Search results for: nursing interventions classification
4243 “Student Veterans’ Transition to Nursing Education: Barriers and Facilitators
Authors: Bruce Hunter
Abstract:
Background: The transition for student veterans from military service to higher education can be a challenging endeavor, especially for those pursuing an education in nursing. While the experiences and perspectives of each student veteran is unique, their successful integration into an academic environment can be influenced by a complex array of barriers and facilitators. This mixed-methods study aims to explore the themes and concepts that can be found in the transition experiences of student veterans in nursing education, with a focus on identifying the barriers they face and the facilitators that support their success. Methods: This study utilizes an explanatory mixed-methods approach. The research participants include student veterans enrolled in nursing programs across three academic institutions in the Southeastern United States. Quantitative Phase: A Likert scale instrument is distributed to a sample of student veterans in nursing programs. The survey assesses demographic information, academic experiences, social experiences, and perceptions of institutional support. Quantitative data is analyzed using descriptive statistics to assess demographics and to identify barriers and facilitators to the transition. Qualitative Phase: Two open-ended questions were posed to student veterans to explore their lived experiences, barriers, and facilitators during the transition to nursing education and to further explain the quantitative findings. Thematic analysis with line-by-line coding is employed to identify recurring themes and narratives that may shed light on the barriers and facilitators encountered. Results: This study found that the successful academic integration of student veterans lies in recognizing the diversity of values and attitudes among student veterans, understanding the potential challenges they face, and engaging in initiative-taking steps to create an inclusive and supportive academic environment that accommodates the unique experiences of this demographic. Addressing these academic and social integration concerns can contribute to a more understanding environment for student veterans in the BSN program. Conclusion: Providing support during this transitional period is crucial not only for retaining veterans, but also for bolstering their success in achieving the status of registered nurses. Acquiring an understanding of military culture emerges as an essential initial step for nursing faculty in student veteran retention and for successful completion of their programs. Participants found that their transition experience lacked meaningful social interactions, which could foster a positive learning environment, enhance their emotional well-being, and could contribute significantly to their overall success and satisfaction in their nursing education journey. Recognizing and promoting academic and social integration is important in helping veterans experience a smooth transition into and through the unfamiliar academic environment of nursing education.Keywords: nursing, education, student veterans, barriers, facilitators
Procedia PDF Downloads 494242 Application of Metaverse Service to Construct Nursing Education Theory and Platform in the Post-pandemic Era
Authors: Chen-Jung Chen, Yi-Chang Chen
Abstract:
While traditional virtual reality and augmented reality only allow for small movement learning and cannot provide a truly immersive teaching experience to give it the illusion of movement, the new technology of both content creation and immersive interactive simulation of the metaverse can just reach infinite close to the natural teaching situation. However, the mixed reality virtual classroom of metaverse has not yet explored its theory, and it is rarely implemented in the situational simulation teaching of nursing education. Therefore, in the first year, the study will intend to use grounded theory and case study methods and in-depth interviews with nursing education and information experts. Analyze the interview data to investigate the uniqueness of metaverse development. The proposed analysis will lead to alternative theories and methods for the development of nursing education. In the second year, it will plan to integrate the metaverse virtual situation simulation technology into the alternate teaching strategy in the pediatric nursing technology course and explore the nursing students' use of this teaching method as the construction of personal technology and experience. By leveraging the unique features of distinct teaching platforms and developing processes to deliver alternative teaching strategies in a nursing technology teaching environment. The aim is to increase learning achievements without compromising teaching quality and teacher-student relationships in the post-pandemic era. A descriptive and convergent mixed methods design will be employed. Sixty third-grade nursing students will be recruited to participate in the research and complete the pre-test. The students in the experimental group (N=30) agreed to participate in 4 real-time mixed virtual situation simulation courses in self-practice after class and conducted qualitative interviews after each 2 virtual situation courses; the control group (N=30) adopted traditional practice methods of self-learning after class. Both groups of students took a post-test after the course. Data analysis will adopt descriptive statistics, paired t-tests, one-way analysis of variance, and qualitative content analysis. This study addresses key issues in the virtual reality environment for teaching and learning within the metaverse, providing valuable lessons and insights for enhancing the quality of education. The findings of this study are expected to contribute useful information for the future development of digital teaching and learning in nursing and other practice-based disciplines.Keywords: metaverse, post-pandemic era, online virtual classroom, immersive teaching
Procedia PDF Downloads 684241 Recurrent Neural Networks with Deep Hierarchical Mixed Structures for Chinese Document Classification
Authors: Zhaoxin Luo, Michael Zhu
Abstract:
In natural languages, there are always complex semantic hierarchies. Obtaining the feature representation based on these complex semantic hierarchies becomes the key to the success of the model. Several RNN models have recently been proposed to use latent indicators to obtain the hierarchical structure of documents. However, the model that only uses a single-layer latent indicator cannot achieve the true hierarchical structure of the language, especially a complex language like Chinese. In this paper, we propose a deep layered model that stacks arbitrarily many RNN layers equipped with latent indicators. After using EM and training it hierarchically, our model solves the computational problem of stacking RNN layers and makes it possible to stack arbitrarily many RNN layers. Our deep hierarchical model not only achieves comparable results to large pre-trained models on the Chinese short text classification problem but also achieves state of art results on the Chinese long text classification problem.Keywords: nature language processing, recurrent neural network, hierarchical structure, document classification, Chinese
Procedia PDF Downloads 684240 Project-Based Learning and Evidence Based Nursing as Tools for Developing Students' Integrative Critical Thinking Skills: Content Analysis of Final Students' Projects
Authors: E. Maoz
Abstract:
Background: As a teaching method, project-based learning is strongly linked to developing students’ critical thinking skills. It combines creative independent thinking, team work, and disciplinary subject-field integration. In the 'Introduction to Nursing Research Methods' course (year 3, Generic Track), project based learning is used to teach the topic of 'Evidence-Based Nursing'. This topic examines a clinical care issue encountered by students in the field. At the end of their project, students present proposals for managing the said issue. Proposals are the product of independent integrative thinking integrating a wide range of factors influencing the issue’s management. Method: Papers by 27 groups of students (165 students) were content analyzed to identify which themes emerged from the students' recommendations for managing the clinical issue. Findings: Five main themes emerged—current management approach; adapting procedures in line with current recent research recommendations; training for change (veteran nursing staff, beginner students, patients, significant others); analysis of 'economic benefit vs. patient benefit'; multidisciplinary team engagement in implementing change in practice. Two surprising themes also emerged: advertising and marketing using new technologies, which reflects how the new generation thinks. Summary and Recommendations: Among the main challenges in nursing education is training nursing graduates to think independently, integratively, and critically. Combining PBL with classical teaching methods stimulates students cognitively while opening new vistas with implications on all levels of the profession: management, research, education, and practice. Advanced students can successfully grasp and interpret the current state of clinical practice. They are competent and open to leading change and able to consider the diverse factors and interconnections that characterize the nurse's work.Keywords: evidence based nursing, critical thinking skills, project based learning, students education
Procedia PDF Downloads 914239 A Novel PSO Based Decision Tree Classification
Authors: Ali Farzan
Abstract:
Classification of data objects or patterns is a major part in most of Decision making systems. One of the popular and commonly used classification methods is Decision Tree (DT). It is a hierarchical decision making system by which a binary tree is constructed and starting from root, at each node some of the classes is rejected until reaching the leaf nods. Each leaf node is a representative of one specific class. Finding the splitting criteria in each node for constructing or training the tree is a major problem. Particle Swarm Optimization (PSO) has been adopted as a metaheuristic searching method for finding the best splitting criteria. Result of evaluating the proposed method over benchmark datasets indicates the higher accuracy of the new PSO based decision tree.Keywords: decision tree, particle swarm optimization, splitting criteria, metaheuristic
Procedia PDF Downloads 4064238 Collaborative Learning Aspect for Training Hip and Knee Joint Anatomy
Authors: Nasir Mustafa
Abstract:
One of the prerequisites required for an efficient diagnosis in a medical practice is to have a strong command of both functional and clinical anatomy. In this study, we introduce a new collaborative approach to the effective teaching of the knee and hip joints. In the present teaching model, anatomists, orthopedists and physical therapists present the anatomy of the hip and knee joints in small groups. Courses for the hip and knee joints were scheduled during the early stages of the medical curriculum. Students of nursing and physical therapy were grouped together to sensitize to the importance of a collaborative effort. The study results clearly demonstrate that nursing students and physical therapy students appreciated this teaching approach. The collaborative approach further proved to be a suitable method to teach both functional and clinical anatomy of the hip and knee joints. Aside from this training, a collaborative approach between medical students and physical therapy students was also successful for a healthcare organization.Keywords: hip and knee joint anatomy, collaborative, Anatomy teaching, Nursing students, Physiotherapy students
Procedia PDF Downloads 934237 A Scoping Review of Psychosocial Interventions for the Survivors and/or Victims of Intimate Partner Violence in Low- and Middle-Income Countries
Authors: Mukondi Nethavhakone
Abstract:
The high prevalence of violence against women is a global public health problem. Our societies have become dangerous places for women. Women during their child-bearing ages are at a higher risk of experiencing emotional, physical, and sexual violence. What makes it more concerning is that these violent acts are perpetrated by family members or partners, or ex-partners. Intimate Partner Violence (IPV) is associated with long-lasting physical, reproductive, sexual, mental, and maternal health implications. Expectedly women’s mental health would dimmish as a result of experiencing IPV. The burden of violence against women is seen to be heavier in low- and middle-income countries (LMICs) compared to the rest of the world. Countries have committed to eliminating all forms of violence against women through the sustainable development goal, aiming to see changes by the year 2030. As such, various countries have implemented psychosocial interventions of different levels of impact. However, little is known, especially in low- and middle-income countries, with regard to the potential of psychosocial interventions for IPV to improve the mental health outcomes for the survivors and/or victims of IPV. Analysing the risk for IPV through a social-ecological theoretical approach, low- and middle-income countries still readdressing gender inequality which is the cause of intimate partner violence. That is why it is taking time for these countries to shift psychosocial interventions to focus more on the improvement of the mental health of the survivors. It is, therefore, against this backdrop that the researcher intends to undertake a scoping review to understand the nature and characteristics of psychosocial interventions that have been implemented in low- and middle-income countries. With the findings from the scoping review, the researcher aims to develop a conceptual framework that may be a useful resource for healthcare practitioners and researchers in low- and middle-income countries. As this area of research has not been thoroughly reviewed, the results from this scoping will determine whether a systematic review will be justifiable. Additionally, the researcher will identify gaps and opportunities for future research in this area.Keywords: mental health improvement, psychosocial interventions, intimate partner violence, LMICs
Procedia PDF Downloads 1294236 An Examination of Low Engagement in a Group-Based ACT Intervention for Chronic Pain Management: Highlighting the Need for User-Attainment Focused Digitalised Interventions
Authors: Orestis Kasinopoulos, Maria Karekla, Vasilis Vasiliou, Evangelos Karademas
Abstract:
Acceptance and Commitment Therapy (ACT) is an empirically supported intervention for treating Chronic Pain Patients, yet its effectiveness for some chronic conditions or when adapted to other languages, has not been explored. An ACT group intervention was designed to explore the effectiveness of treating a Greek speaking heterogeneous sample of Chronic Pain patients with the aim of increasing quality of life, acceptance of pain and functionality. Sixty-nine patients were assessed and randomly assigned to an ACT or control group (relaxation techniques) for eight, 90-minute, sessions. Results are currently being analysed and follow-ups (6 and 12 month) are being completed. Low adherence rates and high attrition rates observed in the study, however point to the direction of future modified interventions. Such modifications may include web-based and smartphone interventions and their benefits in being implemented in chronic pain patients.Keywords: chronic pain, ACT, internet-delivered, digitalised intervention, adherence, attrition
Procedia PDF Downloads 3634235 Promoting Psychosocial Intervention in Social Work to Manage Intersectional Stigma among Sexual Minorities during COVID-19 Pandemic in Uganda: Implications for Social Work Practice
Authors: Simon Mwima, Kasule Solomon Kibirige, Evans Jennifer Mann, Bosco Mukuba, Edson Chipalo, Agnes Nzomene, Eusebius Small, Moses Okumu
Abstract:
Introduction: Social workers must create, implement, and evaluate client-centered psychosocial interventions (CCPI) to reduce the impact of intersectional stigma on HIV service utilization among sexual minorities. We contribute to the scarcity of evidence about sexual minorities in Uganda by using social support theory to explore clients' perceptions that shape CCPI. Based on Focused Group Discussion (FGD) with 31 adolescents recruited from Kampala's HIV clinics in 2021, our findings reveal the positive influence of instrumental, informational, esteem, emotional, and social network support as intersectional stigma reduction interventions. Men who have sex with men, lesbians, and bisexual women used such strategies to navigate a heavily criminalized and stigmatizing setting during the COVID-19 pandemic in Uganda. Conclusion: This study provides evidence for the social work profession to develop and implement psychosocial interventions that reduce HIV stigma and discrimination among MSM, lesbians, and bisexual young people living with HIV in Uganda.Keywords: pyschosocial interventions, social work, intersectional stigma, HIV/AIDS, adolescents, sexual minorities, Uganda
Procedia PDF Downloads 1094234 A Review on Using Executive Function to Understand the Limited Efficacy of Weight-Loss Interventions
Authors: H. Soltani, Kevin Laugero
Abstract:
Obesity is becoming an increasingly critical issue in the United States due to the steady and substantial increase in prevalence over the last 30 years. Existing interventions have been able to help participants achieve short-term weight loss, but have failed to show long-term results. The complex nature of behavioral change remains one of the most difficult barriers in promoting sustainable weight-loss in overweight individuals. Research suggests that the 'intention-behavior gap' can be explained by a person’s ability to regulate higher-order thinking, or Executive Function (EF). A review of 63 research articles was completed in fall of 2017 to identify the role of EF in regulating eating behavior and to identify whether there is a potential for improving dietary quality by enhancing EF. Results showed that poor EF is positively associated with obesogenic behavior, namely increased consumption of highly palatable foods, eating in the absence of hunger, high saturated fat intake and low fruit and vegetable consumption. Recent research has indicated that interventions targeting an improvement in EF can be successful in helping promote healthy behaviors. Furthermore, interventions of longer duration have a more lasting and versatile effect on weight loss and maintenance. This may present an opportunity for the increasingly ubiquitous use of mobile application technology.Keywords: eating behavior, executive function, nutrition, obesity, weight-loss
Procedia PDF Downloads 1654233 The Impact of Dog-Assisted Wellbeing Intervention on Student Motivation and Affective Engagement in the Primary and Secondary School Setting
Authors: Yvonne Howard
Abstract:
This project currently under development is centered around current learning processes, including a thorough literature review and ongoing practical experiences gained as a deputy head in a school. These daily experiences with students engaging in animal-assisted interventions and the school therapy dog form a strong base for this research. The primary objective of this research is to comprehensively explore the impact of dog-assisted well-being interventions on student motivation and affective engagement within primary and secondary school settings. The educational domain currently encounters a significant challenge due to the lack of substantial research in this area. Despite the perceived positive outcomes of such interventions being acknowledged and shared in various settings, the evidence supporting their effectiveness in an educational context remains limited. This study aims to bridge the gap in the research and shed light on the potential benefits of dog-assisted well-being interventions in promoting student motivation and affective engagement. The significance of this topic recognizes that education is not solely confined to academic achievement but encompasses the overall well-being and emotional development of students. Over recent years, there has been a growing interest in animal-assisted interventions, particularly in healthcare settings. This interest has extended to the educational context. While the effectiveness of these interventions in these areas has been explored in other fields, the educational sector lacks comprehensive research in this regard. Through a systematic and thorough research methodology, this study seeks to contribute valuable empirical data to the field, providing evidence to support informed decision-making regarding the implementation of dog-assisted well-being interventions in schools. This research will utilize a mixed-methods design, combining qualitative and quantitative measures to assess the research objectives. The quantitative phase will include surveys and standardized scales to measure student motivation and affective engagement, while the qualitative phase will involve interviews and observations to gain in-depth insights from students, teachers, and other stakeholders. The findings will contribute evidence-based insights, best practices, and practical guidelines for schools seeking to incorporate dog-assisted interventions, ultimately enhancing student well-being and improving educational outcomes.Keywords: therapy dog, wellbeing, engagement, motivation, AAI, intervention, school
Procedia PDF Downloads 784232 The Effectiveness of Psychosocial Interventions for Survivors of Natural Disasters: A Systematic Review
Authors: Santhani M. Selveindran
Abstract:
Background: Natural disasters are traumatic global events that are becoming increasing more common, with significant psychosocial impact on survivors. This impact results not only in psychosocial distress but, for many, can lead to psychosocial disorders and chronic psychopathology. While there are currently available interventions that seek to prevent and treat these psychosocial sequelae, their effectiveness is uncertain. The evidence-base is emerging with more primary studies evaluating the effectiveness of various psychosocial interventions for survivors of natural disasters, which remains to be synthesized. Aim of Review: To identify, critically appraise and synthesize the current evidence-base on the effectiveness of psychosocial interventions in preventing or treating Post-Traumatic Stress Disorder (PTSD), Major Depressive Disorder (MDD) and/or Generalized Anxiety Disorder (GAD) in adults and children who are survivors of natural disasters. Methods: A protocol was developed as a guide to carry out this review. A systematic search was conducted in eight international electronic databases, three grey literature databases, one dissertation and thesis repository, websites of six humanitarian and non-governmental organizations renowned for their work on natural disasters, as well as bibliographic and citation searching for eligible articles. Papers meeting the specific inclusion criteria underwent quality assessment using the Downs and Black checklist. Data were extracted from the included papers and analysed by way of narrative synthesis. Results: Database and website searching returned 3777 papers where 31 met the criteria for inclusion. Additional 2 papers were obtained through bibliographic and citation searching. Methodological quality of most papers was fair. Twenty-five studies evaluated psychological interventions, five, social interventions whereas three studies evaluated ‘mixed’ psychological and social interventions. All studies, irrespective of methodological quality, reported post-intervention reductions in symptom scores for PTSD, depression and/or anxiety and where assessed, reduced diagnosis of PTSD and MDD, and produced improvements in self-efficacy and quality of life. Statistically significant results were seen in 27 studies. However, three studies demonstrated that the evaluated interventions may not have been very beneficial. Conclusions: The overall positive results suggest that any psychosocial interventions are favourable and should be delivered to all natural disaster survivors, irrespective of age, country, and phase of disaster. Yet, heterogeneity and methodological shortcomings of the current evidence-base makes it difficult to draw definite conclusions needed to formulate categorical guidance or frameworks. Further, rigorously conducted research is needed in this area, although the feasibility of such, given the context and nature of the problem, is also recognized.Keywords: psychosocial interventions, natural disasters, survivors, effectiveness
Procedia PDF Downloads 1544231 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images
Authors: Khitem Amiri, Mohamed Farah
Abstract:
Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.Keywords: hyperspectral images, deep belief network, radiometric indices, image classification
Procedia PDF Downloads 2804230 Development of Technologies for the Treatment of Nutritional Problems in Primary Care
Authors: Marta Fernández Batalla, José María Santamaría García, Maria Lourdes Jiménez Rodríguez, Roberto Barchino Plata, Adriana Cercas Duque, Enrique Monsalvo San Macario
Abstract:
Background: Primary Care Nursing is taking more autonomy in clinical decisions. One of the most frequent therapies to solve is related to the problems of maintaining a sufficient supply of food. Nursing diagnoses related to food are addressed by the nurse-family and community as the first responsible. Objectives and interventions are set according to each patient. To improve the goal setting and the treatment of these care problems, a technological tool is developed to help nurses. Objective: To evaluate the computational tool developed to support the clinical decision in feeding problems. Material and methods: A cross-sectional descriptive study was carried out at the Meco Health Center, Madrid, Spain. The study population consisted of four specialist nurses in primary care. These nurses tested the tool on 30 people with ‘need for nutritional therapy’. Subsequently, the usability of the tool and the satisfaction of the professional were sought. Results: A simple and convenient computational tool is designed for use. It has 3 main entrance fields: age, size, sex. The tool returns the following information: BMI (Body Mass Index) and caloric consumed by the person. The next step is the caloric calculation depending on the activity. It is possible to propose a goal of BMI or weight to achieve. With this, the amount of calories to be consumed is proposed. After using the tool, it was determined that the tool calculated the BMI and calories correctly (in 100% of clinical cases). satisfaction on nutritional assessment was ‘satisfactory’ or ‘very satisfactory’, linked to the speed of operations. As a point of improvement, the options of ‘stress factor’ linked to weekly physical activity. Conclusion: Based on the results, it is clear that the computational tools of decision support are useful in the clinic. Nurses are not only consumers of computational tools, but can develop their own tools. These technological solutions improve the effectiveness of nutrition assessment and intervention. We are currently working on improvements such as the calculation of protein percentages as a function of protein percentages as a function of stress parameters.Keywords: feeding behavior health, nutrition therapy, primary care nursing, technology assessment
Procedia PDF Downloads 2274229 Implementation Of Evidence Based Nursing Practice And Associated Factors Among Nurses Working In Jimma Zone Public Hospitals, Southwest Ethiopia
Authors: Dawit Hoyiso, Abinet Arega, Terefe Markos
Abstract:
Background: - In spite of all the various programs and strategies to promote the use of research finding there is still gap between theory and practice. Difference in outcomes, health inequalities, and poorly performing health service continue to present a challenge to all nurses. A number of studies from various countries have reported that nurses’ experience of evidence-based practice is low. In Ethiopia there is an information gap on the extent of evidence based nursing practice and its associated factors. Objective: - the study aims to assess the implementation of evidence based nursing practice and associated factors among nurses in Jimma zone public hospitals. Method: - Institution based cross-sectional study was conducted from March 1-30/2015. A total of 333 sampled nurses for quantitative and 8 in-depth interview of key informants were involved in the study. Semi-structured questionnaire was adapted from funk’s BARRIER scale and Friedman’s test. Multivariable Linear regression was used to determine significance of association between dependent and independent variables. Pretest was done on 17 nurses of Bedele hospital. Ethical issue was secured. Result:-Of 333 distributed questionnaires 302 were completed, giving 90.6% response rate. Of 302 participants 245 were involved in EBP activities to different level (from seldom to often). About forty five(18.4%) of the respondents had implemented evidence based practice to low level (sometimes), one hundred three (42 %) of respondents had implemented evidence based practice to medium level and ninety seven (39.6 %) of respondents had implemented evidence based practice to high level(often). The first greatest perceived barrier was setting characteristic (mean score=26.60±7.08). Knowledge about research evidence was positively associated with implementation of evidence based nursing practice (β=0.76, P=0.008). Similarly, Place where the respondent graduated was positively associated with implementation of evidence based nursing practice (β=2.270, P=0.047). Also availability of information resources was positively associated with implementation of evidence based practice (β=0.67, P= 0.006). Conclusion: -Even though larger portion of nurses in this study were involved in evidence-based practice whereas small number of participants had implemented frequently. Evidence-based nursing practice was positively associated with knowledge of research, place where respondents graduated, and the availability of information resources. Organizational factors were found to be the greatest perceived barrier. Intervention programs on awareness creation, training, resource provision, and curriculum issues to improve implementation of evidence based nursing practice by stakeholders are recommended.Keywords: evidence based practice, nursing practice, research utilization, Ethiopia
Procedia PDF Downloads 954228 Application of Support Vector Machines in Fault Detection and Diagnosis of Power Transmission Lines
Authors: I. A. Farhat, M. Bin Hasan
Abstract:
A developed approach for the protection of power transmission lines using Support Vector Machines (SVM) technique is presented. In this paper, the SVM technique is utilized for the classification and isolation of faults in power transmission lines. Accurate fault classification and location results are obtained for all possible types of short circuit faults. As in distance protection, the approach utilizes the voltage and current post-fault samples as inputs. The main advantage of the method introduced here is that the method could easily be extended to any power transmission line.Keywords: fault detection, classification, diagnosis, power transmission line protection, support vector machines (SVM)
Procedia PDF Downloads 5584227 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 3684226 Automatic Moment-Based Texture Segmentation
Authors: Tudor Barbu
Abstract:
An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes
Procedia PDF Downloads 4164225 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi
Authors: P. Phenpun, S. Wareewan
Abstract:
This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.Keywords: humanized care service, volunteer activity, nursing student, learning log
Procedia PDF Downloads 3074224 Using Gene Expression Programming in Learning Process of Rough Neural Networks
Authors: Sanaa Rashed Abdallah, Yasser F. Hassan
Abstract:
The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.Keywords: rough sets, gene expression programming, rough neural networks, classification
Procedia PDF Downloads 3834223 A Statistical Approach to Classification of Agricultural Regions
Authors: Hasan Vural
Abstract:
Turkey is a favorable country to produce a great variety of agricultural products because of her different geographic and climatic conditions which have been used to divide the country into four main and seven sub regions. This classification into seven regions traditionally has been used in order to data collection and publication especially related with agricultural production. Afterwards, nine agricultural regions were considered. Recently, the governmental body which is responsible of data collection and dissemination (Turkish Institute of Statistics-TIS) has used 12 classes which include 11 sub regions and Istanbul province. This study aims to evaluate these classification efforts based on the acreage of ten main crops in a ten years time period (1996-2005). The panel data grouped in 11 subregions has been evaluated by cluster and multivariate statistical methods. It was concluded that from the agricultural production point of view, it will be rather meaningful to consider three main and eight sub-agricultural regions throughout the country.Keywords: agricultural region, factorial analysis, cluster analysis,
Procedia PDF Downloads 4154222 The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali
Authors: I. Gusti A. A. Rai Asmiwyati, Robert J. Corner, Ashraf M. Dewan
Abstract:
Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification.Keywords: land use/cover, urban, Bali, ASTER
Procedia PDF Downloads 5404221 Factors Associated with Recruitment and Adherence for Virtual Mindfulness Interventions in Youths
Authors: Kimberly Belfry, Shavon Stafford, Fariha Chowdhury, Jennifer Crawford, Soyeon Kim
Abstract:
Intervention programs are mostly delivered online during the pandemic. Screen fatigue has become a significant deterrent for virtually-deliveredinterventions, and thus, we aimed to examine factors associated with recruitment and adherence toan online mindfulness program for youths. Our preliminary analysis indicated that 40% of interested youths enrolled in the program. No difference in gender and age was found for those enrolled in the program. Adherence rate was approximately 25%, which warrants further examination. Grounding on the preliminary findings, we will conduct a binary logistic regression analysis to identify elements associated with recruitment and adherence. The model will include predictors such as age, sex, recruiter, mental health status, time of the year. Odds ratios and 95% CI will be reported. Our preliminary analysis showed low recruitment and adherence rate. By identifying elements associated with recruitment and adherence, our study provides transferrable information that can improve recruitment and adherence of online-delivered interventions offered during the pandemic.Keywords: virtual interventions, recruitment, youth, mindfulness
Procedia PDF Downloads 1474220 Comparing Two Interventions for Teaching Math to Pre-School Students with Autism
Authors: Hui Fang Huang Su, Jia Borror
Abstract:
This study compared two interventions for teaching math to preschool-aged students with autism spectrum disorder (ASD). The first is considered the business as usual (BAU) intervention, which uses the Strategies for Teaching Based on Autism Research (STAR) curriculum and discrete trial teaching as the instructional methodology. The second is the Math is Not Difficult (Project MIND) activity-embedded, naturalistic intervention. These interventions were randomly assigned to four preschool students with ASD classrooms and implemented over three months for Project Mind. We used measurement gained during the same three months for the STAR intervention. In addition, we used A quasi-experimental, pre-test/post-test design to compare the effectiveness of these two interventions in building mathematical knowledge and skills. The pre-post measures include three standardized instruments: the Test of Early Math Ability-3, the Problem Solving and Calculation subtests of the Woodcock-Johnson Test of Achievement IV, and the Bracken Test of Basic Concepts-3 Receptive. The STAR curriculum-based assessment is administered to all Baudhuin students three times per year, and we used the results in this study. We anticipated that implementing these two approaches would improve the mathematical knowledge and skills of children with ASD. Still, it is crucial to see whether a behavioral or naturalistic teaching approach leads to more significant results.Keywords: early learning, autism, math for pre-schoolers, special education, teaching strategies
Procedia PDF Downloads 1654219 Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems
Authors: Lei Zhang
Abstract:
The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale.Keywords: classification system, land cover, ecosystem, carbon storage, object based
Procedia PDF Downloads 704218 Knowledge, Attitude, and Practices of Nurses on the Pain Assessment and Management in Level 3 Hospitals in Manila
Authors: Florence Roselle Adalin, Misha Louise Delariarte, Fabbette Laire Lagas, Sarah Emanuelle Mejia, Lika Mizukoshi, Irish Paullen Palomeno, Gibrianne Alistaire Ramos, Danica Pauline Ramos, Josefina Tuazon, Jo Leah Flores
Abstract:
Pain, often a missed and undertreated symptom, affects the quality of life of individuals. Nurses are key players in providing effective pain management to decrease morbidity and mortality of patients in pain. Nurses’ knowledge and attitude on pain greatly affect their ability on assessment and management. The Pain Society of the Philippines recognized the inadequacy and inaccessibility of data on the knowledge, skills, and attitude of nurses on pain management in the country. This study may be the first of its kind in the county, giving it the potential to contribute greatly to nursing education and practice through providing valuable baseline data. Objectives: This study aims to describe the level of knowledge and attitude, and current practices of nurses on pain assessment and management; and determine the relationship of nurses’ knowledge and attitude with years of experience, training on pain management and clinical area of practice. Methodology: A survey research design was employed. Four hospitals were selected through purposive sampling. A total of 235 Medical-Surgical Unit and Intensive Care Unit (ICU) nurses participated in the study. The tool used is a combination of demographic survey, Nurses’ Knowledge and Attitude Survey Regarding Pain (NKASRP), Acute Pain Evidence Based Practice Questionnaire (APEBPQ) with self-report questions on non-pharmacologic pain management. The data obtained was analysed using descriptive statistics, two sample T-tests for clinical areas and training; and Pearson product correlation to identify relationship of level of knowledge and attitude with years of experience. Results and Analysis: The mean knowledge and attitude score of the nurses was 47.14%. Majority answered ‘most of the time’ or ‘all the time’ on 84.12% of practice items on pain assessment, implementation of non-pharmacologic interventions, evaluation and documentation. Three of 19 practice items describing morphine and opioid administration in special populations were only done ‘a little of the time’. Most utilized non-pharmacologic interventions were deep breathing exercises (79.66%), massage therapy (27.54%), and ice therapy (26.69%). There was no significant relationship between knowledge scores and years of clinical experience (p = 0.05, r= -0.09). Moreover, there was not enough evidence to show difference in nurses’ knowledge and attitude scores in relation to presence of training (p = 0.41) or areas (Medical-Surgical or ICU) of clinical practice (p = 0.53). Conclusion and Recommendations: Findings of the study showed that the level of knowledge and attitude of nurses on pain assessment and management is suboptimal; and no relationship between nurses’ knowledge and attitude and years of experience. It is recommended that further studies look into the nursing curriculum on pain education, culture-specific pain management protocols and evidence-based practices in the country.Keywords: knowledge and attitude, nurses, pain management, practices on pain management
Procedia PDF Downloads 3484217 Beyond Informality: Relocation from a Traditional Village 'Mit Oqbah' to Masaken El-Barageel and the Role of ‘Urf in Governing Built Environment, Egypt
Authors: Sarah Eldefrawi, Maike Didero
Abstract:
In Egypt, residents’ urban interventions (colloquially named A’hali’s interventions) are always tackled by government, scholars, and media as an encroachment (taeadiyat), chaotic (a’shwa’i) or informal (gheir mokanan) practices. This paper argues that those interventions cannot be simply described as an encroachment on public space or chaotic behaviour. We claim here that they are relevant to traditional governing methods (‘Urf) that were governing Arab cities for many decades. Through an in-depth field study conducted in a real estate public housing project in the city of Giza called 'Masaken El-Barageel', we traced the urban transformations demonstrated in private and public spaces. To understand those transformations, we used wide-range of qualitative research methods such as semi-guided and informal interviews, observations and mapping of the built environment and the newly added interventions. This study was as well strengthened through the contributions of the author in studying nine sectors emerging by Ahali in six districts in Great Cairo. The results of this study indicate that a culturally and socially sensitive framework has to be related to the individual actions toward the spatial and social structures as well as to culturally transmitted views and meanings connected with 'Urf'. The study could trace three crucial principals in ‘urf that influenced these interventions; the eliminating of harm (Al-Marafiq wa Man’ al-Darar), the appropriation of space (Haqq el-Intefa’) and public interest (maslaha a’ma). Our findings open the discussion for the (il) legitimate of a’hali governing methods in contemporary cities.Keywords: Urf, urban governance, public space, public housing, encroachments, chaotic, Egyptian cities
Procedia PDF Downloads 1344216 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis
Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen
Abstract:
Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.Keywords: hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection
Procedia PDF Downloads 3064215 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.Keywords: machine learning, healthcare, classification, explainability
Procedia PDF Downloads 554214 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 128