations software been selected Symos97. The tool offers advanced features for setting leakage. Gradually allows the user to model the terrain, location, and method of escape of harmful substances.

Keywords: Computer Simulation, Symos97, Spread, Simulation Software, Harmful Substances

Procedia PDF Downloads 202
729 Harmful Algal Poisoning Symptoms in Coastal Areas of Nigeria

Authors: Medina Kadiri

Abstract:

Nigeria has an extensive coastline of 853 km long between latitude 4°10′ to 6°20′ N and longitude 2°45′ to 8°35′ E and situated in the Gulf of Guinea within the Guinea Current Large Marine Ecosystem. There is a substantial coastal community relying on this region for their livelihood of fishing, aquaculture, mariculture for various sea foods either for consumption or economic sustenance or both. Socio-economic study was conducted, using questionnaires and interview, to investigate the health symptoms of harmful algae experienced by these communities on consumption of sea foods. Eighteen symptoms were recorded. Of the respondents who experienced symptoms after consumption of sea foods, overall, more people (33.5%) experienced vomiting as a symptom, followed by nausea (14.03%) and then diarrhea (13.57%). Others were headache (9.95%), mouth tingling (8.6%) and tiredness (7.24%).The least were muscle pain, rashes, confusion, chills, burning sensation, breathing difficulty and balance difficulty which represented 0.45% each and the rest (dizziness, digestive tract tumors, itching, memory loss, & stomach pain) were less than 3% each. In terms of frequency, the most frequent symptom was diarrhea with 87.5% occurrence, closely followed by vomiting with 81.3%. Tiredness was 75% while nausea was 62.5% and headache 50%. Others such as dizziness, itching, memory loss, mouth tingling and stomach pain had about 40% occurrence or less. The least occurring symptoms were muscle pain, rashes, confusion, chills and balance difficulty and burning sensation occurring only once i.e 6.3%. Breathing difficulty was last but one with 12.5%. Visible symptom from seafood and the particular seafood consumed that prompted the visible symptoms, shows that 3.5% of the entire respondents who ate crab experienced various symptoms ranging from vomiting (2.4%), itching (0.5%) and headache (0.4%). For periwinkle, vomiting had 1.7%, while 1.2% represented diarrhea and nausea symptom comprised 0.8% of all the respondents who ate periwinkle. Some respondents who consumed fish shows that 0.4% of the respondents had Itching. From the respondents who preferred to consume shrimps/crayfish and crab, shrimps/crayfish, crab and periwinkle, the most common illness was tiredness (1.2%), while 0.5% had experienced diarrhea and many others. However, for most respondents who claimed to have no preference for any seafood, with 55.7% affirming this with vomiting being the highest (6.1%), followed closely by mouth tingling/ burning sensation (5.8%). Examining the seasonal influence on visible symptoms revealed that vomiting occurred more in the month of January with 5.5%, while headache and itching were predominant in October with (2.8%). Nausea has 3.1% in January than any season of the year, 2.6% of the entire respondents opined to have experience diarrhea in October than in any other season of the year. Regular evaluation of harmful algal poisoning symptoms is recommended for coastal communities.

Keywords: coastal, harmful algae, human poisoning symptoms, Nigeria, phycotoxins

Procedia PDF Downloads 207
728 Mass Production of Endemic Diatoms in Polk County, Florida Concomitant with Biofuel Extraction

Authors: Melba D. Horton

Abstract:

Algae are identified as an alternative source of biofuel because of their ubiquitous distribution in aquatic environments. Diatoms are unique forms of algae characterized by silicified cell walls which have gained prominence in various technological applications. Polk County is home to a multitude of ponds and lakes but has not been explored for the presence of diatoms. Considering the condition of the waters brought about by predominant phosphate mining activities in the area, this research was conducted to determine if endemic diatoms are present and explore their potential for low-cost mass production. Using custom-built photobioreactors, water samples from various lakes provided by the Polk County Parks and Recreation and from nearby ponds were used as the source of diatoms together with other algae obtained during collection. Results of the initial culture cycles were successful, but later an overgrowth of other algae crashed the diatom population. Experiments were conducted in the laboratory to tease out some factors possibly contributing to the die-off. Generally, the total biomass declines after two culture cycles and the causative factors need further investigation. The lipid yield is minimum; however, the high frustule production after die-off adds value to the overall benefit of the harvest.

Keywords: diatoms, algae, biofuel, lipid, photobioreactor, frustule

Procedia PDF Downloads 95
727 Efficiency of an Algae-Zinc Complex Compared to Inorganic Zinc Sulfate on Broilers Performance

Authors: R. Boulmane, C. Alleno, D. Marzin

Abstract:

Trace minerals play an essential role in vital processes and are essential to many biological and physiological functions of the animal. They are usually incorporated in the form of inorganic salts such as sulfates and oxides. Most of these inorganic salts are excreted undigested by the animal causing economic losses as well as environmental pollution. In this context, the use of alternative organic trace minerals with higher bioavailability is emerging. This study was set up to evaluate the effect of using an algae-zinc complex in replacement of zinc sulfate in the feed, on growth performance of broiler chickens. One-thousand-two-hundred 1-day-old chicks were randomly distributed to 30 pens, allocated to 1 of 3 groups receiving different diets: the standard diet containing 35ppm of inorganic zinc sulfate (C+), a test diet containing 35ppm of algae-based zinc (T+), and a test diet containing half dose (16ppm) of algae-based zinc (T-). Three different feeds were distributed from D0-D11, D11-D21 and D21-D35. Individual weighing of the animals (D21 and D35), feed consumption (D11, D21 and D35) and pododermatitis occurrence (D35) were monitored. Data were submitted to analysis of variance. Results show that in finishing period the ADWG of the T+ and T- groups are significantly higher than the control C+ (+6%, P = 0.03). On the other hand, the FCR for the total period is lower for both the T+ and T- groups than the control C+ (-1.2%, P = 0.04). Pododermatitis scoring also shows less lesions for the test groups with algae-based zinc compared to the control group receiving inorganic one. In the end, this study shows a positive effect of the algae zinc-complex on growth performance of broilers compared to inorganic zinc, both when using full dose (35 ppm) or half dose (16 ppm). The use of algae-zinc complex in the premix shows to be a good alternative to reduce zinc excretion while maintaining performance.

Keywords: algae-zinc complex, broiler performance, organic trace minerals, zinc sulfate

Procedia PDF Downloads 165
726 The Potential of Edaphic Algae for Bioremediation of the Diesel-Contaminated Soil

Authors: C. J. Tien, C. S. Chen, S. F. Huang, Z. X. Wang

Abstract:

Algae in soil ecosystems can produce organic matters and oxygen by photosynthesis. Heterocyst-forming cyanobacteria can fix nitrogen to increase soil nitrogen contents. Secretion of mucilage by some algae increases the soil water content and soil aggregation. These actions will improve soil quality and fertility, and further increase abundance and diversity of soil microorganisms. In addition, some mixotrophic and heterotrophic algae are able to degrade petroleum hydrocarbons. Therefore, the objectives of this study were to analyze the effects of algal addition on the degradation of total petroleum hydrocarbons (TPH), diversity and activity of bacteria and algae in the diesel-contaminated soil under different nutrient contents and frequency of plowing and irrigation in order to assess the potential bioremediation technique using edaphic algae. The known amount of diesel was added into the farmland soil. This diesel-contaminated soil was subject to five settings, experiment-1 with algal addition by plowing and irrigation every two weeks, experiment-2 with algal addition by plowing and irrigation every four weeks, experiment-3 with algal and nutrient addition by plowing and irrigation every two weeks, experiment-4 with algal and nutrient addition by plowing and irrigation every four weeks, and the control without algal addition. Soil samples were taken every two weeks to analyze TPH concentrations, diversity of bacteria and algae, and catabolic genes encoding functional degrading enzymes. The results show that the TPH removal rates of five settings after the two-month experimental period were in the order: experiment-2 > expermient-4 > experiment-3 > experiment-1 > control. It indicated that algal addition enhanced the degradation of TPH in the diesel-contaminated soil, but not for nutrient addition. Plowing and irrigation every four weeks resulted in more TPH removal than that every two weeks. The banding patterns of denaturing gradient gel electrophoresis (DGGE) revealed an increase in diversity of bacteria and algae after algal addition. Three petroleum hydrocarbon-degrading algae (Anabaena sp., Oscillatoria sp. and Nostoc sp.) and two added algal strains (Leptolyngbya sp. and Synechococcus sp.) were sequenced from DGGE prominent bands. The four hydrocarbon-degrading bacteria Gordonia sp., Mycobacterium sp., Rodococcus sp. and Alcanivorax sp. were abundant in the treated soils. These results suggested that growth of indigenous bacteria and algae were improved after adding edaphic algae. Real-time polymerase chain reaction results showed that relative amounts of four catabolic genes encoding catechol 2, 3-dioxygenase, toluene monooxygenase, xylene monooxygenase and phenol monooxygenase were appeared and expressed in the treated soil. The addition of algae increased the expression of these genes at the end of experiments to biodegrade petroleum hydrocarbons. This study demonstrated that edaphic algae were suitable biomaterials for bioremediating diesel-contaminated soils with plowing and irrigation every four weeks.

Keywords: catabolic gene, diesel, diversity, edaphic algae

Procedia PDF Downloads 190