Search results for: decision support technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16004

Search results for: decision support technique

15614 Free Will and Compatibilism in Decision Theory: A Solution to Newcomb’s Paradox

Authors: Sally Heyeon Hwang

Abstract:

Within decision theory, there are normative principles that dictate how one should act in addition to empirical theories of actual behavior. As a normative guide to one’s actual behavior, evidential or causal decision-theoretic equations allow one to identify outcomes with maximal utility values. The choice that each person makes, however, will, of course, differ according to varying assignments of weight and probability values. Regarding these different choices, it remains a subject of considerable philosophical controversy whether individual subjects have the capacity to exercise free will with respect to the assignment of probabilities, or whether instead the assignment is in some way constrained. A version of this question is given a precise form in Richard Jeffrey’s assumption that free will is necessary for Newcomb’s paradox to count as a decision problem. This paper will argue, against Jeffrey, that decision theory does not require the assumption of libertarian freedom. One of the hallmarks of decision-making is its application across a wide variety of contexts; the implications of a background assumption of free will is similarly varied. One constant across the contexts of decision is that there are always at least two levels of choice for a given agent, depending on the degree of prior constraint. Within the context of Newcomb’s problem, when the predictor is attempting to guess the choice the agent will make, he or she is analyzing the determined aspects of the agent such as past characteristics, experiences, and knowledge. On the other hand, as David Lewis’ backtracking argument concerning the relationship between past and present events brings to light, there are similarly varied ways in which the past can actually be dependent on the present. One implication of this argument is that even in deterministic settings, an agent can have more free will than it may seem. This paper will thus argue against the view that a stable background assumption of free will or determinism in decision theory is necessary, arguing instead for a compatibilist decision theory yielding a novel treatment of Newcomb’s problem.

Keywords: decision theory, compatibilism, free will, Newcomb’s problem

Procedia PDF Downloads 321
15613 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion

Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao

Abstract:

Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.

Keywords: image classification, decision fusion, multi-temporal, remote sensing

Procedia PDF Downloads 124
15612 Presidential Interactions with Faculty Senates: Expectations and Practices

Authors: Michael T. Miller, G. David Gearhart

Abstract:

Shared governance is an important element in higher education decision making. Through the joint decision making process, faculty members are provided an opportunity to help shape the future of an institution while increasing support for decisions that are made. Presidents, those leaders who are legally bound to guide their institutions, must find ways to collaborate effectively with faculty members in making decisions, and the first step in this process is understanding when and how presidents and faculty leaders interact. In the current study, a national sample of college presidents reported their preparation for the presidency, their perceptions of the functions of a faculty senate, and ultimately, the locations for important interactions between presidents and faculty senates. Results indicated that presidents, regardless of their preparation, found official functions to be the most important for communicating, although, those presidents with academic backgrounds were more likely to perceive faculty senates as having a role in all aspects of an institutions management.

Keywords: college faculty, college president, faculty senate, leadership

Procedia PDF Downloads 124
15611 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process

Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse

Abstract:

Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.

Keywords: additive manufacturing, decision-makings, environmental impact, predictive models

Procedia PDF Downloads 131
15610 The Effect of Career Decision Self Efficacy on Coping with Career Indecision among Young Adults

Authors: Yuliya Lipshits-Braziler

Abstract:

For many young adults, career decision making is a difficult and complex process that may lead to indecision. Indecision is frequently associated with great psychological distress and low levels of well-being. One important resource for dealing with indecision is career decision self-efficacy (CDSE), which refers to people’s beliefs about their ability to successfully accomplish certain tasks involved in career choice. Drawing from Social Cognitive Theory, it has been hypothesized that CDSE correlates with (a) people’s likelihood to engage in or avoid career decision making tasks, (b) the amount of effort put into the decision making process, (c) the people’s persistence in decision making efforts when faced with difficulties, and (d) the eventual success in arriving at career decisions. Based on these assumptions, the present study examines the associations between the CDSE and 14 strategies for coping with career indecision among young adults. Using the structural equation modeling (SEM), the results showed that CDSE is positively associated with the use of productive coping strategies, such as information-seeking, problem-solving, positive thinking, and self-regulation. In addition, CDSE was negatively associated with nonproductive coping strategies, such as avoidance, isolation, ruminative thinking, and blaming others. Contrary to our expectations, CDSE was not significantly correlated with instrumental help-seeking, while it was negatively correlated with emotional help-seeking. The results of this study can be used to facilitate the development of interventions aiming to reinforce young adults’ career decision making self-efficacy, which may provide them with a basis for overcoming career indecision more effectively.

Keywords: career decision self-efficacy, career indecision, coping strategies, career counseling

Procedia PDF Downloads 256
15609 Organizational Climate of Silence and Job Performance: Examining the Mediatory and Moderating Role of Work Engagement and Supervisor Support among Frontline Nurses

Authors: Sabina Ampon-Wireko

Abstract:

Purpose: The study explores the influence of the organizational climate of silence on job performance through the mediating effects of work engagement (WE). Further, the degree to which supervisor support (SS) and work engagement moderate job performance are examined. Method: Using a questionnaire, the study collected 565 valid responses from frontline nurses in Ghana. The hierarchical regression technique was employed in estimating the relationship between the variables. Findings: The results showed a significant negative influence of top managers' and supervisors' attitudes to silence on both contextual and task performance. Communication opportunities, however, revealed positive and significant effects on contextual and task performance. Work engagement had no role in mediating top managers' and supervisors’ attitudes toward silence, communication opportunities, and task performance. Supervisor support acted as a moderating factor in the relationship between job engagement and task performance. In contrast, despite the direct positive relationship between supervisor support and contextual performance, it failed to moderate the relationship between work engagement and contextual performance. Practical implications: The study's findings demonstrate the need for health managers and supervisors to become more conscious of silence. The findings offer diverse recommendations for encouraging the sharing of relevant ideas, facts, and opinions within the health sector.

Keywords: organizational climate of silence, job performance, work engagement, supervisor support, frontline nurses

Procedia PDF Downloads 75
15608 A Data-Mining Model for Protection of FACTS-Based Transmission Line

Authors: Ashok Kalagura

Abstract:

This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.

Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC

Procedia PDF Downloads 422
15607 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 115
15606 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model

Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee

Abstract:

Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.

Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior

Procedia PDF Downloads 127
15605 IT and Security Experts' Innovation and Investment Front for IT-Entrepreneurship in Pakistan

Authors: Ahmed Mateen, Zhu Qingsheng, Muhammad Awais, Muhammad Yahya Saeed

Abstract:

This paper targets the rising factor of entrepreneurship innovation, which lacks in Pakistan as compared to the other countries or the regions like China, India, and Malaysia, etc. This is an exploratory and explanatory study. Major aspects have identified as the direction for the policymakers while highlighting the issues in true spirit. IT needs to be considered not only as a technology but also as itself growing as a new community. IT management processes are complex and broad, so generally requires extensive attention to the collective aspects of human variables, capital and technology. In addition, projects tend to have a special set of critical success factors, and if these are processed and given attention, it will improve the chances of successful implementation. This is only possible with state of the art intelligent decision support systems and accumulating IT staff to some extent in decision processes. This paper explores this issue carefully and discusses six issues to observe the implemented strength and possible enhancement.

Keywords: security and defense forces, IT-incentives, big IT-players, IT-entrepreneurial-culture

Procedia PDF Downloads 220
15604 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories

Authors: Rene Hellmuth

Abstract:

The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.

Keywords: augmented reality, digital factory model, factory planning, restructuring

Procedia PDF Downloads 134
15603 Development of Energy Management System Based on Internet of Things Technique

Authors: Wen-Jye Shyr, Chia-Ming Lin, Hung-Yun Feng

Abstract:

The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.

Keywords: energy management, IoT technique, sensor, WebAccess

Procedia PDF Downloads 333
15602 The Role of Family Support and Work Life Balance of Women Entrepreneurs in Jaffna District

Authors: Thevaranchany Sivaskaran

Abstract:

Women entrepreneurs are the key players in the society and their contributions is highly highlighted to enhance economic stability in the country. In Sri Lanka, especially in North and East provinces people badly affected by war. Most of them are widows and women headed families. Due to this changing environment, Educational opportunities, and the support of NGO’s Most of the women have started their business and become entrepreneurs. Even though existing family setup and social setup entrepreneurial women are overburdened and difficult to balance their business and family roles. The research has been conducted on the experiences of women entrepreneurs with the family role support and work-life balance within the small and micro- enterprise sector in Jaffna, Srilanka. This study aims to identify that what extent the role of family support will be the tool to balancing work and life effectively and, secondly, the main challenges they face in achieving work-life balance. This is done by drawing on literatures including those on work-life balance, small-and micro enterprises, and entrepreneurship theories. To find out this objective, the data were collected from 50 entrepreneurs among the members of Jaffna women chamber in each GS division basis (cluster random sampling). A qualitative methodological technique and semi-structured interviews were used to collect the data for the case study on these entrepreneurs. The results indicate that the majority of entrepreneurs do not enjoy a sense of work-life balance because most of them are women headed family and they need to work hard to generate financial profit for the benefit of family. The motivation for them to work in this way is to provide basic needs. Results confirmed for others that support of husbands is very important. Mostly, emotional support (belief and empowerment) is exposed; however, getting financial contribution seems to be highly appreciated. More responsibilities which spouses were ready to take over regarding the home responsibilities (that is, childcare) should also not be neglected in the system of support to their entrepreneurial wives. Although, more important for all, women with children appreciated other members and spouses help and assistance to a higher extent. Results showed that majority of women who started their own business feel that in the first year of ope-ration the emotional support of family members was more important.

Keywords: family support, work life balance, women entrepreneurs, Jaffna District, Sri Lanka

Procedia PDF Downloads 459
15601 Low-Power Digital Filters Design Using a Bypassing Technique

Authors: Thiago Brito Bezerra

Abstract:

This paper presents a novel approach to reduce power consumption of digital filters based on dynamic bypassing of partial products in their multipliers. The bypassing elements incorporated into the multiplier hardware eliminate redundant signal transitions, which appear within the carry-save adders when the partial product is zero. This technique reduces the power consumption by around 20%. The circuit implementation was made using the AMS 0.18 um technology. The bypassing technique applied to the circuits is outlined.

Keywords: digital filter, low-power, bypassing technique, low-pass filter

Procedia PDF Downloads 381
15600 Stress Perception, Ethics and Leadership Styles of Pilots: Implications for Airline Global Talent Acquisition and Talent Management Strategy

Authors: Arif Sikander, Imran Saeed

Abstract:

The behavioral pattern and performance of airline pilots are influenced by the level of stress, their ethical decision-making ability and above all their leadership style as part of the Crew Management process. Cultural differences of pilots, especially while working in ex-country airlines, could influence the stress perception. Culture also influences ethical decision making. Leadership style is also a variable dimension, and pilots need to adapt to the cultural settings while flying with the local pilots as part of their team. Studies have found that age, education, gender, and management experience are statistically significant factors in ethical maturity. However, in the decades to come, more studies are required to validate the results over and over again; thereby, providing support for the validity of the Moral Development Theory. Leadership style plays a vital role in ethical decision making. This study is grounded in the Moral Development theory and seeks to analyze the styles of leadership of airline pilots related to ethical decision making and also the influence of the culture on their stress perception. The sample for the study included commercial pilots from a National Airline. It is expected that these results should provide useful input to the literature in the context of developing appropriate Talent Management strategies. The authors intend to extend this study (carried out in one country) to major national carriers (many countries) to be able to develop a ultimate framework on Talent Management which should serve as a benchmark for any international airline as most of them (e.g., Emirates, Etihad, Cathay Pacific, China Southern, etc.) are dependent on the supply of this scarce resource from outside countries.

Keywords: ethics, leadership, pilot, stress

Procedia PDF Downloads 141
15599 Group Decision Making through Interval-Valued Intuitionistic Fuzzy Soft Set TOPSIS Method Using New Hybrid Score Function

Authors: Syed Talib Abbas Raza, Tahseen Ahmed Jilani, Saleem Abdullah

Abstract:

This paper presents interval-valued intuitionistic fuzzy soft sets based TOPSIS method for group decision making. The interval-valued intuitionistic fuzzy soft set is a mutation of an interval-valued intuitionistic fuzzy set and soft set. In group decision making problems IVIFSS makes the process much more algebraically elegant. We have used weighted arithmetic averaging operator for aggregating the information and define a new Hybrid Score Function as metric tool for comparison between interval-valued intuitionistic fuzzy values. In an illustrative example we have applied the developed method to a criminological problem. We have developed a group decision making model for integrating the imprecise and hesitant evaluations of multiple law enforcement agencies working on target killing cases in the country.

Keywords: group decision making, interval-valued intuitionistic fuzzy soft set, TOPSIS, score function, criminology

Procedia PDF Downloads 603
15598 On Increase and Development Prospects of Competitiveness of Georgia’s Transport-Logistical System on the Contemporary Stage

Authors: Ketevan Goletiani

Abstract:

MMultimodal transport is Europe-Asia’s rational decision of the XXI century. Success prerequisite of this form of cargo carriage is not technologic decision, but the comprehensive attitude towards it. Integration of the transport industry must refer to both technical and organizational-economic fields. Support of the multimodal’s must be the priority of the transport policy in different organizations of Europe and Asia. The method of approach to the transport as a unified system has been changed to a certain extent in the market conditions. Nowadays the competition between the different kinds of transport is not to be considered as a competition of one kind of transport towards another one, but is to be considered as a stimulator of the transport development. Basically, transport logistic, as the recent methodology and organization of the rationally flow of cargos at the specialized logistic centres during their procession provides effective rise of such flow of cargos, decreases non-operating expenses and gives the opportunity to the transport companies to come along with the time, to meet market clients’ requirements. It is apparent that the advanced transport-forwarding and logistic firms are being analized.

Keywords: transport systems, multimodal transport, competition, transport logistics

Procedia PDF Downloads 437
15597 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 72
15596 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier

Authors: Saurabh Farkya, Govinda Surampudi

Abstract:

Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.

Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)

Procedia PDF Downloads 499
15595 The Application of Participatory Social Media in Collaborative Planning: A Systematic Review

Authors: Yujie Chen , Zhen Li

Abstract:

In the context of planning transformation, how to promote public participation in the formulation and implementation of collaborative planning has been the focused issue of discussion. However, existing studies have often been case-specific or focused on a specific design field, leaving the role of participatory social media (PSM) in urban collaborative planning generally questioned. A systematic database search was conducted in December 2019. Articles and projects were eligible if they reported a quantitative empirical study applying participatory social media in the collaborative planning process (a prospective, retrospective, experimental, longitudinal research, or collective actions in planning practices). Twenty studies and seven projects were included in the review. Findings showed that social media are generally applied in public spatial behavior, transportation behavior, and community planning fields, with new technologies and new datasets. PSM has provided a new platform for participatory design, decision analysis, and collaborative negotiation most widely used in participatory design. Findings extracted several existing forms of PSM. PSM mainly act as three roles: the language of decision-making for communication, study mode for spatial evaluation, and decision agenda for interactive decision support. Three optimization content of PSM were recognized, including improving participatory scale, improvement of the grass-root organization, and promotion of politics. However, basically, participants only could provide information and comment through PSM in the future collaborative planning process, therefore the issues of low data response rate, poor spatial data quality, and participation sustainability issues worth more attention and solutions.

Keywords: participatory social media, collaborative planning, planning workshop, application mode

Procedia PDF Downloads 133
15594 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401
15593 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects

Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang

Abstract:

As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.

Keywords: 4D, 5D, 6D, active BIM

Procedia PDF Downloads 275
15592 Optimization of Municipal Solid Waste Management in Peshawar Using Mathematical Modelling and GIS with Focus on Incineration

Authors: Usman Jilani, Ibad Khurram, Irshad Hussain

Abstract:

Environmentally sustainable waste management is a challenging task as it involves multiple and diverse economic, environmental, technical and regulatory issues. Municipal Solid Waste Management (MSWM) is more challenging in developing countries like Pakistan due to lack of awareness, technology and human resources, insufficient funding, inefficient collection and transport mechanism resulting in the lack of a comprehensive waste management system. This work presents an overview of current MSWM practices in Peshawar, the provincial capital of Khyber Pakhtunkhwa, Pakistan and proposes a better and sustainable integrated solid waste management system with incineration (Waste to Energy) option. The diverted waste would otherwise generate revenue; minimize land fill requirement and negative impact on the environment. The proposed optimized solution utilizing scientific techniques (like mathematical modeling, optimization algorithms and GIS) as decision support tools enhances the technical & institutional efficiency leading towards a more sustainable waste management system through incorporating: - Improved collection mechanisms through optimized transportation / routing and, - Resource recovery through incineration and selection of most feasible sites for transfer stations, landfills and incineration plant. These proposed methods shift the linear waste management system towards a cyclic system and can also be used as a decision support tool by the WSSP (Water and Sanitation Services Peshawar), agency responsible for the MSWM in Peshawar.

Keywords: municipal solid waste management, incineration, mathematical modeling, optimization, GIS, Peshawar

Procedia PDF Downloads 375
15591 Evalution of the Impact on Improvement of Bank Manager Decision Making

Authors: Farzane Sadatnia, Bahram Fathi

Abstract:

Today, all public and private organizations have found that the management of the world for key information related to the activities of a staff and its main essence and philosophy, though they constitute the management information systems are very helpful in this respect the right to apply systems can save a lot in terms of economic organizations including reducing the time decision - making, improve the quality of decision making, and cost savings to bring information systems is a backup system that can never be instead of logic and human reasoning, which can be used in the series is spreading, providing resources, and provide the necessary facilities, provide better services for users, balanced budget allocation, determine strengths and weaknesses and previous plans to review the current decisions and especially the decision . Hence; in this study attempts to the effect of an information system on a review of the organization.

Keywords: information system, planning, organization, coordination, control

Procedia PDF Downloads 475
15590 Design and Implementation of Wave-Pipelined Circuit Using Reconfigurable Technique

Authors: Adhinarayanan Venkatasubramanian

Abstract:

For design of high speed digital circuit wave pipeline is the best approach this can be operated at higher operating frequencies by adjusting clock periods and skews so as latch the o/p of combinational logic circuit at the stable period. In this paper, there are two methods are proposed in automation task one is BIST (Built in self test) and second method is Reconfigurable technique. For the above two approaches dedicated AND gate (multiplier) by applying wave pipeline technique. BIST approach is implemented by Xilinx Spartan-II device. In reconfigurable technique done by ASIC. From the results, wave pipeline circuits are faster than nonpipeline circuit and area, power dissipation are reduced by reconfigurable technique.

Keywords: SOC, wave-pipelining, FPGA, self-testing, reconfigurable, ASIC

Procedia PDF Downloads 426
15589 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions

Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes

Abstract:

The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.

Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning

Procedia PDF Downloads 72
15588 IT Investment Decision Making: Case Studies on the Implementation of Contactless Payments in Commercial Banks of Kazakhstan

Authors: Symbat Moldabekova

Abstract:

This research explores the practice of decision-making in commercial banks in Kazakhstan. It focuses on recent technologies, such as contactless payments and QR code, and uses interviews with bank executives and industry practitioners to gain an understanding of how decisions are made and the role of financial assessment methods. The aim of the research is (1) to study the importance of financial techniques to evaluate IT investments; (2) to understand the role of different expert groups; (3) to explore how market trends and industry features affect decisions on IT; (4) to build a model that defines the real practice of decision-making on IT in commercial banks in Kazakhstan. The theoretical framework suggests that decision-making on IT is a socially constructed process, where actor groups with different background interact and negotiate with each other to develop a shared understanding of IT and to make more effective decisions. Theory and observations suggest that the more parties involved in the process of decision-making, the higher the possibility of disagreements between them. As each actor group has their views on the rational decision on an IT project, it is worth exploring how the final decision is made in practice. Initial findings show that the financial assessment methods are used as a guideline and do not play a big role in the final decision. The commercial banks of Kazakhstan tend to study experience of neighboring countries before adopting innovation. Implementing contactless payments is widely regarded as pinnacle success factor due to increasing competition in the market. First-to-market innovations are considered as priorities therefore, such decisions can be made with exemption of some certain actor groups from the process. Customers play significant role and they participate in testing demo versions of the products before bringing innovation to the market. The study will identify the viewpoints of actors in the banking sector on a rational decision, and the ways decision-makers from a variety of disciplines interact with each other in order to make a decision on IT in retail banks.

Keywords: actor groups, decision making, technology investment, retail banks

Procedia PDF Downloads 122
15587 Data-Driven Decision Making: Justification of Not Leaving Class without It

Authors: Denise Hexom, Judith Menoher

Abstract:

Teachers and administrators across America are being asked to use data and hard evidence to inform practice as they begin the task of implementing Common Core State Standards. Yet, the courses they are taking in schools of education are not preparing teachers or principals to understand the data-driven decision making (DDDM) process nor to utilize data in a much more sophisticated fashion. DDDM has been around for quite some time, however, it has only recently become systematically and consistently applied in the field of education. This paper discusses the theoretical framework of DDDM; empirical evidence supporting the effectiveness of DDDM; a process a department in a school of education has utilized to implement DDDM; and recommendations to other schools of education who attempt to implement DDDM in their decision-making processes and in their students’ coursework.

Keywords: data-driven decision making, institute of higher education, special education, continuous improvement

Procedia PDF Downloads 387
15586 Comparing the ‘Urgent Community Care Team’ Clinical Referrals in the Community with Suggestions from the Clinical Decision Support Software Dem DX

Authors: R. Tariq, R. Lee

Abstract:

Background: Additional demands placed on senior clinical teams with ongoing COVID-19 management has accelerated the need to harness the wider healthcare professional resources and upskill them to take on greater clinical responsibility safely. The UK NHS Long Term Plan (2019)¹ emphasises the importance of expanding Advanced Practitioners’ (APs) roles to take on more clinical diagnostic responsibilities to cope with increased demand. In acute settings, APs are often the first point of care for patients and require training to take on initial triage responsibilities efficiently and safely. Critically, their roles include determining which onward services the patients may require, and assessing whether they can be treated at home, avoiding unnecessary admissions to the hospital. Dem Dx is a Clinical Reasoning Platform (CRP) that claims to help frontline healthcare professionals independently assess and triage patients. It guides the clinician from presenting complaints through associated symptoms to a running list of differential diagnoses, media, national and institutional guidelines. The objective of this study was to compare the clinical referral rates and guidelines adherence registered by the HMR Urgent Community Care Team (UCCT)² and Dem Dx recommendations using retrospective cases. Methodology: 192 cases seen by the UCCT were anonymised and reassessed using Dem Dx clinical pathways. We compared the UCCT’s performance with Dem Dx regarding the appropriateness of onward referrals. We also compared the clinical assessment regarding adherence to NICE guidelines recorded on the clinical notes and the presence of suitable guidance in each case. The cases were audited by two medical doctors. Results: Dem Dx demonstrated appropriate referrals in 85% of cases, compared to 47% in the UCCT team (p<0.001). Of particular note, Dem Dx demonstrated an almost 65% (p<0.001) improvement in the efficacy and appropriateness of referrals in a highly experienced clinical team. The effectiveness of Dem Dx is in part attributable to the relevant NICE and local guidelines found within the platform's pathways and was found to be suitable in 86% of cases. Conclusion: This study highlights the potential of clinical decision support, as Dem Dx, to improve the quality of onward clinical referrals delivered by a multidisciplinary team in primary care. It demonstrated that it could support healthcare professionals in making appropriate referrals, especially those that may be overlooked by providing suitable clinical guidelines directly embedded into cases and clear referral pathways. Further evaluation in the clinical setting has been planned to confirm those assumptions in a prospective study.

Keywords: advanced practitioner, clinical reasoning, clinical decision-making, management, multidisciplinary team, referrals, triage

Procedia PDF Downloads 148
15585 Hybrid Subspace Approach for Time Delay Estimation in MIMO Systems

Authors: Mojtaba Saeedinezhad, Sarah Yousefi

Abstract:

In this paper, we present a hybrid subspace approach for Time Delay Estimation (TDE) in multivariable systems. While several methods have been proposed for time delay estimation in SISO systems, delay estimation in MIMO systems were always a big challenge. In these systems the existing TDE methods have significant limitations because most of procedures are just based on system response estimation or correlation analysis. We introduce a new hybrid method for TDE in MIMO systems based on subspace identification and explicit output error method; and compare its performance with previously introduced procedures in presence of different noise levels and in a statistical manner. Then the best method is selected with multi objective decision making technique. It is shown that the performance of new approach is much better than the existing methods, even in low signal-to-noise conditions.

Keywords: system identification, time delay estimation, ARX, OE, merit ratio, multi variable decision making

Procedia PDF Downloads 346