Search results for: nonlinearity of contact and material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8292

Search results for: nonlinearity of contact and material

4272 Valorisation of Food Waste Residue into Sustainable Bioproducts

Authors: Krishmali N. Ekanayake, Brendan J. Holland, Colin J. Barrow, Rick Wood

Abstract:

Globally, more than one-third of all food produced is lost or wasted, equating to 1.3 billion tonnes per year. Around 31.2 million tonnes of food waste are generated across the production, supply, and consumption chain in Australia. Generally, the food waste management processes adopt environmental-friendly and more sustainable approaches such as composting, anerobic digestion and energy implemented technologies. However, unavoidable, and non-recyclable food waste ends up as landfilling and incineration that involve many undesirable impacts and challenges on the environment. A biorefinery approach contributes to a waste-minimising circular economy by converting food and other organic biomass waste into valuable outputs, including feeds, nutrition, fertilisers, and biomaterials. As a solution, Green Eco Technologies has developed a food waste treatment process using WasteMaster system. The system uses charged oxygen and moderate temperatures to convert food waste, without bacteria, additives, or water, into a virtually odour-free, much reduced quantity of reusable residual material. In the context of a biorefinery, the WasteMaster dries and mills food waste into a form suitable for storage or downstream extraction/separation/concentration to create products. The focus of the study is to determine the nutritional composition of WasteMaster processed residue to potential develop aquafeed ingredients. The global aquafeed industry is projected to reach a high value market in future, which has shown high demand for the aquafeed products. Therefore, food waste can be utilized for aquaculture feed development by reducing landfill. This framework will lessen the requirement of raw crops cultivation for aquafeed development and reduce the aquaculture footprint. In the present study, the nutritional elements of processed residue are consistent with the input food waste type, which has shown that the WasteMaster is not affecting the expected nutritional distribution. The macronutrient retention values of protein, lipid, and nitrogen free extract (NFE) are detected >85%, >80%, and >95% respectively. The sensitive food components including omega 3 and omega 6 fatty acids, amino acids, and phenolic compounds have been found intact in each residue material. Preliminary analysis suggests a price comparability with current aquafeed ingredient cost making the economic feasibility. The results suggest high potentiality of aquafeed development as 5 to 10% of the ingredients to replace/partially substitute other less sustainable ingredients across biorefinery setting. Our aim is to improve the sustainability of aquaculture and reduce the environmental impacts of food waste.

Keywords: biorefinery, ffood waste residue, input, wasteMaster

Procedia PDF Downloads 67
4271 Transformable Lightweight Structures for Short-term Stay

Authors: Anna Daskalaki, Andreas Ashikalis

Abstract:

This is a conceptual project that suggests an alternative type of summer camp in the forest of Rouvas in the island of Crete. Taking into account some feasts that are organised by the locals or mountaineering clubs near the church of St. John, we created a network of lightweight timber structures that serve the needs of the visitor. These structures are transformable and satisfy the need for rest, food, and sleep – this means a seat, a table and a tent are embodied in each structure. These structures blend in with the environment as they are being installed according to the following parameters: (a) the local relief, (b) the clusters of trees, and (c) the existing paths. Each timber structure could be considered as a module that could be totally independent or part of a bigger construction. The design showcases the advantages of a timber structure as it can be quite adaptive to the needs of the project, but also it is a sustainable and environmentally friendly material that can be recycled. Finally, it is important to note that the basic goal of this project is the minimum alteration of the natural environment.

Keywords: lightweight structures, timber, transformable, tent

Procedia PDF Downloads 170
4270 Clean Technology: Hype or Need to Have

Authors: Dirk V. H. K. Franco

Abstract:

For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.

Keywords: clean technologies, catastrophic, climate, possible solutions

Procedia PDF Downloads 499
4269 Sorption Properties of Hemp Cellulosic Byproducts for Petroleum Spills and Water

Authors: M. Soleimani, D. Cree, C. Chafe, L. Bates

Abstract:

The accidental release of petroleum products into the environment could have harmful consequences to our ecosystem. Different techniques such as mechanical separation, membrane filtration, incineration, treatment processes using enzymes and dispersants, bioremediation, and sorption process using sorbents have been applied for oil spill remediation. Most of the techniques investigated are too costly or do not have high enough efficiency. This study was conducted to determine the sorption performance of hemp byproducts (cellulosic materials) in terms of sorption capacity and kinetics for hydrophobic and hydrophilic fluids. In this study, heavy oil, light oil, diesel fuel, and water/water vapor were used as sorbate fluids. Hemp stalk in different forms, including loose material (hammer milled (HM) and shredded (Sh) with low bulk densities) and densified forms (pellet form (P) and crumbled pellets (CP)) with high bulk densities, were used as sorbents. The sorption/retention tests were conducted according to ASTM 726 standard. For a quick-purpose application of the sorbents, the sorption tests were conducted for 15 min, and for an ideal sorption capacity of the materials, the tests were carried out for 24 h. During the test, the sorbent material was exposed to the fluid by immersion, followed by filtration through a stainless-steel wire screen. Water vapor adsorption was carried out in a controlled environment chamber with the capability of controlling relative humidity (RH) and temperature. To determine the kinetics of sorption for each fluid and sorbent, the retention capacity also was determined intervalley for up to 24 h. To analyze the kinetics of sorption, pseudo-first-order, pseudo-second order and intraparticle diffusion models were employed with the objective of minimal deviation of the experimental results from the models. The results indicated that HM and Sh materials had the highest sorption capacity for the hydrophobic fluids with approximately 6 times compared to P and CP materials. For example, average retention values of heavy oil on HM and Sh was 560% and 470% of the mass of the sorbents, respectively. Whereas, the retention of heavy oil on P and CP was up to 85% of the mass of the sorbents. This lower sorption capacity for P and CP can be due to the less exposed surface area of these materials and compacted voids or capillary tubes in the structures. For water uptake application, HM and Sh resulted in at least 40% higher sorption capacity compared to those obtained for P and CP. On average, the performance of sorbate uptake from high to low was as follows: water, heavy oil, light oil, diesel fuel. The kinetic analysis indicated that the second-pseudo order model can describe the sorption process of the oil and diesel better than other models. However, the kinetics of water absorption was better described by the pseudo-first-order model. Acetylation of HM materials could improve its oil and diesel sorption to some extent. Water vapor adsorption of hemp fiber was a function of temperature and RH, and among the models studied, the modified Oswin model was the best model in describing this phenomenon.

Keywords: environment, fiber, petroleum, sorption

Procedia PDF Downloads 124
4268 Effect of Gamma Radiation on Bromophenol Blue Dyed Films as Dosimeter

Authors: Priyanka R. Oberoi, Chandra B. Maurya, Prakash A. Mahanwar

Abstract:

Ionizing radiation can cause a drastic change in the physical and chemical properties of the material exposed. Numerous medical devices are sterilized by ionizing radiation. In the current research paper, an attempt was made to develop precise and inexpensive polymeric film dosimeter which can be used for controlling radiation dosage. Polymeric film containing (pH sensitive dye) indicator dye Bromophenol blue (BPB) was casted to check the effect of Gamma radiation on its optical and physical properties. The film was exposed to gamma radiation at 4 kGy/hr in the range of 0 to 300 kGy at an interval of 50 kGy. Release of vinyl acetate from an emulsion on high radiation reacts with the BPB fading the color of the film from blue to light blue and then finally colorless, indicating a change in pH from basic to acidic form. The change was characterized by using CIE l*a*b*, ultra-violet spectroscopy and FT-IR respectively.

Keywords: bromophenol blue, dosimeter, gamma radiation, polymer

Procedia PDF Downloads 290
4267 Age-Related Health Problems and Needs of Elderly People Living in Rural Areas in Poland

Authors: Anna Mirczak

Abstract:

Introduction: In connection with the aging of the population and the increase in the number of people with chronic illnesses, the priority objective for public health has become not only lengthening life, but also improving quality of life in older persons, as well as maintenance of their relative independence and active participation in social life. The most important determinant of a person’s quality of life is health. According to the literature, older people with chronic illness who live in rural settings are at greater risk for poor outcomes than their urban counterparts. Furthermore research characterizes the rural elderly as having a higher incidence of sickness, dysfunction, disability, restricted mobility, and acute and chronic conditions than their urban citizens. It is dictated by the overlapping certain specific socio-economic factors typical for rural areas which include: social and geography exclusion, limited access to health care centers, and low socioeconomic status. Aim of the study: The objective of this study was to recognize health status and needs of older people living in selected rural areas in Poland and evaluate the impacts of working in the farm on their health status. Material and methods: The study was performed personally, using interviews based on the structural questionnaires, during the period from March 2011 to October 2012. The group of respondents consisted 203 people aged 65 years and over living in selected rural areas in Poland. The analysis of collected research material was performed using the statistical package SPSS 19 for Windows. The level of significance for the tested the hypotheses assumed value of 0.05. Results: The mean age of participants was 75,5 years (SD=5,7) range from 65 to 94 years. Most of the interviewees had children (89.2%) and grandchildren (83.7) and lived mainly with family members (75.9%) mostly in double (46.8%) and triple (20.8%) household. The majority of respondents (71,9%) were physical working on the farm. At the time of interview, each of the respondents reported that they had been diagnosed with at least one chronic diseases by their GP. The most common were: hypertension (67,5%), osteoarthritis (44,8%), atherosclerosis (43,3%), cataract (40,4%), arrhythmia (28,6%), diabetes mellitus (19,7%) and stomach or duodenum ulcer diseases (17,2%).The number of diseases occurring of the sample was dependent on gender and age. Significant associations were observed between working on the farm and frequency of occurrence cardiovascular diseases, the gastrointestinal tract dysfunction and sensory disorders. Conclusions: The most common causes of disability among older citizens were: chronic diseases, malnutrition and complaints about access to health services (especially to cardiologist and an ophthalmologist). Health care access and health status are a particular concern in rural areas where the population is older, has lower education and income levels, and is more likely to be living in medically underserved areas than is the case in urban areas.

Keywords: ageing, health status, older people, rural

Procedia PDF Downloads 262
4266 Early-Age Mechanical and Thermal Performance of GGBS Concrete

Authors: Kangkang Tang

Abstract:

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns, is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS also has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Keywords: thermal effect, GGBS, concrete strength and testing, sustainability

Procedia PDF Downloads 407
4265 Using Different Methods of Nanofabrication as a New Way to Activate Cement Replacement Materials in Concrete Industry

Authors: Azadeh Askarinejad, Parham Hayati, Reza Parchami, Parisa Hayati

Abstract:

One of the most important industries and building operations causing carbon dioxide emission is the cement and concrete related industries so that cement production (including direct fuel for mining and transporting raw material) consumes approximately 6 million Btus per metric-ton, and releases about 1 metric-ton of CO2. Reducing the consumption of cement with simultaneous utilizing waste materials as cement replacement is preferred for reasons of environmental protection. Blended cements consist of different supplementary cementitious materials (SCM), such as fly ash, silica fume, Ground Granulated Blast Furnace Slag (GGBFS), limestone, natural pozzolans, etc. these materials should be chemically activated to show effective cementitious properties. The present review article reports three different methods of nanofabrication that were used for activation of two types of SCMs.

Keywords: nanofabrication, cement replacement materials, activation, concrete

Procedia PDF Downloads 613
4264 Finite Element Simulation of Deep Drawing Process to Minimize Earing

Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah

Abstract:

Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.

Keywords: anisotropy, deep drawing, earing, finite element simulation

Procedia PDF Downloads 377
4263 Solution Growth of Titanium Nitride Nanowires for Implantation Application

Authors: Roaa Sait, Richard Cross

Abstract:

The synthesis and characterization of one dimensional nanostructure such as nanowires has received considerable attention. Much effort has concentrated on TiN material especially in the biological field due to its useful and unique properties in this field. Therefore, for the purpose of this project, synthesis of Titanium Nitride (TiN) nanowires (NWs) will be presented. They will be synthesised by growing titanium dioxide (Ti) NWs in an aqueous solution at low temperatures under atmospheric pressure. Then the grown nanowires will undergo a 'Nitrodation process' in which results in the formation of TiN NWs. The structure, morphology and composition of the grown nanowires will be characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Cyclic Voltammetry (CV). Obtaining TiN NWs is a challenging task since it has not been formulated before, as far as we acknowledge. This might be due to the fact that nitriding Ti NWs can be difficult in terms of optimizing experimental parameters.

Keywords: nanowires, dissolution-growth, nucleation, PECVD, deposition, spin coating, scanning electron microscopic analysis, cyclic voltammetry analysis

Procedia PDF Downloads 360
4262 A Meso Macro Model Prediction of Laminated Composite Damage Elastic Behaviour

Authors: A. Hocine, A. Ghouaoula, S. M. Medjdoub, M. Cherifi

Abstract:

The present paper proposed a meso–macro model describing the mechanical behaviour composite laminates of staking sequence [+θ/-θ]s under tensil loading. The behaviour of a layer is ex-pressed through elasticity coupled to damage. The elastic strain is due to the elasticity of the layer and can be modeled by using the classical laminate theory, and the laminate is considered as an orthotropic material. This means that no coupling effect between strain and curvature is considered. In the present work, the damage is associated to cracking of the matrix and parallel to the fibers and it being taken into account by the changes in the stiffness of the layers. The anisotropic damage is completely described by a single scalar variable and its evolution law is specified from the principle of maximum dissipation. The stress/strain relationship is investigated in plane stress loading.

Keywords: damage, behavior modeling, meso-macro model, composite laminate, membrane loading

Procedia PDF Downloads 476
4261 Characterization of Performance of Blocks Produced from Dredged Sample

Authors: Adebayo B., Omotehinse A. O.

Abstract:

The performance and characteristics of blocks produced from dredged sample was investigated. Blocks were produced using appropriate mixes of dredged sample and sharp sand. Some geotechnical properties (moisture content, grain size distribution) of the dredged sample (Igbokoda dredged sample) were determined using the British Standard. The physico-mechanical properties (water absorption, density and compressive strength) of blocks produced were evaluated. The dredged sample is classified as a silty material. Seven replacement levels of sharp sand were considered in the study (SS- Sharp Sand and DS – Dredged Sample) was done with constant amount of cement. 1- 85 % DS and 15 % SS, 2- 70 % DS and 30 % SS, 3- 55 % DS and 45 % SS, 4- 50 % DS and 50 % SS, 5- 45 % DS and 55 % SS, 6- 30 % DS and 70 % SS, 7- 15 % DS and 85 % SS and 8 – IS 100 % with cement; 9 – SS 100 % with cement) of different ages (7 days, 14 days, 21 days and 28 days) for the production of blocks. The compressive strength of the blocks produced ranges between 0.52 MPa to 3.0 MPa and considering the mixes, the highest compressive strength was found in mix of 15 % DS and 85 % SS.

Keywords: dredge sample, silt, sharp sand, block, cement

Procedia PDF Downloads 366
4260 Nickel Removal from Industrial Wastewater by Eucalyptus Leaves and Poplar Ashes

Authors: Negin Bayat, Nahid HasanZadeh

Abstract:

Effluents of different industries such as metalworking, battery industry, mining, including heavy metal are considered problematic issues for both humans and the environment. These heavy metals include cadmium, copper, zinc, nickel, chromium, cyanide, lead, etc. Different physicochemical and biological methods are used to remove heavy metals, such as sedimentation, coagulation, flotation, chemical precipitation, filtration, membrane processes (reverse osmosis and nanofiltration), ion exchange, biological methods, adsorption with activated carbon, etc. These methods are generally either expensive or ineffective. In recent years, considerable attention has been given to the removal of heavy metal ions from solution by absorption using discarded and low-cost materials. In this study, nickel removal using an adsorption process by eucalyptus powdered leaves and poplar ash was investigated. This is an applied study. The effect of various parameters on metal removal, such as pH, amount of adsorbent, contact time, and stirring speed, was studied using a discontinuous method. This research was conducted in aqueous solutions on the laboratory scale. Then, optimum absorption conditions were obtained. Then, the study was conducted on real wastewater samples. In addition, the nickel concentration in the wastewater before and after the absorption process was measured. In all experiments, the remaining nickel was measured using an atomic absorption spectrometry device at 382 nm wavelength after an appropriate time and filtration. The results showed that increasing both adsorbent and pH parameters increase the metal removal rate. Nickel removal increased at the first 60 minutes. Then, the absorption rate remained constant and reached equilibrium. A desired removal rate with 40 mg in 100 ml adsorbent solution at pH = 9.5 was observed. According to the obtained results, the best absorption rate was observed at 40 mg dose using a combination of eucalyptus leaves and poplar ash in this study, which was equal to 99.76%. Thus, this combined method can be used as an inexpensive and effective absorbent for the removal of nickel from aqueous solutions.

Keywords: absorption, wastewater, nickel, poplar ash, eucalyptus leaf, treatment

Procedia PDF Downloads 19
4259 Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12

Authors: Shi-hong Lu, Chao-xun Liu, Yi-feng Zhu

Abstract:

Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and microhardness) with different USP process parameters were measured. The research proposes that the radius of curvature of shot peened sheet increases with time and electric current decreasing, while it increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical microhardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively.

Keywords: USP forming, surface properties, radius of curvature, residual stress

Procedia PDF Downloads 517
4258 Enhanced Poly Fluoroalkyl Substances Degradation in Complex Wastewater Using Modified Continuous Flow Nonthermal Plasma Reactor

Authors: Narasamma Nippatlapallia

Abstract:

Communities across the world are desperate to get their environment free of toxic per-poly fluoroalkyl substances (PFAS) especially when these chemicals are in aqueous media. In the present study, two different chain length PFAS (PFHxA (C6), PFDA (C10)) are selected for degradation using a modified continuous flow nonthermal plasma. The results showed 82.3% PFHxA and 94.1 PFDA degradation efficiencies, respectively. The defluorination efficiency is also evaluated which is 28% and 34% for PFHxA and PFDA, respectively. The results clearly indicates that the structure of PFAS has a great impact on degradation efficiency. The effect of flow rate is studied. increase in flow rate beyond 2 mL/min, decrease in degradation efficiency of the targeted PFAS was noticed. PFDA degradation was decreased from 85% to 42%, and PFHxA was decreased to 32% from 64% with increase in flow rate from 2 to 5 mL/min. Similarly, with increase in flow rate the percentage defluorination was decreased for both C10, and C6 compounds. This observation can be attributed to mainly because of change in residence time (contact time). Real water/wastewater is a composition of various organic, and inorganic ions that may affect the activity of oxidative species such as 𝑂𝐻. radicals on the target pollutants. Therefore, it is important to consider radicals quenching chemicals to understand the efficiency of the reactor. In gas-liquid NTP discharge reactors 𝑂𝐻. , 𝑒𝑎𝑞 − , 𝑂 . , 𝑂3, 𝐻2𝑂2, 𝐻. are often considered as reactive species for oxidation and reduction of pollutants. In this work, the role played by two distinct 𝑂 .𝐻 Scavengers, ethanol and glycerol, on PFAS percentage degradation, and defluorination efficiency (i,e., fluorine removal) are measured was studied. The addition of scavenging agents to the PFAS solution diminished the PFAS degradation to different extents depending on the target compound molecular structure. In comparison with the degradation of only PFAS solution, the addition of 1.25 M ethanol inhibited C10, and C6 degradation by 8%, and 12%, respectively. This research was supported with energy efficiency, production rate, and specific yield, fluoride, and PFAS concentration analysis with respect to optimum hydraulic retention time (HRT) of the continuous flow reactor.

Keywords: wastewater, PFAS, nonthermal plasma, mineralization, defluorination

Procedia PDF Downloads 29
4257 Operational Advantages of Tungsten Inert Gas over Metal Inert Gas Welding Process

Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho

Abstract:

In this research, studies were done on the material characterization of type 304 austenitic stainless steel weld produced by TIG (Tungsten Inert Gas) and MIG (Metal Inert Gas) welding processes. This research is aimed to establish optimized process parameters that will result in a defect-free weld joint, homogenous distribution of the iron (Fe), chromium (Cr) and nickel (Ni) was observed at the welded joint of all the six samples. The welded sample produced at the current of 170 A by TIG welding process had the highest ultimate tensile strength (UTS) value of 621 MPa at the welds zone, and the welded sample produced by MIG process at the welding current of 150 A had the lowest UTS value of 568 MPa. However, it was established that TIG welding process is more appropriate for the welding of type 304 austenitic stainless steel compared to the MIG welding process.

Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding

Procedia PDF Downloads 192
4256 Transient Hygrothermoelastic Behavior in an Infinite Annular Cylinder with Internal Heat Generation by Linear Dependence Theory of Coupled Heat and Moisture

Authors: Tasneem Firdous Islam, G. D. Kedar

Abstract:

The aim of this paper is to study the effect of internal heat generation in a transient infinitely long annular cylinder subjected to hygrothermal loadings. The linear dependence theory of moisture and temperature is derived based on Dufour and Soret effect. The meticulous solutions of temperature, moisture, and thermal stresses are procured by using the Hankel transform technique. The influence of the internal heat source on the radial aspect is examined for coupled and uncoupled cases. In the present study, the composite material T300/5208 is considered, and the coupled and uncoupled cases are analyzed. The results obtained are computed numerically and illustrated graphically.

Keywords: temperature, moisture, hygrothermoelasticity, internal heat generation, annular cylinder

Procedia PDF Downloads 115
4255 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718

Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou

Abstract:

Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.

Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718

Procedia PDF Downloads 146
4254 Thermodynamic Modelling of Liquid-Liquid Equilibria (LLE) in the Separation of p-Cresol from the Coal Tar by Solvent Extraction

Authors: D. S. Fardhyanti, Megawati, W. B. Sediawan

Abstract:

Coal tar is a liquid by-product of the process of coal gasification and carbonation. This liquid oil mixture contains various kinds of useful compounds such as aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research investigates thermodynamic modelling of liquid-liquid equilibria (LLE) in the separation of phenol from the coal tar by solvent extraction. The equilibria are modeled by ternary components of Wohl, Van Laar, and Three-Suffix Margules models. The values of the parameters involved are obtained by curve-fitting to the experimental data. Based on the comparison between calculated and experimental data, it turns out that among the three models studied, the Three-Suffix Margules seems to be the best to predict the LLE of p-Cresol mixtures for those system.

Keywords: coal tar, phenol, Wohl, Van Laar, Three-Suffix Margules

Procedia PDF Downloads 258
4253 Eco-Nanofiltration Membranes: Nanofiltration Membrane Technology Utilization-Based Fiber Pineapple Leaves Waste as Solutions for Industrial Rubber Liquid Waste Processing and Fertilizer Crisis in Indonesia

Authors: Andi Setiawan, Annisa Ulfah Pristya

Abstract:

Indonesian rubber plant area reached 2.9 million hectares with productivity reached 1.38 million. High rubber productivity is directly proportional to the amount of waste produced rubber processing industry. Rubber industry would produce a negative impact on the rubber industry in the form of environmental pollution caused by waste that has not been treated optimally. Rubber industrial wastewater containing high-nitrogen compounds (nitrate and ammonia) and phosphate compounds which cause water pollution and odor problems due to the high ammonia content. On the other hand, demand for NPK fertilizers in Indonesia continues to increase from year to year and in need of ammonia and phosphate as raw material. Based on domestic demand, it takes a year to 400,000 tons of ammonia and Indonesia imports 200,000 tons of ammonia per year valued at IDR 4.2 trillion. As well, the lack of phosphoric acid to be imported from Jordan, Morocco, South Africa, the Philippines, and India as many as 225 thousand tons per year. During this time, the process of wastewater treatment is generally done with a rubber on the tank to contain the waste and then precipitated, filtered and the rest released into the environment. However, this method is inefficient and thus require high energy costs because through many stages before producing clean water that can be discharged into the river. On the other hand, Indonesia has the potential of pineapple fruit can be harvested throughout the year in all of Indonesia. In 2010, production reached 1,406,445 tons of pineapple in Indonesia or about 9.36 percent of the total fruit production in Indonesia. Increased productivity is directly proportional to the amount of pineapple waste pineapple leaves are kept continuous and usually just dumped in the ground or disposed of with other waste at the final disposal. Through Eco-Nanofiltration Membrane-Based Fiber Pineapple leaves Waste so that environmental problems can be solved efficiently. Nanofiltration is a process that uses pressure as a driving force that can be either convection or diffusion of each molecule. Nanofiltration membranes that can split water to nano size so as to separate the waste processed residual economic value that N and P were higher as a raw material for the manufacture of NPK fertilizer to overcome the crisis in Indonesia. The raw materials were used to manufacture Eco-Nanofiltration Membrane is cellulose from pineapple fiber which processed into cellulose acetate which is biodegradable and only requires a change of the membrane every 6 months. Expected output target is Green eco-technology so with nanofiltration membranes not only treat waste rubber industry in an effective, efficient and environmentally friendly but also lowers the cost of waste treatment compared to conventional methods.

Keywords: biodegradable, cellulose diacetate, fertilizers, pineapple, rubber

Procedia PDF Downloads 447
4252 Utilization of Fly Ash Amended Sewage Sludge as Sustainable Building Material

Authors: Kaling Taki, Rohit Gahlot, Manish Kumar

Abstract:

Disposal of Sewage Sludge (SS) is a big issue especially in developing nation like India, where there is no control in the dynamicity of SS produced. The present research work demonstrates the potential application of SS amended with varying percentage (0-100%) of Fly Ash (FA) for brick manufacturing as an alternative of SS management. SS samples were collected from Jaspur sewage treatment plant (Ahmedabad, India) and subjected to different preconditioning treatments: (i) atmospheric drying (ii) pulverization (iii) heat treatment in oven (110°C, moisture removal) and muffle furnace (440°C, organic content removal). Geotechnical parameters of the SS were obtained as liquid limit (52%), plastic limit (24%), shrinkage limit (10%), plasticity index (28%), differential free swell index (DFSI, 47%), silt (68%), clay (27%), organic content (5%), optimum moisture content (OMC, 20%), maximum dry density (MDD, 1.55gm/cc), specific gravity (2.66), swell pressure (57kPa) and unconfined compressive strength (UCS, 207kPa). For FA liquid limit, plastic limit and specific gravity was 44%, 0% and 2.2 respectively. Initially, for brick casting pulverized SS sample was heat treated in a muffle furnace around 440℃ (5 hours) for removal of organic matter. Later, mixing of SS, FA and water by weight ratio was done at OMC. 7*7*7 cm3 sample mold was used for casting bricks at MDD. Brick samples were then first dried in room temperature for 24 hours, then in oven at 100℃ (24 hours) and finally firing in muffle furnace for 1000℃ (10 hours). The fired brick samples were then cured for 3 days according to Indian Standards (IS) common burnt clay building bricks- specification (5th revision). The Compressive strength of brick samples (0, 10, 20, 30, 40, 50 ,60, 70, 80, 90, 100%) of FA were 0.45, 0.76, 1.89, 1.83, 4.02, 3.74, 3.42, 3.19, 2.87, 0.78 and 4.95MPa when evaluated through compressive testing machine (CTM) for a stress rate of 14MPa/min. The highest strength was obtained at 40% FA mixture i.e. 4.02MPa which is much higher than the pure SS brick sample. According to IS 1077: 1992 this combination gives strength more than 3.5 MPa and can be utilized as common building bricks. The loss in weight after firing was much higher than the oven treatment, this might be due to degradation temperature higher than 100℃. The thermal conductivity of the fired brick was obtained as 0.44Wm-1K-1, indicating better insulation properties than other reported studies. TCLP (Toxicity characteristic leaching procedure) test of Cr, Cu, Co, Fe and Ni in raw SS was found as 69, 70, 21, 39502 and 47 mg/kg. The study positively concludes that SS and FA at optimum ratio can be utilized as common building bricks such as partitioning wall and other small strength requirement works. The uniqueness of the work is it emphasizes on utilization of FA for stabilizing SS as construction material as a replacement of natural clay as reported in existing studies.

Keywords: Compressive strength, Curing, Fly Ash, Sewage Sludge.

Procedia PDF Downloads 111
4251 Development of Transmission and Packaging for Parallel Hybrid Light Commercial Vehicle

Authors: Vivek Thorat, Suhasini Desai

Abstract:

The hybrid electric vehicle is widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and low emissions at competitive costs. Retro fitment of hybrid components into a conventional vehicle for achieving better performance is the best solution so far. But retro fitment includes major modifications into a conventional vehicle with a high cost. This paper focuses on the development of a P3x hybrid prototype with rear wheel drive parallel hybrid electric Light Commercial Vehicle (LCV) with minimum and low-cost modifications. This diesel Hybrid LCV is different from another hybrid with regard to the powertrain. The additional powertrain consists of continuous contact helical gear pair followed by chain and sprocket as a coupler for traction motor. Vehicle powertrain which is designed for the intended high-speed application. This work focuses on targeting of design, development, and packaging of this unique parallel diesel-electric vehicle which is based on multimode hybrid advantages. To demonstrate the practical applicability of this transmission with P3x hybrid configuration, one concept prototype vehicle has been build integrating the transmission. The hybrid system makes it easy to retrofit existing vehicle because the changes required into the vehicle chassis are a minimum. The additional system is designed for mainly five modes of operations which are engine only mode, electric-only mode, hybrid power mode, engine charging battery mode and regenerative braking mode. Its driving performance, fuel economy and emissions are measured and results are analyzed over a given drive cycle. Finally, the output results which are achieved by the first vehicle prototype during experimental testing is carried out on a chassis dynamometer using MIDC driving cycle. The results showed that the prototype hybrid vehicle is about 27% faster than the equivalent conventional vehicle. The fuel economy is increased by 20-25% approximately compared to the conventional powertrain.

Keywords: P3x configuration, LCV, hybrid electric vehicle, ROMAX, transmission

Procedia PDF Downloads 254
4250 Study on the Influence of Cladding and Finishing Materials of Apartment Buildings on the Architectural Identity of Amman

Authors: Asil Zureigat, Ayat Odat

Abstract:

Analyzing the old and bringing in the new is an ever ongoing process in driving innovations in architecture. This paper looks at the excessive use of stone in apartment buildings in Amman and speculates on the existing possibilities of changing the cladding material. By looking at architectural exceptions present in Amman the paper seeks to make the exception, the rule by adding new materials to the architectural library of Amman and in turn, project a series of possible new identities to the existing stone scape. Through distributing a survey, conducting a photographic study on exceptional buildings and shedding light on the historical narrative of stone, the paper highlights the ways in which new finishing materials such as plaster, paint and stone variations could be introduced in an attempt to project a new architectural identity to Amman.

Keywords: architectural city identity, cladding materials, façade architecture, image of the city

Procedia PDF Downloads 225
4249 An Implementation of Meshless Method for Modeling an Elastoplasticity Coupled to Damage

Authors: Sendi Zohra, Belhadjsalah Hedi, Labergere Carl, Saanouni Khemais

Abstract:

The modeling of mechanical problems including both material and geometric nonlinearities with Finite Element Method (FEM) remains challenging. Meshless methods offer special properties to get rid of well-known drawbacks of the FEM. The main objective of Meshless Methods is to eliminate the difficulty of meshing and remeshing the entire structure by simply insertion or deletion of nodes, and alleviate other problems associated with the FEM, such as element distortion, locking and others. In this study, a robust numerical implementation of an Element Free Galerkin Method for an elastoplastic coupled to damage problem is presented. Several results issued from the numerical simulations by a DynamicExplicit resolution scheme are analyzed and critically compared with Element Finite Method results. Finally, different numerical examples are carried out to demonstrate the efficiency of this method.

Keywords: damage, dynamic explicit, elastoplasticity, isotropic hardening, meshless

Procedia PDF Downloads 295
4248 Linac Quality Controls Using An Electronic Portal Imaging Device

Authors: Domingo Planes Meseguer, Raffaele Danilo Esposito, Maria Del Pilar Dorado Rodriguez

Abstract:

Monthly quality control checks for a Radiation Therapy Linac may be performed is a simple and efficient way once they have been standardized and protocolized. On the other hand this checks, in spite of being imperatives, require a not negligible execution times in terms of machine time and operators time. Besides it must be taken into account the amount of disposable material which may be needed together with the use of commercial software for their performing. With the aim of optimizing and standardizing mechanical-geometric checks and multi leaves collimator checks, we decided to implement a protocol which makes use of the Electronic Portal Imaging Device (EPID) available on our Linacs. The user is step by step guided by the software during the whole procedure. Acquired images are automatically analyzed by our programs all of them written using only free software.

Keywords: quality control checks, linac, radiation oncology, medical physics, free software

Procedia PDF Downloads 199
4247 MWCNT/CuFe10Al2O19/Polyanilie Nanocomposite for Microwave Absorbing Applications

Authors: Pallab Bhattacharya, C. K. Das

Abstract:

Development of microwave absorbing material is a growing field of research in both the commercial and defense sector, and also to enrich the field of stealth technology. The recent work is attentive to the preparation of nanocomposite based on acid modified MWCNT, hexagonal shaped magnetic M-type hexaferrite (CuFe10Al2O19) and polyaniline. CuFe10Al2O19 was prepared by a facile chemical co-precipitation method. An in-situ approach was employed for the coating of polyaniline on MWCNT/CuFe10Al2O19 nanocomposite. The final fabrication of this nanocomposite for microwave measurements was done suitably in the matrix of thermoplastic polyurethane with 10% filler content. The nanocomposites showed the maximum reflection loss of -60.2 dB (in X-band) at the thickness of 2.5 mm with a broad absorption range in contrast to the pristine MWCNT and CuFe10Al2O19. Addition of PANI improves the microwave absorption property of the nanocomposites. The thermal stability of the prepared nanocomposites is also very high.

Keywords: magnetic materials, microwave absorption, MWCNT, nanocomposites

Procedia PDF Downloads 300
4246 Development of Knitted Seersucker Fabric for Improved Comfort Properties

Authors: Waqas Ashraf, Yasir Nawab, Haritham Khan, Habib Awais, Shahbaz Ahmad

Abstract:

Seersucker is a popular lightweight fabric widely used in men’s and women’s suiting, casual wear, children’s clothing, house robes, bed spreads and for spring and summer wear. The puckered effect generates air spaces between body and the fabric, keeping the wearer cool in hot conditions. The aim of this work was to develop knitted seersucker fabric on single cylinder weft knitting machine using plain jersey structure. Core spun cotton yarn and cotton spun yarn of same linear density were used. Core spun cotton yarn, contains cotton fiber in the sheath and elastase filament in the core. The both yarn were fed at regular interval to feeders on the machine. The loop length and yarn tension were kept constant at each feeder. The samples were then scoured and bleached. After wet processing, the fabric samples were washed and tumble dried. Parameters like loop length, stitch density and areal density were measured after conditioning these samples for 24 hours in Standard atmospheric condition. Produced sample has a regular puckering stripe along the width of the fabric with same height. The stitch density of both the flat and puckered area of relaxed fabric was found to be different .Air permeability and moisture management tests were performed. The results indicated that the knitted seersucker fabric has better wicking and moisture management properties as the flat area contact, whereas puckered area held away from the skin. Seersucker effect in knitted fabric was achieved by the difference of contraction of both sets of courses produced from different types of yarns. The seer sucker fabric produce by knitting technique is less expensive as compared to woven seer sucker fabric as there is no need of yarn preparation. The knitted seersucker fabric is more practicable for summer dresses, skirts, blouses, shirts, trousers and shorts.

Keywords: air permeability, knitted structure, moisture management, seersucker

Procedia PDF Downloads 325
4245 Role of Matric Suction in Mechanics behind Swelling Characteristics of Expansive Soils

Authors: Saloni Pandya, Nikhil Sharma, Ajanta Sachan

Abstract:

Expansive soils in the unsaturated state are part of vadose zone and encountered in several arid and semi-arid parts of the world. Influence of high temperature, low precipitation and alternate cycles of wetting and drying are responsible for the chemical weathering of rocks, which results in the formation of expansive soils. Shrinkage-swelling (expansive) soils cover a substantial portion of area in India. Damages caused by expansive soils to various geotechnical structures are alarming. Matric suction develops in unsaturated soil due to capillarity and surface tension phenomena. Matric suction influences the geometric arrangement of soil skeleton, which induces the volume change behaviour of expansive soil. In the present study, an attempt has been made to evaluate the role of matric suction in the mechanism behind swelling characteristics of expansive soil. Four different soils have been collected from different parts of India for the current research. Soil sample S1, S2, S3 and S4 were collected from Nagpur, Bharuch, Bharuch-Dahej highway and Ahmedabad respectively. DFSI (Differential Free Swell Index) of these soils samples; S1, S2, S3, and S4; were determined to be 134%, 104%, 70% and 30% respectively. X-ray diffraction analysis of samples exhibited that percentage of Montmorillonite mineral present in the soils reduced with the decrease in DFSI. A series of constant volume swell pressure tests and in-contact filter paper tests were performed to evaluate swelling pressure and matric suction of all four soils at 30% saturation and 1.46 g/cc dry density. Results indicated that soils possessing higher DFSI exhibited higher matric suction as compared to lower DFSI expansive soils. Significant influence of matric suction on swelling pressure of expansive soils was observed with varying DFSI values. Higher matric suction of soil might govern the water uptake in the interlayer spaces of Montmorillonite mineral present in expansive soil leading to crystalline swelling.

Keywords: differential free swell index, expansive soils, matric suction, swelling pressure

Procedia PDF Downloads 166
4244 Philosophical Interpretations of Spells in the Imperial Chinese Buddhism

Authors: Saiping An

Abstract:

The spells in Chinese Buddhism are often regarded by current scholarship as syllables with mystical power, as a ritual and practice of oral chanting, or as texts engraved on cultural relics. This study hopes to point out that the spell as a kind of behavior and material also provokes the believers to interpret its soteriology with various Buddhist doctrines and philosophies. It will analyze Mahāvairocana Tantra which is the main classic of the tradition regarded by the academic circles as 'Esoteric Buddhism', two annotations of these scriptures composed in the Tang and Liao Dynasty respectively, as well as some works of monks and lay Buddhists in the late Ming and early Qing dynasties. It aims to illustrate that spells in Chinese Buddhism are not simply magical voices and the words engraved on the cultural relics; they have also enriched the doctrines and thoughts of Chinese Buddhism. Their nature and soteriological methods are far more abundant than current academic circles have revealed.

Keywords: spell, Chinese Buddhism, philosophy, Buddhist doctrines

Procedia PDF Downloads 179
4243 Ill-Posed Inverse Problems in Molecular Imaging

Authors: Ranadhir Roy

Abstract:

Inverse problems arise in medical (molecular) imaging. These problems are characterized by large in three dimensions, and by the diffusion equation which models the physical phenomena within the media. The inverse problems are posed as a nonlinear optimization where the unknown parameters are found by minimizing the difference between the predicted data and the measured data. To obtain a unique and stable solution to an ill-posed inverse problem, a priori information must be used. Mathematical conditions to obtain stable solutions are established in Tikhonov’s regularization method, where the a priori information is introduced via a stabilizing functional, which may be designed to incorporate some relevant information of an inverse problem. Effective determination of the Tikhonov regularization parameter requires knowledge of the true solution, or in the case of optical imaging, the true image. Yet, in, clinically-based imaging, true image is not known. To alleviate these difficulties we have applied the penalty/modified barrier function (PMBF) method instead of Tikhonov regularization technique to make the inverse problems well-posed. Unlike the Tikhonov regularization method, the constrained optimization technique, which is based on simple bounds of the optical parameter properties of the tissue, can easily be implemented in the PMBF method. Imposing the constraints on the optical properties of the tissue explicitly restricts solution sets and can restore uniqueness. Like the Tikhonov regularization method, the PMBF method limits the size of the condition number of the Hessian matrix of the given objective function. The accuracy and the rapid convergence of the PMBF method require a good initial guess of the Lagrange multipliers. To obtain the initial guess of the multipliers, we use a least square unconstrained minimization problem. Three-dimensional images of fluorescence absorption coefficients and lifetimes were reconstructed from contact and noncontact experimentally measured data.

Keywords: constrained minimization, ill-conditioned inverse problems, Tikhonov regularization method, penalty modified barrier function method

Procedia PDF Downloads 271