Search results for: hierarchical porous carbon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4224

Search results for: hierarchical porous carbon

144 University Building: Discussion about the Effect of Numerical Modelling Assumptions for Occupant Behavior

Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli

Abstract:

The refurbishment of public buildings is one of the key factors of energy efficiency policy of European States. Educational buildings account for the largest share of the oldest edifice with interesting potentialities for demonstrating best practice with regards to high performance and low and zero-carbon design and for becoming exemplar cases within the community. In this context, this paper discusses the critical issue of dealing the energy refurbishment of a university building in heating dominated climate of South Italy. More in detail, the importance of using validated models will be examined exhaustively by proposing an analysis on uncertainties due to modelling assumptions mainly referring to the adoption of stochastic schedules for occupant behavior and equipment or lighting usage. Indeed, today, the great part of commercial tools provides to designers a library of possible schedules with which thermal zones can be described. Very often, the users do not pay close attention to diversify thermal zones and to modify or to adapt predefined profiles, and results of designing are affected positively or negatively without any alarm about it. Data such as occupancy schedules, internal loads and the interaction between people and windows or plant systems, represent some of the largest variables during the energy modelling and to understand calibration results. This is mainly due to the adoption of discrete standardized and conventional schedules with important consequences on the prevision of the energy consumptions. The problem is surely difficult to examine and to solve. In this paper, a sensitivity analysis is presented, to understand what is the order of magnitude of error that is committed by varying the deterministic schedules used for occupation, internal load, and lighting system. This could be a typical uncertainty for a case study as the presented one where there is not a regulation system for the HVAC system thus the occupant cannot interact with it. More in detail, starting from adopted schedules, created according to questioner’ s responses and that has allowed a good calibration of energy simulation model, several different scenarios are tested. Two type of analysis are presented: the reference building is compared with these scenarios in term of percentage difference on the projected total electric energy need and natural gas request. Then the different entries of consumption are analyzed and for more interesting cases also the comparison between calibration indexes. Moreover, for the optimal refurbishment solution, the same simulations are done. The variation on the provision of energy saving and global cost reduction is evidenced. This parametric study wants to underline the effect on performance indexes evaluation of the modelling assumptions during the description of thermal zones.

Keywords: energy simulation, modelling calibration, occupant behavior, university building

Procedia PDF Downloads 143
143 Teaching Timber: The Role of the Architectural Student and Studio Course within an Interdisciplinary Research Project

Authors: Catherine Sunter, Marius Nygaard, Lars Hamran, Børre Skodvin, Ute Groba

Abstract:

Globally, the construction and operation of buildings contribute up to 30% of annual green house gas emissions. In addition, the building sector is responsible for approximately a third of global waste. In this context, the utilization of renewable resources in buildings, especially materials that store carbon, will play a significant role in the growing city. These are two reasons for introducing wood as a building material with a growing relevance. A third is the potential economic value in countries with a forest industry that is not currently used to capacity. In 2013, a four-year interdisciplinary research project titled “Wood Be Better” was created, with the principle goal to produce and publicise knowledge that would facilitate increased use of wood in buildings in urban areas. The research team consisted of architects, engineers, wood technologists and mycologists, both from research institutions and industrial organisations. Five structured work packages were included in the initial research proposal. Work package 2 was titled “Design-based research” and proposed using architecture master courses as laboratories for systematic architectural exploration. The aim was twofold: to provide students with an interdisciplinary team of experts from consultancies and producers, as well as teachers and researchers, that could offer the latest information on wood technologies; whilst at the same time having the studio course test the effects of the use of wood on the functional, technical and tectonic quality within different architectural projects on an urban scale, providing results that could be fed back into the research material. The aim of this article is to examine the successes and failures of this pedagogical approach in an architecture school, as well as the opportunities for greater integration between academic research projects, industry experts and studio courses in the future. This will be done through a set of qualitative interviews with researchers, teaching staff and students of the studio courses held each semester since spring 2013. These will investigate the value of the various experts of the course; the different themes of each course; the response to the urban scale, architectural form and construction detail; the effect of working with the goals of a research project; and the value of the studio projects to the research. In addition, six sample projects will be presented as case studies. These will show how the projects related to the research and could be collected and further analysed, innovative solutions that were developed during the course, different architectural expressions that were enabled by timber, and how projects were used as an interdisciplinary testing ground for integrated architectural and engineering solutions between the participating institutions. The conclusion will reflect on the original intentions of the studio courses, the opportunities and challenges faced by students, researchers and teachers, the educational implications, and on the transparent and inclusive discourse between the architectural researcher, the architecture student and the interdisciplinary experts.

Keywords: architecture, interdisciplinary, research, studio, students, wood

Procedia PDF Downloads 313
142 Numerical Investigation of Combustion Chamber Geometry on Combustion Performance and Pollutant Emissions in an Ammonia-Diesel Common Rail Dual-Fuel Engine

Authors: Youcef Sehili, Khaled Loubar, Lyes Tarabet, Mahfoudh Cerdoun, Clement Lacroix

Abstract:

As emissions regulations grow more stringent and traditional fuel sources become increasingly scarce, incorporating carbon-free fuels in the transportation sector emerges as a key strategy for mitigating the impact of greenhouse gas emissions. While the utilization of hydrogen (H2) presents significant technological challenges, as evident in the engine limitation known as knocking, ammonia (NH3) provides a viable alternative that overcomes this obstacle and offers convenient transportation, storage, and distribution. Moreover, the implementation of a dual-fuel engine using ammonia as the primary gas is promising, delivering both ecological and economic benefits. However, when employing this combustion mode, the substitution of ammonia at high rates adversely affects combustion performance and leads to elevated emissions of unburnt NH3, especially under high loads, which requires special treatment of this mode of combustion. This study aims to simulate combustion in a common rail direct injection (CRDI) dual-fuel engine, considering the fundamental geometry of the combustion chamber as well as fifteen (15) alternative proposed geometries to determine the configuration that exhibits superior engine performance during high-load conditions. The research presented here focuses on improving the understanding of the equations and mechanisms involved in the combustion of finely atomized jets of liquid fuel and on mastering the CONVERGETM code, which facilitates the simulation of this combustion process. By analyzing the effect of piston bowl shape on the performance and emissions of a diesel engine operating in dual fuel mode, this work combines knowledge of combustion phenomena with proficiency in the calculation code. To select the optimal geometry, an evaluation of the Swirl, Tumble, and Squish flow patterns was conducted for the fifteen (15) studied geometries. Variations in-cylinder pressure, heat release rate, turbulence kinetic energy, turbulence dissipation rate, and emission rates were observed, while thermal efficiency and specific fuel consumption were estimated as functions of crankshaft angle. To maximize thermal efficiency, a synergistic approach involving the enrichment of intake air with oxygen (O2) and the enrichment of primary fuel with hydrogen (H2) was implemented. Based on the results obtained, it is worth noting that the proposed geometry (T8_b8_d0.6/SW_8.0) outperformed the others in terms of flow quality, reduction of pollutants emitted with a reduction of more than 90% in unburnt NH3, and an impressive improvement in engine efficiency of more than 11%.

Keywords: ammonia, hydrogen, combustion, dual-fuel engine, emissions

Procedia PDF Downloads 76
141 Controlled Synthesis of Pt₃Sn-SnOx/C Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Dorottya Guban, Irina Borbath, Istvan Bakos, Peter Nemeth, Andras Tompos

Abstract:

One of the greatest challenges of the implementation of polymer electrolyte membrane fuel cells (PEMFCs) is to find active and durable electrocatalysts. The cell performance is always limited by the oxygen reduction reaction (ORR) on the cathode since it is at least 6 orders of magnitude slower than the hydrogen oxidation on the anode. Therefore high loading of Pt is required. Catalyst corrosion is also more significant on the cathode, especially in case of mobile applications, where rapid changes of loading have to be tolerated. Pt-Sn bulk alloys and SnO2-decorated Pt3Sn nanostructures are among the most studied bimetallic systems for fuel cell applications. Exclusive formation of supported Sn-Pt alloy phases with different Pt/Sn ratios can be achieved by using controlled surface reactions (CSRs) between hydrogen adsorbed on Pt sites and tetraethyl tin. In this contribution our results for commercial and a home-made 20 wt.% Pt/C catalysts modified by tin anchoring via CSRs are presented. The parent Pt/C catalysts were synthesized by modified NaBH4-assisted ethylene-glycol reduction method using ethanol as a solvent, which resulted either in dispersed and highly stable Pt nanoparticles or evenly distributed raspberry-like agglomerates according to the chosen synthesis parameters. The 20 wt.% Pt/C catalysts prepared that way showed improved electrocatalytic performance in the ORR and stability in comparison to the commercial 20 wt.% Pt/C catalysts. Then, in order to obtain Sn-Pt/C catalysts with Pt/Sn= 3 ratio, the Pt/C catalysts were modified with tetraethyl tin (SnEt4) using three and five consecutive tin anchoring periods. According to in situ XPS studies in case of catalysts with highly dispersed Pt nanoparticles, pre-treatment in hydrogen even at 170°C resulted in complete reduction of the ionic tin to Sn0. No evidence of the presence of SnO2 phase was found by means of the XRD and EDS analysis. These results demonstrate that the method of CSRs is a powerful tool to create Pt-Sn bimetallic nanoparticles exclusively, without tin deposition onto the carbon support. On the contrary, the XPS results revealed that the tin-modified catalysts with raspberry-like Pt agglomerates always contained a fraction of non-reducible tin oxide. At the same time, they showed increased activity and long-term stability in the ORR than Pt/C, which was assigned to the presence of SnO2 in close proximity/contact with Pt-Sn alloy phase. It has been demonstrated that the content and dispersion of the fcc Pt3Sn phase within the electrocatalysts can be controlled by tuning the reaction conditions of CSRs. The bimetallic catalysts displayed an outstanding performance in the ORR. The preparation of a highly dispersed 20Pt/C catalyst permits to decrease the Pt content without relevant decline in the electrocatalytic performance of the catalysts.

Keywords: anode catalyst, cathode catalyst, controlled surface reactions, oxygen reduction reaction, PtSn/C electrocatalyst

Procedia PDF Downloads 237
140 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 125
139 A Study for Effective CO2 Sequestration of Hydrated Cement by Direct Aqueous Carbonation

Authors: Hyomin Lee, Jinhyun Lee, Jinyeon Hwang, Younghoon Choi, Byeongseo Son

Abstract:

Global warming is a world-wide issue. Various carbon capture and storage (CCS) technologies for reducing CO2 concentration in the atmosphere have been increasingly studied. Mineral carbonation is one of promising method for CO2 sequestration. Waste cement generating from aggregate recycling processes of waste concrete is potentially a good raw material containing reactive components for mineral carbonation. The major goal of our long-term project is to developed effective methods for CO2 sequestration using waste cement. In the present study, the carbonation characteristics of hydrated cement were examined by conducting two different direct aqueous carbonation experiments. We also evaluate the influence of NaCl and MgCl2 as additives to increase mineral carbonation efficiency of hydrated cement. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized to the size less than 0.15 mm. 15 g of pulverized cement paste and 200 ml of solutions containing additives were reacted in ambient temperature and pressure conditions. 1M NaCl and 0.25 M MgCl2 was selected for additives after leaching test. Two different sources of CO2 was applied for direct aqueous carbonation experiment: 0.64 M NaHCO3 was used for CO2 donor in method 1 and pure CO2 gas (99.9%) was bubbling into reacting solution at the flow rate of 20 ml/min in method 2. The pH and Ca ion concentration were continuously measured with pH/ISE Multiparameter to observe carbonation behaviors. Material characterization of reacted solids was performed by TGA, XRD, SEM/EDS analyses. The carbonation characteristics of hydrated cement were significantly different with additives. Calcite was a dominant calcium carbonate mineral after the two carbonation experiments with no additive and NaCl additive. The significant amount of aragonite and vaterite as well as very fine calcite of poorer crystallinity was formed with MgCl2 additive. CSH (calcium silicate hydrate) in hydrated cement were changed to MSH (magnesium silicate hydrate). This transformation contributed to the high carbonation efficiency. Carbonation experiment with method 1 revealed that that the carbonation of hydrated cement took relatively long time in MgCl2 solution compared to that in NaCl solution and the contents of aragonite and vaterite were increased as increasing reaction time. In order to maximize carbonation efficiency in direct aqueous carbonation with CO2 gas injection (method 2), the control of solution pH was important. The solution pH was decreased with injection of CO2 gas. Therefore, the carbonation efficiency in direct aqueous carbonation was closely related to the stability of calcium carbonate minerals with pH changes. With no additive and NaCl additive, the maximum carbonation was achieved when the solution pH was greater than 11. Calcium carbonate form by mineral carbonation seemed to be re-dissolved as pH decreased below 11 with continuous CO2 gas injection. The type of calcium carbonate mineral formed during carbonation in MgCl2 solution was closely related to the variation of solution pH caused by CO2 gas injection. The amount of aragonite significantly increased with decreasing solution pH, whereas the amount of calcite decreased.

Keywords: CO2 sequestration, Mineral carbonation, Cement and concrete, MgCl2 and NaCl

Procedia PDF Downloads 380
138 Gas Metal Arc Welding of Clad Plates API 5L X-60/316L Applying External Magnetic Fields during Welding

Authors: Blanca A. Pichardo, Victor H. Lopez, Melchor Salazar, Rafael Garcia, Alberto Ruiz

Abstract:

Clad pipes in comparison to plain carbon steel pipes offer the oil and gas industry high corrosion resistance, reduction in economic losses due to pipeline failures and maintenance, lower labor risk, prevent pollution and environmental damage due to hydrocarbons spills caused by deteriorated pipelines. In this context, it is paramount to establish reliable welding procedures to join bimetallic plates or pipes. Thus, the aim of this work is to study the microstructure and mechanical behavior of clad plates welded by the gas metal arc welding (GMAW) process. A clad of 316L stainless steel was deposited onto API 5L X-60 plates by overlay welding with the GMAW process. Welding parameters were, 22.5 V, 271 A, heat input 1,25 kJ/mm, shielding gas 98% Ar + 2% O₂, reverse polarity, torch displacement speed 3.6 mm/s, feed rate 120 mm/s, electrode diameter 1.2 mm and application of an electromagnetic field of 3.5 mT. The overlay welds were subjected to macro-structural and microstructural characterization. After manufacturing the clad plates, a single V groove joint was machined with a 60° bevel and 1 mm root face. GMA welding of the bimetallic plates was performed in four passes with ER316L-Si filler for the root pass and an ER70s-6 electrode for the subsequent welding passes. For joining the clad plates, an electromagnetic field was applied with 2 purposes; to improve the microstructural characteristics and to assist the stability of the electric arc during welding in order to avoid magnetic arc blow. The welds were macro and microstructurally characterized and the mechanical properties were also evaluated. Vickers microhardness (100 g load for 10 s) measurements were made across the welded joints at three levels. The first profile, at the 316L stainless steel cladding, was quite even with a value of approximately 230 HV. The second microhardness profile showed high values in the weld metal, ~400 HV, this was due to the formation of a martensitic microstructure by dilution of the first welding pass with the second. The third profile crossed the third and fourth welding passes and an average value of 240 HV was measured. In the tensile tests, yield strength was between 400 to 450 MPa with a tensile strength of ~512 MPa. In the Charpy impact tests, the results were 86 and 96 J for specimens with the notch in the face and in the root of the weld bead, respectively. The results of the mechanical properties were in the range of the API 5L X-60 base material. The overlap welding process used for cladding is not suitable for large components, however, it guarantees a metallurgical bond, unlike the most commonly used processes such as thermal expansion. For welding bimetallic plates, control of the temperature gradients is key to avoid distortions. Besides, the dissimilar nature of the bimetallic plates gives rise to the formation of a martensitic microstructure during welding.

Keywords: clad pipe, dissimilar welding, gas metal arc welding, magnetic fields

Procedia PDF Downloads 153
137 Influence of Moss Cover and Seasonality on Soil Microbial Biomass and Enzymatic Activity in Different Central Himalayan Temperate Forest Types

Authors: Anshu Siwach, Qianlai Zhuang, Ratul Baishya

Abstract:

Context: This study focuses on the influence of moss cover and seasonality on soil microbial biomass and enzymatic activity in different Central Himalayan temperate forest types. Soil microbial biomass and enzymes are key indicators of microbial communities in soil and provide information on soil properties, microbial status, and organic matter dynamics. The activity of microorganisms in the soil varies depending on the vegetation type and environmental conditions. Therefore, this study aims to assess the effects of moss cover, seasons, and different forest types on soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and soil enzymatic activity in the Central Himalayas, Uttarakhand, India. Research Aim: The aim of this study is to evaluate the levels of SMBC, SMBN, and soil enzymatic activity in different temperate forest types under the influence of two ground covers (soil with and without moss cover) during the rainy and winter seasons. Question Addressed: This study addresses the following questions: 1. How does the presence of moss cover and seasonality affect soil microbial biomass and enzymatic activity? 2. What is the influence of different forest types on SMBC, SMBN, and enzymatic activity? Methodology: Soil samples were collected from different forest types during the rainy and winter seasons. The study utilizes the chloroform-fumigation extraction method to determine SMBC and SMBN. Standard methodologies are followed to measure enzymatic activities, including dehydrogenase, acid phosphatase, aryl sulfatase, β-glucosidase, phenol oxidase, and urease. Findings: The study reveals significant variations in SMBC, SMBN, and enzymatic activity under different ground covers, within the rainy and winter seasons, and among the forest types. Moss cover positively influences SMBC and enzymatic activity during the rainy season, while soil without moss cover shows higher values during the winter season. Quercus-dominated forests, as well as Cupressus torulosa forests, exhibit higher levels of SMBC and enzymatic activity, while Pinus roxburghii forests show lower levels. Theoretical Importance: The findings highlight the importance of considering mosses in forest management plans to improve soil microbial diversity, enzymatic activity, soil quality, and health. Additionally, this research contributes to understanding the role of lower plants, such as mosses, in influencing ecosystem dynamics. Conclusion: The study concludes that moss cover during the rainy season significantly influences soil microbial biomass and enzymatic activity. Quercus and Cupressus torulosa dominated forests demonstrate higher levels of SMBC and enzymatic activity, indicating the importance of these forest types in sustaining soil microbial diversity and soil health. Including mosses in forest management plans can improve soil quality and overall ecosystem dynamics.

Keywords: moss cover, seasons, soil enzymes, soil microbial biomass, temperate forest types

Procedia PDF Downloads 68
136 Regeneration of Cesium-Exhausted Activated Carbons by Microwave Irradiation

Authors: Pietro P. Falciglia, Erica Gagliano, Vincenza Brancato, Alfio Catalfo, Guglielmo Finocchiaro, Guido De Guidi, Stefano Romano, Paolo Roccaro, Federico G. A. Vagliasindi

Abstract:

Cesium-137 (¹³⁷Cs) is a major radionuclide in spent nuclear fuel processing, and it represents the most important cause of contamination related to nuclear accidents. Cesium-137 has long-term radiological effects representing a major concern for the human health. Several physico-chemical methods have been proposed for ¹³⁷Cs removal from impacted water: ion-exchange, adsorption, chemical precipitation, membrane process, coagulation, and electrochemical. However, these methods can be limited by ionic selectivity and efficiency, or they present very restricted full-scale application due to equipment and chemical high costs. On the other hand, adsorption is considered a more cost-effective solution, and activated carbons (ACs) are known as a low-cost and effective adsorbent for a wide range of pollutants among which radionuclides. However, adsorption of Cs onto ACs has been investigated in very few and not exhaustive studies. In addition, exhausted activated carbons are generally discarded in landfill, that is not an eco-friendly and economic solution. Consequently, the regeneration of exhausted ACs must be considered a preferable choice. Several alternatives, including conventional thermal-, solvent-, biological- and electrochemical-regeneration, are available but are affected by several economic or environmental concerns. Microwave (MW) irradiation has been widely used in industrial and environmental applications and it has attracted many attentions to regenerating activated carbons. The growing interest in MW irradiation is based on the passive ability of the irradiated medium to convert a low power irradiation energy into a rapid and large temperature increase if the media presents good dielectric features. ACs are excellent MW-absorbers, with a high mechanical strength and a good resistance towards heating process. This work investigates the feasibility of MW irradiation for the regeneration of Cs-exhausted ACs. Adsorption batch experiments were carried out using commercially available granular activated carbon (GAC), then Cs-saturated AC samples were treated using a controllable bench-scale 2.45-GHz MW oven and investigating different adsorption-regeneration cycles. The regeneration efficiency (RE), weight loss percentage, and textural properties of the AC samples during the adsorption-regeneration cycles were also assessed. Main results demonstrated a relatively low adsorption capacity for Cs, although the feasibility of ACs was strictly linked to their dielectric nature, which allows a very efficient thermal regeneration by MW irradiation. The weight loss percentage was found less than 2%, and an increase in RE after three cycles was also observed. Furthermore, MW regeneration preserved the pore structure of the regenerated ACs. For a deeper exploration of the full-scale applicability of MW regeneration, further investigations on more adsorption-regeneration cycles or using fixed-bed columns are required.

Keywords: adsorption mechanisms, cesium, granular activated carbons, microwave regeneration

Procedia PDF Downloads 142
135 Analysis of the Relationship between Micro-Regional Human Development and Brazil's Greenhouse Gases Emission

Authors: Geanderson Eduardo Ambrósio, Dênis Antônio Da Cunha, Marcel Viana Pires

Abstract:

Historically, human development has been based on economic gains associated with intensive energy activities, which often are exhaustive in the emission of Greenhouse Gases (GHGs). It requires the establishment of targets for mitigation of GHGs in order to disassociate the human development from emissions and prevent further climate change. Brazil presents itself as one of the most GHGs emitters and it is of critical importance to discuss such reductions in intra-national framework with the objective of distributional equity to explore its full mitigation potential without compromising the development of less developed societies. This research displays some incipient considerations about which Brazil’s micro-regions should reduce, when the reductions should be initiated and what its magnitude should be. We started with the methodological assumption that human development and GHGs emissions arise in the future as their behavior was observed in the past. Furthermore, we assume that once a micro-region became developed, it is able to maintain gains in human development without the need of keep growing GHGs emissions rates. The human development index and the carbon dioxide equivalent emissions (CO2e) were extrapolated to the year 2050, which allowed us to calculate when the micro-regions will become developed and the mass of GHG’s emitted. The results indicate that Brazil must throw 300 GT CO2e in the atmosphere between 2011 and 2050, of which only 50 GT will be issued by micro-regions before it’s develop and 250 GT will be released after development. We also determined national mitigation targets and structured reduction schemes where only the developed micro-regions would be required to reduce. The micro-region of São Paulo, the most developed of the country, should be also the one that reduces emissions at most, emitting, in 2050, 90% less than the value observed in 2010. On the other hand, less developed micro-regions will be responsible for less impactful reductions, i.e. Vale do Ipanema will issue in 2050 only 10% below the value observed in 2010. Such methodological assumption would lead the country to issue, in 2050, 56.5% lower than that observed in 2010, so that the cumulative emissions between 2011 and 2050 would reduce by 130 GT CO2e over the initial projection. The fact of associating the magnitude of the reductions to the level of human development of the micro-regions encourages the adoption of policies that favor both variables as the governmental planner will have to deal with both the increasing demand for higher standards of living and with the increasing magnitude of reducing emissions. However, if economic agents do not act proactively in local and national level, the country is closer to the scenario in which emits more than the one in which mitigates emissions. The research highlighted the importance of considering the heterogeneity in determining individual mitigation targets and also ratified the theoretical and methodological feasibility to allocate larger share of contribution for those who historically emitted more. It is understood that the proposals and discussions presented should be considered in mitigation policy formulation in Brazil regardless of the adopted reduction target.

Keywords: greenhouse gases, human development, mitigation, intensive energy activities

Procedia PDF Downloads 321
134 Aerosol Chemical Composition in Urban Sites: A Comparative Study of Lima and Medellin

Authors: Guilherme M. Pereira, Kimmo Teinïla, Danilo Custódio, Risto Hillamo, Célia Alves, Pérola de C. Vasconcellos

Abstract:

South American large cities often present serious air pollution problems and their atmosphere composition is influenced by a variety of emissions sources. The South American Emissions Megacities, and Climate project (SAEMC) has focused on the study of emissions and its influence on climate in the South American largest cities and it also included Lima (Peru) and Medellin (Colombia), sites where few studies of the genre were done. Lima is a coastal city with more than 8 million inhabitants and the second largest city in South America. Medellin is a 2.5 million inhabitants city and second largest city in Colombia; it is situated in a valley. The samples were collected in quartz fiber filters in high volume samplers (Hi-Vol), in 24 hours of sampling. The samples were collected in intensive campaigns in both sites, in July, 2010. Several species were determined in the aerosol samples of Lima and Medellin. Organic and elemental carbon (OC and EC) in thermal-optical analysis; biomass burning tracers (levoglucosan - Lev, mannosan - Man and galactosan - Gal) in high-performance anion exchange ion chromatography with mass spectrometer detection; water soluble ions in ion chromatography. The average particulate matter was similar for both campaigns, the PM10 concentrations were above the recommended by World Health Organization (50 µg m⁻³ – daily limit) in 40% of the samples in Medellin, while in Lima it was above that value in 15% of the samples. The average total ions concentration was higher in Lima (17450 ng m⁻³ in Lima and 3816 ng m⁻³ in Medellin) and the average concentrations of sodium and chloride were higher in this site, these species also had better correlations (Pearson’s coefficient = 0,63); suggesting a higher influence of marine aerosol in the site due its location in the coast. Sulphate concentrations were also much higher at Lima site; which may be explained by a higher influence of marine originated sulphate. However, the OC, EC and monosaccharides average concentrations were higher at Medellin site; this may be due to the lower dispersion of pollutants due to the site’s location and a larger influence of biomass burning sources. The levoglucosan average concentration was 95 ng m⁻³ for Medellin and 16 ng m⁻³ and OC was well correlated with levoglucosan (Pearson’s coefficient = 0,86) in Medellin; suggesting a higher influence of biomass burning over the organic aerosol in this site. The Lev/Man ratio is often related to the type of biomass burned and was close to 18, similar to the observed in previous studies done at biomass burning impacted sites in the Amazon region; backward trajectories also suggested the transport of aerosol from that region. Biomass burning appears to have a larger influence on the air quality in Medellin, in addition the vehicular emissions; while Lima showed a larger influence of marine aerosol during the study period.

Keywords: aerosol transport, atmospheric particulate matter, biomass burning, SAEMC project

Procedia PDF Downloads 264
133 Devulcanization of Waste Rubber Using Thermomechanical Method Combined with Supercritical CO₂

Authors: L. Asaro, M. Gratton, S. Seghar, N. Poirot, N. Ait Hocine

Abstract:

Rubber waste disposal is an environmental problem. Particularly, many researches are centered in the management of discarded tires. In spite of all different ways of handling used tires, the most common is to deposit them in a landfill, creating a stock of tires. These stocks can cause fire danger and provide ambient for rodents, mosquitoes and other pests, causing health hazards and environmental problems. Because of the three-dimensional structure of the rubbers and their specific composition that include several additives, their recycling is a current technological challenge. The technique which can break down the crosslink bonds in the rubber is called devulcanization. Strictly, devulcanization can be defined as a process where poly-, di-, and mono-sulfidic bonds, formed during vulcanization, are totally or partially broken. In the recent years, super critical carbon dioxide (scCO₂) was proposed as a green devulcanization atmosphere. This is because it is chemically inactive, nontoxic, nonflammable and inexpensive. Its critical point can be easily reached (31.1 °C and 7.38 MPa), and residual scCO₂ in the devulcanized rubber can be easily and rapidly removed by releasing pressure. In this study thermomechanical devulcanization of ground tire rubber (GTR) was performed in a twin screw extruder under diverse operation conditions. Supercritical CO₂ was added in different quantities to promote the devulcanization. Temperature, screw speed and quantity of CO₂ were the parameters that were varied during the process. The devulcanized rubber was characterized by its devulcanization percent and crosslink density by swelling in toluene. Infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) were also done, and the results were related with the Mooney viscosity. The results showed that the crosslink density decreases as the extruder temperature and speed increases, and, as expected, the soluble fraction increase with both parameters. The Mooney viscosity of the devulcanized rubber decreases as the extruder temperature increases. The reached values were in good correlation (R= 0.96) with de the soluble fraction. In order to analyze if the devulcanization was caused by main chains or crosslink scission, the Horikx's theory was used. Results showed that all tests fall in the curve that corresponds to the sulfur bond scission, which indicates that the devulcanization has successfully happened without degradation of the rubber. In the spectra obtained by FTIR, it was observed that none of the characteristic peaks of the GTR were modified by the different devulcanization conditions. This was expected, because due to the low sulfur content (~1.4 phr) and the multiphasic composition of the GTR, it is very difficult to evaluate the devulcanization by this technique. The lowest crosslink density was reached with 1 cm³/min of CO₂, and the power consumed in that process was also near to the minimum. These results encourage us to do further analyses to better understand the effect of the different conditions on the devulcanization process. The analysis is currently extended to monophasic rubbers as ethylene propylene diene monomer rubber (EPDM) and natural rubber (NR).

Keywords: devulcanization, recycling, rubber, waste

Procedia PDF Downloads 392
132 Air Pollution on Stroke in Shenzhen, China: A Time-Stratified Case Crossover Study Modified by Meteorological Variables

Authors: Lei Li, Ping Yin, Haneen Khreis

Abstract:

Stroke is the second leading cause of death and a third leading cause of death and disability worldwide in 2019. Given the significant role of environmental factors in stroke development and progression, it is essential to investigate the effect of air pollution on stroke occurrence while considering the modifying effects of meteorological variables. This study aimed to evaluate the association between short-term exposure to air pollution and the incidence of stroke subtypes in Shenzhen, China, and to explore the potential interactions of meteorological factors with air pollutants. The study analyzed data from January 1, 2006, to December 31, 2014, including 88,214 cases of ischemic stroke and 30,433 cases of hemorrhagic stroke among residents of Shenzhen. Using a time-stratified case–crossover design with conditional quasi-Poisson regression, the study estimated the percentage changes in stroke morbidity associated with short-term exposure to nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter less than 10 mm in aerodynamic diameter (PM10), carbon monoxide (CO), and ozone (O₃). A five-day moving average of air pollution was applied to capture the cumulative effects of air pollution. The estimates were further stratified by sex, age, education level, and season. The additive and multiplicative interaction between air pollutants and meteorologic variables were assessed by the relative excess risk due to interaction (RERI) and adding the interactive term into the main model, respectively. The study found that NO₂ was positively associated with ischemic stroke occurrence throughout the year and in the cold season (November through April), with a stronger effect observed among men. Each 10 μg/m³ increment in the five-day moving average of NO₂ was associated with a 2.38% (95% confidence interval was 1.36% to 3.41%) increase in the risk of ischemic stroke over the whole year and a 3.36% (2.04% to 4.69%) increase in the cold season. The harmful effect of CO on ischemic stroke was observed only in the cold season, with each 1 mg/m³ increment in the five-day moving average of CO increasing the risk by 12.34% (3.85% to 21.51%). There was no statistically significant additive interaction between individual air pollutants and temperature or relative humidity, as demonstrated by the RERI. The interaction term in the model showed a multiplicative antagonistic effect between NO₂ and temperature (p-value=0.0268). For hemorrhagic stroke, no evidence of the effects of any individual air pollutants was found in the whole population. However, the RERI indicated a statistically additive and multiplicative interaction of temperature on the effects of PM10 and O₃ on hemorrhagic stroke onset. Therefore, the insignificant conclusion should be interpreted with caution. The study suggests that environmental NO₂ and CO might increase the morbidity of ischemic stroke, particularly during the cold season. These findings could help inform policy decisions aimed at reducing air pollution levels to prevent stroke and other health conditions. Additionally, the study provides valuable insights into the interaction between air pollution and meteorological variables, which underscores the need for further research into the complex relationship between environmental factors and health.

Keywords: air pollution, meteorological variables, interactive effect, seasonal pattern, stroke

Procedia PDF Downloads 90
131 Comparison of Non-destructive Devices to Quantify the Moisture Content of Bio-Based Insulation Materials on Construction Sites

Authors: Léa Caban, Lucile Soudani, Julien Berger, Armelle Nouviaire, Emilio Bastidas-Arteaga

Abstract:

Improvement of the thermal performance of buildings is a high concern for the construction industry. With the increase in environmental issues, new types of construction materials are being developed. These include bio-based insulation materials. They capture carbon dioxide, can be produced locally, and have good thermal performance. However, their behavior with respect to moisture transfer is still facing some issues. With a high porosity, the mass transfer is more important in those materials than in mineral insulation ones. Therefore, they can be more sensitive to moisture disorders such as mold growth, condensation risks or decrease of the wall energy efficiency. For this reason, the initial moisture content on the construction site is a piece of crucial knowledge. Measuring moisture content in a laboratory is a mastered task. Diverse methods exist but the easiest and the reference one is gravimetric. A material is weighed dry and wet, and its moisture content is mathematically deduced. Non-destructive methods (NDT) are promising tools to determine in an easy and fast way the moisture content in a laboratory or on construction sites. However, the quality and reliability of the measures are influenced by several factors. Classical NDT portable devices usable on-site measure the capacity or the resistivity of materials. Water’s electrical properties are very different from those of construction materials, which is why the water content can be deduced from these measurements. However, most moisture meters are made to measure wooden materials, and some of them can be adapted for construction materials with calibration curves. Anyway, these devices are almost never calibrated for insulation materials. The main objective of this study is to determine the reliability of moisture meters in the measurement of biobased insulation materials. The determination of which one of the capacitive or resistive methods is the most accurate and which device gives the best result is made. Several biobased insulation materials are tested. Recycled cotton, two types of wood fibers of different densities (53 and 158 kg/m3) and a mix of linen, cotton, and hemp. It seems important to assess the behavior of a mineral material, so glass wool is also measured. An experimental campaign is performed in a laboratory. A gravimetric measurement of the materials is carried out for every level of moisture content. These levels are set using a climatic chamber and by setting the relative humidity level for a constant temperature. The mass-based moisture contents measured are considered as references values, and the results given by moisture meters are compared to them. A complete analysis of the uncertainty measurement is also done. These results are used to analyze the reliability of moisture meters depending on the materials and their water content. This makes it possible to determine whether the moisture meters are reliable, and which one is the most accurate. It will then be used for future measurements on construction sites to assess the initial hygrothermal state of insulation materials, on both new-build and renovation projects.

Keywords: capacitance method, electrical resistance method, insulation materials, moisture transfer, non-destructive testing

Procedia PDF Downloads 127
130 Re-Entrant Direct Hexagonal Phases in a Lyotropic System Induced by Ionic Liquids

Authors: Saheli Mitra, Ramesh Karri, Praveen K. Mylapalli, Arka. B. Dey, Gourav Bhattacharya, Gouriprasanna Roy, Syed M. Kamil, Surajit Dhara, Sunil K. Sinha, Sajal K. Ghosh

Abstract:

The most well-known structures of lyotropic liquid crystalline systems are the two dimensional hexagonal phase of cylindrical micelles with a positive interfacial curvature and the lamellar phase of flat bilayers with zero interfacial curvature. In aqueous solution of surfactants, the concentration dependent phase transitions have been investigated extensively. However, instead of changing the surfactant concentrations, the local curvature of an aggregate can be altered by tuning the electrostatic interactions among the constituent molecules. Intermediate phases with non-uniform interfacial curvature are still unexplored steps to understand the route of phase transition from hexagonal to lamellar. Understanding such structural evolution in lyotropic liquid crystalline systems is important as it decides the complex rheological behavior of the system, which is one of the main interests of the soft matter industry. Sodium dodecyl sulfate (SDS) is an anionic surfactant and can be considered as a unique system to tune the electrostatics by cationic additives. In present study, imidazolium-based ionic liquids (ILs) with different number of carbon atoms in their single hydrocarbon chain were used as the additive in the aqueous solution of SDS. At a fixed concentration of total non-aqueous components (SDS and IL), the molar ratio of these components was changed, which effectively altered the electrostatic interactions between the SDS molecules. As a result, the local curvature is observed to modify, and correspondingly, the structure of the hexagonal liquid crystalline phases are transformed into other phases. Polarizing optical microscopy of SDS and imidazole-based-IL systems have exhibited different textures of the liquid crystalline phases as a function of increasing concentration of the ILs. The small angle synchrotron x-ray diffraction (SAXD) study has indicated the hexagonal phase of direct cylindrical micelles to transform to a rectangular phase at the presence of short (two hydrocarbons) chain IL. However, the hexagonal phase is transformed to a lamellar phase at the presence of long (ten hydrocarbons) chain IL. Interestingly, at the presence of a medium (four hydrocarbons) chain IL, the hexagonal phase is transformed to another hexagonal phase of direct cylindrical micelles through the lamellar phase. To the best of our knowledge, such a phase sequence has not been reported earlier. Even though the small angle x-ray diffraction study has revealed the lattice parameters of these phases to be similar to each other, their rheological behavior has been distinctly different. These rheological studies have shed lights on how these phases differ in their viscoelastic behavior. Finally, the packing parameters, calculated for these phases based on the geometry of the aggregates, have explained the formation of the self-assembled aggregates.

Keywords: lyotropic liquid crystals, polarizing optical microscopy, rheology, surfactants, small angle x-ray diffraction

Procedia PDF Downloads 140
129 Developing Granular Sludge and Maintaining High Nitrite Accumulation for Anammox to Treat Municipal Wastewater High-efficiently in a Flexible Two-stage Process

Authors: Zhihao Peng, Qiong Zhang, Xiyao Li, Yongzhen Peng

Abstract:

Nowadays, conventional nitrogen removal process (nitrification and denitrification) was adopted in most wastewater treatment plants, but many problems have occurred, such as: high aeration energy consumption, extra carbon sources dosage and high sludge treatment costs. The emergence of anammox has bring about the great revolution to the nitrogen removal technology, and only the ammonia and nitrite were required to remove nitrogen autotrophically, no demand for aeration and sludge treatment. However, there existed many challenges in anammox applications: difficulty of biomass retention, insufficiency of nitrite substrate, damage from complex organic etc. Much effort was put into the research in overcoming the above challenges, and the payment was rewarded. It was also imperative to establish an innovative process that can settle the above problems synchronously, after all any obstacle above mentioned can cause the collapse of anammox system. Therefore, in this study, a two-stage process was established that the sequencing batch reactor (SBR) and upflow anaerobic sludge blanket (UASB) were used in the pre-stage and post-stage, respectively. The domestic wastewater entered into the SBR first and went through anaerobic/aerobic/anoxic (An/O/A) mode, and the draining at the aerobic end of SBR was mixed with domestic wastewater, the mixture then entering to the UASB. In the long term, organic and nitrogen removal performance was evaluated. All along the operation, most COD was removed in pre-stage (COD removal efficiency > 64.1%), including some macromolecular organic matter, like: tryptophan, tyrosinase and fulvic acid, which could weaken the damage of organic matter to anammox. And the An/O/A operating mode of SBR was beneficial to the achievement and maintenance of partial nitrification (PN). Hence, sufficient and steady nitrite supply was another favorable condition to anammox enhancement. Besides, the flexible mixing ratio helped to gain a substrate ratio appropriate to anammox (1.32-1.46), which further enhance the anammox. Further, the UASB was used and gas recirculation strategy was adopted in the post-stage, aiming to achieve granulation by the selection pressure. As expected, the granules formed rapidly during 38 days, which increased from 153.3 to 354.3 μm. Based on bioactivity and gene measurement, the anammox metabolism and abundance level rose evidently, by 2.35 mgN/gVss·h and 5.3 x109. The anammox bacteria mainly distributed in the large granules (>1000 μm), while the biomass in the flocs (<200 μm) and microgranules (200-500 μm) barely displayed anammox bioactivity. Enhanced anammox promoted the advanced autotrophic nitrogen removal, which increased from 71.9% to 93.4%, even when the temperature was only 12.9 ℃. Therefore, it was feasible to enhance anammox in the multiple favorable conditions created, and the strategy extended the application of anammox to the full-scale mainstream, enhanced the understanding of anammox in the aspects of culturing conditions.

Keywords: anammox, granules, nitrite accumulation, nitrogen removal efficiency

Procedia PDF Downloads 49
128 Biogas Production Using Water Hyacinth as a Means of Waste Management Control at Hartbeespoort Dam, South Africa

Authors: Trevor Malambo Simbayi, Diane Hildebrandt, Tonderayi Matambo

Abstract:

The rapid growth of population in recent decades has resulted in an increased need for energy to meet human activities. As energy demands increase, the need for other sources of energy other than fossil fuels, increases in turn. Furthermore, environmental concerns such as global warming due to the use of fossil fuels, depleting fossil fuel reserves and the rising cost of oil have contributed to an increased interest in renewables sources of energy. Biogas is a renewable source of energy produced through the process of anaerobic digestion (AD) and it offers a two-fold solution; it provides an environmentally friendly source of energy and its production helps to reduce the amount of organic waste taken to landfills. This research seeks to address the waste management problem caused by an aquatic weed called water hyacinth (Eichhornia crassipes) at the Hartbeespoort (Harties) Dam in the North West Province of South Africa, through biogas production of the weed. Water hyacinth is a category 1 invasive species and it is deemed to be the most problematic aquatic weed. This weed is said to double its size in the space of five days. Eutrophication in the Hartbeespoort Dam has manifested itself through the excessive algae bloom and water hyacinth infestation. A large amount of biomass from water hyacinth and algae are generated per annum from the two hundred hectare surface area of the dam exposed to the sun. This biomass creates a waste management problem. Water hyacinth when in full bloom can cover nearly half of the surface of Hartbeespoort Dam. The presence of water hyacinth in the dam has caused economic and environmental problems. Economic activities such as fishing, boating, and recreation, are hampered by the water hyacinth’s prolific growth. This research proposes the use of water hyacinth as a feedstock or substrate for biogas production in order to find an economic and environmentally friendly means of waste management for the communities living around the Hartbeespoort Dam. In order to achieve this objective, water hyacinth will be collected from the dam and it will be mechanically pretreated before anaerobic digestion. Pretreatment is required for lignocellulosic materials like water hyacinth because such materials are called recalcitrant solid materials. Cow manure will be employed as a source of microorganisms needed for biogas production to occur. Once the water hyacinth and the cow dung are mixed, they will be placed in laboratory anaerobic reactors. Biogas production will be monitored daily through the downward displacement of water. Characterization of the substrates (cow manure and water hyacinth) to determine the nitrogen, sulfur, carbon and hydrogen, total solids (TS) and volatile solids (VS). Liquid samples from the anaerobic digesters will be collected and analyzed for volatile fatty acids (VFAs) composition by means of a liquid gas chromatography machine.

Keywords: anaerobic digestion, biogas, waste management, water hyacinth

Procedia PDF Downloads 198
127 Assessing the High Rate of Deforestation Caused by the Operations of Timber Industries in Ghana

Authors: Obed Asamoah

Abstract:

Forests are very vital for human survival and our well-being. During the past years, the world has taken an increasingly significant role in the modification of the global environment. The high rate of deforestation in Ghana is of primary national concern as the forests provide many ecosystem services and functions that support the country’s predominantly agrarian economy and foreign earnings. Ghana forest is currently major source of carbon sink that helps to mitigate climate change. Ghana forests, both the reserves and off-reserves, are under pressure of deforestation. The causes of deforestation are varied but can broadly be categorized into anthropogenic and natural factors. For the anthropogenic factors, increased wood fuel collection, clearing of forests for agriculture, illegal and poorly regulated timber extraction, social and environmental conflicts, increasing urbanization and industrialization are the primary known causes for the loss of forests and woodlands. Mineral exploitation in the forest areas is considered as one of the major causes of deforestation in Ghana. Mining activities especially mining of gold by both the licensed mining companies and illegal mining groups who are locally known as "gallantly mining" also cause damage to the nation's forest reserves. Several works have been conducted regarding the causes of the high rate of deforestation in Ghana, major attention has been placed on illegal logging and using forest lands for illegal farming and mining activities. Less emphasis has been placed on the timber production companies on their harvesting methods in the forests in Ghana and other activities that are carried out in the forest. The main objective of the work is to find out the harvesting methods and the activities of the timber production companies and their effects on the forests in Ghana. Both qualitative and quantitative research methods were engaged in the research work. The study population comprised of 20 Timber industries (Sawmills) forest areas of Ghana. These companies were selected randomly. The cluster sampling technique was engaged in selecting the respondents. Both primary and secondary data were employed. In the study, it was observed that most of the timber production companies do not know the age, the weight, the distance covered from the harvesting to the loading site in the forest. It was also observed that old and heavy machines are used by timber production companies in their operations in the forest, which makes the soil compact prevents regeneration and enhances soil erosion. It was observed that timber production companies do not abide by the rules and regulations governing their operations in the forest. The high rate of corruption on the side of the officials of the Ghana forestry commission makes the officials relax and do not embark on proper monitoring on the operations of the timber production companies which makes the timber companies to cause more harm to the forest. In other to curb this situation the Ghana forestry commission with the ministry of lands and natural resources should monitor the activities of the timber production companies and sanction all the companies that make foul play in their activities in the forest. The commission should also pay more attention to the policy “fell one plant 10” to enhance regeneration in both reserves and off-reserves forest.

Keywords: companies, deforestation, forest, Ghana, timber

Procedia PDF Downloads 202
126 Efficient Treatment of Azo Dye Wastewater with Simultaneous Energy Generation by Microbial Fuel Cell

Authors: Soumyadeep Bhaduri, Rahul Ghosh, Rahul Shukla, Manaswini Behera

Abstract:

The textile industry consumes a substantial amount of water throughout the processing and production of textile fabrics. The water eventually turns into wastewater, where it acts as an immense damaging nuisance due to its dye content. Wastewater streams contain a percentage ranging from 2.0% to 50.0% of the total weight of dye used, depending on the dye class. The management of dye effluent in textile industries presents a formidable challenge to global sustainability. The current focus is on implementing wastewater treatment technology that enable the recycling of wastewater, reduce energy usage and offset carbon emissions. Microbial fuel cell (MFC) is a device that utilizes microorganisms as a bio-catalyst to effectively treat wastewater while also producing electricity. The MFC harnesses the chemical energy present in wastewater by oxidizing organic compounds in the anodic chamber and reducing an electron acceptor in the cathodic chamber, thereby generating electricity. This research investigates the potential of MFCs to tackle this challenge of azo dye removal with simultaneously generating electricity. Although MFCs are well-established for wastewater treatment, their application in dye decolorization with concurrent electricity generation remains relatively unexplored. This study aims to address this gap by assessing the effectiveness of MFCs as a sustainable solution for treating wastewater containing azo dyes. By harnessing microorganisms as biocatalysts, MFCs offer a promising avenue for environmentally friendly dye effluent management. The performance of MFCs in treating azo dyes and generating electricity was evaluated by optimizing the Chemical Oxygen Demand (COD) and Hydraulic Retention Time (HRT) of influent. COD and HRT values ranged from 1600 mg/L to 2400 mg/L and 5 to 9 days, respectively. Results showed that the maximum open circuit voltage (OCV) reached 648 mV at a COD of 2400 mg/L and HRT of 5 days. Additionally, maximum COD removal of 98% and maximum color removal of 98.91% were achieved at a COD of 1600 mg/L and HRT of 9 days. Furthermore, the study observed a maximum power density of 19.95 W/m3 at a COD of 2400 mg/L and HRT of 5 days. Electrochemical analysis, including linear sweep voltammetry (LSV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were done to find out the response current and internal resistance of the system. To optimize pH and dye concentration, pH values were varied from 4 to 10, and dye concentrations ranged from 25 mg/L to 175 mg/L. The highest voltage output of 704 mV was recorded at pH 7, while a dye concentration of 100 mg/L yielded the maximum output of 672 mV. This study demonstrates that MFCs offer an efficient and sustainable solution for treating azo dyes in textile industry wastewater, while concurrently generating electricity. These findings suggest the potential of MFCs to contribute to environmental remediation and sustainable development efforts on a global scale.

Keywords: textile wastewater treatment, microbial fuel cell, renewable energy, sustainable wastewater treatment

Procedia PDF Downloads 23
125 The Intensity of Root and Soil Respiration Is Significantly Determined by the Organic Matter and Moisture Content of the Soil

Authors: Zsolt Kotroczó, Katalin Juhos, Áron Béni, Gábor Várbíró, Tamás Kocsis, István Fekete

Abstract:

Soil organic matter plays an extremely important role in the functioning and regulation processes of ecosystems. It follows that the C content of organic matter in soil is one of the most important indicators of soil fertility. Part of the carbon stored in them is returned to the atmosphere during soil respiration. Climate change and inappropriate land use can accelerate these processes. Our work aimed to determine how soil CO2 emissions change over ten years as a result of organic matter manipulation treatments. With the help of this, we were able to examine not only the effects of the different organic matter intake but also the effects of the different microclimates that occur as a result of the treatments. We carried out our investigations in the area of the Síkfőkút DIRT (Detritus Input and Removal Treatment) Project. The research area is located in the southern, hilly landscape of the Bükk Mountains, northeast of Eger (Hungary). GPS coordinates of the project: 47°55′34′′ N and 20°26′ 29′′ E, altitude 320-340 m. The soil of the area is Luvisols. The 27-hectare protected forest area is now under the supervision of the Bükki National Park. The experimental plots in Síkfőkút were established in 2000. We established six litter manipulation treatments each with three 7×7 m replicate plots established under complete canopy cover. There were two types of detritus addition treatments (Double Wood and Double Litter). In three treatments, detritus inputs were removed: No Litter No Roots plots, No Inputs, and the Controls. After the establishment of the plots, during the drier periods, the NR and NI treatments showed the highest CO2 emissions. In the first few years, the effect of this process was evident, because due to the lack of living vegetation, the amount of evapotranspiration on the NR and NI plots was much lower, and transpiration practically ceased on these plots. In the wetter periods, the NL and NI treatments showed the lowest soil respiration values, which were significantly lower compared to the Co, DW, and DL treatments. Due to the lower organic matter content and the lack of surface litter cover, the water storage capacity of these soils was significantly limited, therefore we measured the lowest average moisture content among the treatments after ten years. Soil respiration is significantly influenced by temperature values. Furthermore, the supply of nutrients to the soil microorganisms is also a determining factor, which in this case is influenced by the litter production dictated by the treatments. In the case of dry soils with a moisture content of less than 20% in the initial period, litter removal treatments showed a strong correlation with soil moisture (r=0.74). In very dry soils, a smaller increase in moisture does not cause a significant increase in soil respiration, while it does in a slightly higher moisture range. In wet soils, the temperature is the main regulating factor, above a certain moisture limit, water displaces soil air from the soil pores, which inhibits aerobic decomposition processes, and so heterotrophic soil respiration also declines.

Keywords: soil biology, organic matter, nutrition, DIRT, soil respiration

Procedia PDF Downloads 78
124 Monitoring Future Climate Changes Pattern over Major Cities in Ghana Using Coupled Modeled Intercomparison Project Phase 5, Support Vector Machine, and Random Forest Modeling

Authors: Stephen Dankwa, Zheng Wenfeng, Xiaolu Li

Abstract:

Climate change is recently gaining the attention of many countries across the world. Climate change, which is also known as global warming, referring to the increasing in average surface temperature has been a concern to the Environmental Protection Agency of Ghana. Recently, Ghana has become vulnerable to the effect of the climate change as a result of the dependence of the majority of the population on agriculture. The clearing down of trees to grow crops and burning of charcoal in the country has been a contributing factor to the rise in temperature nowadays in the country as a result of releasing of carbon dioxide and greenhouse gases into the air. Recently, petroleum stations across the cities have been on fire due to this climate changes and which have position Ghana in a way not able to withstand this climate event. As a result, the significant of this research paper is to project how the rise in the average surface temperature will be like at the end of the mid-21st century when agriculture and deforestation are allowed to continue for some time in the country. This study uses the Coupled Modeled Intercomparison Project phase 5 (CMIP5) experiment RCP 8.5 model output data to monitor the future climate changes from 2041-2050, at the end of the mid-21st century over the ten (10) major cities (Accra, Bolgatanga, Cape Coast, Koforidua, Kumasi, Sekondi-Takoradi, Sunyani, Ho, Tamale, Wa) in Ghana. In the models, Support Vector Machine and Random forest, where the cities as a function of heat wave metrics (minimum temperature, maximum temperature, mean temperature, heat wave duration and number of heat waves) assisted to provide more than 50% accuracy to predict and monitor the pattern of the surface air temperature. The findings identified were that the near-surface air temperature will rise between 1°C-2°C (degrees Celsius) over the coastal cities (Accra, Cape Coast, Sekondi-Takoradi). The temperature over Kumasi, Ho and Sunyani by the end of 2050 will rise by 1°C. In Koforidua, it will rise between 1°C-2°C. The temperature will rise in Bolgatanga, Tamale and Wa by 0.5°C by 2050. This indicates how the coastal and the southern part of the country are becoming hotter compared with the north, even though the northern part is the hottest. During heat waves from 2041-2050, Bolgatanga, Tamale, and Wa will experience the highest mean daily air temperature between 34°C-36°C. Kumasi, Koforidua, and Sunyani will experience about 34°C. The coastal cities (Accra, Cape Coast, Sekondi-Takoradi) will experience below 32°C. Even though, the coastal cities will experience the lowest mean temperature, they will have the highest number of heat waves about 62. Majority of the heat waves will last between 2 to 10 days with the maximum 30 days. The surface temperature will continue to rise by the end of the mid-21st century (2041-2050) over the major cities in Ghana and so needs to be addressed to the Environmental Protection Agency in Ghana in order to mitigate this problem.

Keywords: climate changes, CMIP5, Ghana, heat waves, random forest, SVM

Procedia PDF Downloads 201
123 Chemical Modifications of Three Underutilized Vegetable Fibres for Improved Composite Value Addition and Dye Absorption Performance

Authors: Abayomi O. Adetuyi, Jamiu M. Jabar, Samuel O. Afolabi

Abstract:

Vegetable fibres are classes of fibres of low density, biodegradable and non-abrasive that are largely abundant fibre materials with specific properties and mostly found/ obtained in plants on earth surface. They are classified into three categories, depending on the part of the plant from which they are gotten from namely: fruit, Blast and Leaf fibre. Ever since four/five millennium B.C, attention has been focussing on the commonest and highly utilized cotton fibre obtained from the fruit of cotton plants (Gossypium spp), for the production of cotton fabric used in every home today. The present study, therefore, focused on the ability of three underutilized vegetable (fruit) fibres namely: coir fiber (Eleas coniferus), palm kernel fiber and empty fruit bunch fiber (Elias guinensis) through chemical modifications for better composite value addition performance to polyurethane form and dye adsorption. These fibres were sourced from their parents’ plants, identified and cleansed with 2% hot detergent solution 1:100, rinsed in distilled water and oven-dried to constant weight, before been chemically modified through alkali bleaching, mercerization and acetylation. The alkali bleaching involves treating 0.5g of each fiber material with 100 mL of 2% H2O2 in 25 % NaOH solution with refluxing for 2 h. While that of mercerization and acetylation involves the use of 5% sodium hydroxide NaOH solution for 2 h and 10% acetic acid- acetic anhydride 1:1 (v/v) (CH3COOH) / (CH3CO)2O solution with conc. H2SO4 as catalyst for 1 h, respectively on the fibres. All were subsequently washed thoroughly with distilled water and oven dried at 105 0C for 1 h. These modified fibres were incorporated as composite into polyurethane form and used in dye adsorption study of indigo. The first two treatments led to fiber weight reduction, while the acidified acetic anhydride treatment gave the fibers weight increment. All the treated fibers were found to be of less hydrophilic nature, better mechanical properties, higher thermal stabilities as well as better adsorption surfaces/capacities than the untreated ones. These were confirmed by gravimetric analysis, Instron Universal Testing Machine, Thermogravimetric Analyser and the Scanning Electron Microscope (SEM) respectively. The fiber morphology of the modified fibers showed smoother surfaces than unmodified fibres.The empty fruit bunch fibre and the coconut coir fibre are better than the palm kernel fibres as reinforcers for composites or as adsorbents for waste-water treatment. Acetylation and alkaline bleaching treatment improve the potentials of the fibres more than mercerization treatment. Conclusively, vegetable fibres, especially empty fruit bunch fibre and the coconut coir fibre, which are cheap, abundant and underutilized, can replace the very costly powdered activated carbon in wastewater treatment and as reinforcer in foam.

Keywords: chemical modification, industrial application, value addition, vegetable fibre

Procedia PDF Downloads 333
122 Graphene Supported Nano Cerium Oxides Hybrid as an Electrocatalyst for Oxygen Reduction Reactions

Authors: Siba Soren, Purnendu Parhi

Abstract:

Today, the world is facing a severe challenge due to depletion of traditional fossil fuels. Scientists across the globe are working for a solution that involves a dramatic shift to practical and environmentally sustainable energy sources. High-capacity energy systems, such as metal-air batteries, fuel cells, are highly desirable to meet the urgent requirement of sustainable energies. Among the fuel cells, Direct methanol fuel cells (DMFCs) are recognized as an ideal power source for mobile applications and have received considerable attention in recent past. In this advanced electrochemical energy conversion technologies, Oxygen Reduction Reaction (ORR) is of utmost importance. However, the poor kinetics of cathodic ORR in DMFCs significantly hampers their possibilities of commercialization. The oxygen is reduced in alkaline medium either through a 4-electron (equation i) or a 2-electron (equation ii) reduction pathway at the cathode ((i) O₂ + 2H₂O + 4e⁻ → 4OH⁻, (ii) O₂ + H₂O + 2e⁻ → OH⁻ + HO₂⁻ ). Due to sluggish ORR kinetics the ability to control the reduction of molecular oxygen electrocatalytically is still limited. The electrocatalytic ORR starts with adsorption of O₂ on the electrode surface followed by O–O bond activation/cleavage and oxide removal. The reaction further involves transfer of 4 electrons and 4 protons. The sluggish kinetics of ORR, on the one hand, demands high loading of precious metal-containing catalysts (e.g., Pt), which unfavorably increases the cost of these electrochemical energy conversion devices. Therefore, synthesis of active electrocatalyst with an increase in ORR performance is need of the hour. In the recent literature, there are many reports on transition metal oxide (TMO) based ORR catalysts for their high activity TMOs are also having drawbacks like low electrical conductivity, which seriously affects the electron transfer process during ORR. It was found that 2D graphene layer is having high electrical conductivity, large surface area, and excellent chemical stability, appeared to be an ultimate choice as support material to enhance the catalytic performance of bare metal oxide. g-C₃N₄ is also another candidate that has been used by the researcher for improving the ORR performance of metal oxides. This material provides more active reaction sites than other N containing carbon materials. Rare earth oxide like CeO₂ is also a good candidate for studying the ORR activity as the metal oxide not only possess unique electronic properties but also possess catalytically active sites. Here we will discuss the ORR performance (in alkaline medium) of N-rGO/C₃N₄ supported nano Cerium Oxides hybrid synthesized by microwave assisted Solvothermal method. These materials exhibit superior electrochemical stability and methanol tolerance capability to that of commercial Pt/C.

Keywords: oxygen reduction reaction, electrocatalyst, cerium oxide, graphene

Procedia PDF Downloads 199
121 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 144
120 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst

Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci

Abstract:

The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.

Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel

Procedia PDF Downloads 156
119 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks

Authors: Mazarine Roquet, Pierre Dewallef

Abstract:

The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.

Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating

Procedia PDF Downloads 86
118 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading

Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro

Abstract:

Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.

Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling

Procedia PDF Downloads 280
117 Short and Long Crack Growth Behavior in Ferrite Bainite Dual Phase Steels

Authors: Ashok Kumar, Shiv Brat Singh, Kalyan Kumar Ray

Abstract:

There is growing awareness to design steels against fatigue damage Ferrite martensite dual-phase steels are known to exhibit favourable mechanical properties like good strength, ductility, toughness, continuous yielding, and high work hardening rate. However, dual-phase steels containing bainite as second phase are potential alternatives for ferrite martensite steels for certain applications where good fatigue property is required. Fatigue properties of dual phase steels are popularly assessed by the nature of variation of crack growth rate (da/dN) with stress intensity factor range (∆K), and the magnitude of fatigue threshold (∆Kth) for long cracks. There exists an increased emphasis to understand not only the long crack fatigue behavior but also short crack growth behavior of ferrite bainite dual phase steels. The major objective of this report is to examine the influence of microstructures on the short and long crack growth behavior of a series of developed dual-phase steels with varying amounts of bainite and. Three low carbon steels containing Nb, Cr and Mo as microalloying elements steels were selected for making ferrite-bainite dual-phase microstructures by suitable heat treatments. The heat treatment consisted of austenitizing the steel at 1100°C for 20 min, cooling at different rates in air prior to soaking these in a salt bath at 500°C for one hour, and finally quenching in water. Tensile tests were carried out on 25 mm gauge length specimens with 5 mm diameter using nominal strain rate 0.6x10⁻³ s⁻¹ at room temperature. Fatigue crack growth studies were made on a recently developed specimen configuration using a rotating bending machine. The crack growth was monitored by interrupting the test and observing the specimens under an optical microscope connected to an Image analyzer. The estimated crack lengths (a) at varying number of cycles (N) in different fatigue experiments were analyzed to obtain log da/dN vs. log °∆K curves for determining ∆Kthsc. The microstructural features of these steels have been characterized and their influence on the near threshold crack growth has been examined. This investigation, in brief, involves (i) the estimation of ∆Kthsc and (ii) the examination of the influence of microstructure on short and long crack fatigue threshold. The maximum fatigue threshold values obtained from short crack growth experiments on various specimens of dual-phase steels containing different amounts of bainite are found to increase with increasing bainite content in all the investigated steels. The variations of fatigue behavior of the selected steel samples have been explained with the consideration of varying amounts of the constituent phases and their interactions with the generated microstructures during cyclic loading. Quantitative estimation of the different types of fatigue crack paths indicates that the propensity of a crack to pass through the interfaces depends on the relative amount of the microstructural constituents. The fatigue crack path is found to be predominantly intra-granular except for the ones containing > 70% bainite in which it is predominantly inter-granular.

Keywords: bainite, dual phase steel, fatigue crack growth rate, long crack fatigue threshold, short crack fatigue threshold

Procedia PDF Downloads 206
116 Analysis of Long-Term Response of Seawater to Change in CO₂, Heavy Metals and Nutrients Concentrations

Authors: Igor Povar, Catherine Goyet

Abstract:

The seawater is subject to multiple external stressors (ES) including rising atmospheric CO2 and ocean acidification, global warming, atmospheric deposition of pollutants and eutrophication, which deeply alter its chemistry, often on a global scale and, in some cases, at the degree significantly exceeding that in the historical and recent geological verification. In ocean systems the micro- and macronutrients, heavy metals, phosphor- and nitrogen-containing components exist in different forms depending on the concentrations of various other species, organic matter, the types of minerals, the pH etc. The major limitation to assessing more strictly the ES to oceans, such as pollutants (atmospheric greenhouse gas, heavy metals, nutrients as nitrates and phosphates) is the lack of theoretical approach which could predict the ocean resistance to multiple external stressors. In order to assess the abovementioned ES, the research has applied and developed the buffer theory approach and theoretical expressions of the formal chemical thermodynamics to ocean systems, as heterogeneous aqueous systems. The thermodynamic expressions of complex chemical equilibria, involving acid-base, complex formation and mineral ones have been deduced. This thermodynamic approach utilizes thermodynamic relationships coupled with original mass balance constraints, where the solid phases are explicitly expressed. The ocean sensitivity to different external stressors and changes in driving factors are considered in terms of derived buffering capacities or buffer factors for heterogeneous systems. Our investigations have proved that the heterogeneous aqueous systems, as ocean and seas are, manifest their buffer properties towards all their components, not only to pH, as it has been known so far, for example in respect to carbon dioxide, carbonates, phosphates, Ca2+, Mg2+, heavy metal ions etc. The derived expressions make possible to attribute changes in chemical ocean composition to different pollutants. These expressions are also useful for improving the current atmosphere-ocean-marine biogeochemistry models. The major research questions, to which the research responds, are: (i.) What kind of contamination is the most harmful for Future Ocean? (ii.) What are chemical heterogeneous processes of the heavy metal release from sediments and minerals and its impact to the ocean buffer action? (iii.) What will be the long-term response of the coastal ocean to the oceanic uptake of anthropogenic pollutants? (iv.) How will change the ocean resistance in terms of future chemical complex processes and buffer capacities and its response to external (anthropogenic) perturbations? The ocean buffer capacities towards its main components are recommended as parameters that should be included in determining the most important ocean factors which define the response of ocean environment at the technogenic loads increasing. The deduced thermodynamic expressions are valid for any combination of chemical composition, or any of the species contributing to the total concentration, as independent state variable.

Keywords: atmospheric greenhouse gas, chemical thermodynamics, external stressors, pollutants, seawater

Procedia PDF Downloads 146
115 Accelerating Personalization Using Digital Tools to Drive Circular Fashion

Authors: Shamini Dhana, G. Subrahmanya VRK Rao

Abstract:

The fashion industry is advancing towards a mindset of zero waste, personalization, creativity, and circularity. The trend of upcycling clothing and materials into personalized fashion is being demanded by the next generation. There is a need for a digital tool to accelerate the process towards mass customization. Dhana’s D/Sphere fashion technology platform uses digital tools to accelerate upcycling. In essence, advanced fashion garments can be designed and developed via reuse, repurposing, recreating activities, and using existing fabric and circulating materials. The D/Sphere platform has the following objectives: to provide (1) An opportunity to develop modern fashion using existing, finished materials and clothing without chemicals or water consumption; (2) The potential for an everyday customer and designer to use the medium of fashion for creative expression; (3) A solution to address the global textile waste generated by pre- and post-consumer fashion; (4) A solution to reduce carbon emissions, water, and energy consumption with the participation of all stakeholders; (5) An opportunity for brands, manufacturers, retailers to work towards zero-waste designs and as an alternative revenue stream. Other benefits of this alternative approach include sustainability metrics, trend prediction, facilitation of disassembly and remanufacture deep learning, and hyperheuristics for high accuracy. A design tool for mass personalization and customization utilizing existing circulating materials and deadstock, targeted to fashion stakeholders will lower environmental costs, increase revenues through up to date upcycled apparel, produce less textile waste during the cut-sew-stitch process, and provide a real design solution for the end customer to be part of circular fashion. The broader impact of this technology will result in a different mindset to circular fashion, increase the value of the product through multiple life cycles, find alternatives towards zero waste, and reduce the textile waste that ends up in landfills. This technology platform will be of interest to brands and companies that have the responsibility to reduce their environmental impact and contribution to climate change as it pertains to the fashion and apparel industry. Today, over 70% of the $3 trillion fashion and apparel industry ends up in landfills. To this extent, the industry needs such alternative techniques to both address global textile waste as well as provide an opportunity to include all stakeholders and drive circular fashion with new personalized products. This type of modern systems thinking is currently being explored around the world by the private sector, organizations, research institutions, and governments. This technological innovation using digital tools has the potential to revolutionize the way we look at communication, capabilities, and collaborative opportunities amongst stakeholders in the development of new personalized and customized products, as well as its positive impacts on society, our environment, and global climate change.

Keywords: circular fashion, deep learning, digital technology platform, personalization

Procedia PDF Downloads 67