Search results for: water plug
4772 Estimation Atmospheric parameters for Weather Study and Forecast over Equatorial Regions Using Ground-Based Global Position System
Authors: Asmamaw Yehun, Tsegaye Kassa, Addisu Hunegnaw, Martin Vermeer
Abstract:
There are various models to estimate the neutral atmospheric parameter values, such as in-suite and reanalysis datasets from numerical models. Accurate estimated values of the atmospheric parameters are useful for weather forecasting and, climate modeling and monitoring of climate change. Recently, Global Navigation Satellite System (GNSS) measurements have been applied for atmospheric sounding due to its robust data quality and wide horizontal and vertical coverage. The Global Positioning System (GPS) solutions that includes tropospheric parameters constitute a reliable set of data to be assimilated into climate models. The objective of this paper is, to estimate the neutral atmospheric parameters such as Wet Zenith Delay (WZD), Precipitable Water Vapour (PWV) and Total Zenith Delay (TZD) using six selected GPS stations in the equatorial regions, more precisely, the Ethiopian GPS stations from 2012 to 2015 observational data. Based on historic estimated GPS-derived values of PWV, we forecasted the PWV from 2015 to 2030. During data processing and analysis, we applied GAMIT-GLOBK software packages to estimate the atmospheric parameters. In the result, we found that the annual averaged minimum values of PWV are 9.72 mm for IISC and maximum 50.37 mm for BJCO stations. The annual averaged minimum values of WZD are 6 cm for IISC and maximum 31 cm for BDMT stations. In the long series of observations (from 2012 to 2015), we also found that there is a trend and cyclic patterns of WZD, PWV and TZD for all stations.Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour
Procedia PDF Downloads 614771 Renewable Energy Utilization for Future Sustainability: An Approach to Roof-Mounted Photovoltaic Array Systems and Domestic Rooftop Rainwater Harvesting System Implementation in a Himachal Pradesh, India
Authors: Rajkumar Ghosh, Ananya Mukhopadhyay
Abstract:
This scientific paper presents a thorough investigation into the integration of roof-mounted photovoltaic (PV) array systems and home rooftop rainwater collection systems in a remote community in Himachal Pradesh, India, with the goal of optimum utilization of natural resources for attaining sustainable living conditions by 2030. The study looks into the technical feasibility, environmental benefits, and socioeconomic impacts of this integrated method, emphasizing its ability to handle energy and water concerns in remote rural regions. This comprehensive method not only provides a sustainable source of electricity but also ensures a steady supply of clean water, promoting resilience and improving the quality of life for the village's residents. This research highlights the potential of such integrated systems in supporting sustainable conditions in rural areas through a combination of technical feasibility studies, economic analysis, and community interaction. There would be 20690 villages and 1.48 million homes (23.79% annual growth rate) in Himachal Pradesh if all residential buildings in the state had roof-mounted photovoltaic arrays to capture solar energy for power generation. The energy produced is utilized to power homes, lessening dependency on traditional fossil fuels. The same residential buildings housed domestic rooftop rainwater collection systems. Rainwater runoff from rooftops is collected and stored in tanks for use in a number of residential purposes, such as drinking, cooking, and irrigation. The gathered rainfall enhances the region's limited groundwater resources, easing the strain on local wells and aquifers. Although Himachal Pradesh of India is a Power state, the PV arrays have reduced the reliance of village on grid power and diesel generators by providing a steady source of electricity. Rooftop rainwater gathering has not only increased residential water supply but it has also lessened the burden on local groundwater resources. This helps to replenish groundwater and offers a more sustainable water supply for the town. The neighbourhood has saved money by utilizing renewable energy and rainwater gathering. Furthermore, lower fossil fuel consumption reduces greenhouse gas emissions, which helps to mitigate the effects of climate change. The integrated strategy of installing grid connected rooftop photovoltaic arrays and home rooftop rainwater collecting systems in Himachal Pradesh rural community demonstrates a feasible model for sustainable development. According to “Swaran Jayanti Energy Policy of Himachal Pradesh”, Himachal Pradesh is planned 10 GW from rooftop mode from Solar Power. Government of India provides 40% subsidy on solar panel of 1-3 kw and subsidy of Rs 6,000 per kw per year to encourage domestic consumers of Himachal Pradesh. This effort solves energy and water concerns, improves economic well-being, and helps to conserve the environment. Such integrated systems can serve as a model for sustainable development in rural areas not only in Himachal Pradesh, but also in other parts of the world where resource scarcity is a major concern. Long-term performance and scalability of such integrated systems should be the focus of future study. Efforts should also be made to duplicate this approach in other rural areas and examine its socioeconomic and environmental implications over time.Keywords: renewable energy, photovoltaic arrays, rainwater harvesting, sustainability, rural development, Himachal Pradesh, India
Procedia PDF Downloads 1004770 A Review on the Hydrologic and Hydraulic Performances in Low Impact Development-Best Management Practices Treatment Train
Authors: Fatin Khalida Abdul Khadir, Husna Takaijudin
Abstract:
Bioretention system is one of the alternatives to approach the conventional stormwater management, low impact development (LID) strategy for best management practices (BMPs). Incorporating both filtration and infiltration, initial research on bioretention systems has shown that this practice extensively decreases runoff volumes and peak flows. The LID-BMP treatment train is one of the latest LID-BMPs for stormwater treatments in urbanized watersheds. The treatment train is developed to overcome the drawbacks that arise from conventional LID-BMPs and aims to enhance the performance of the existing practices. In addition, it is also used to improve treatments in both water quality and water quantity controls as well as maintaining the natural hydrology of an area despite the current massive developments. The objective of this paper is to review the effectiveness of the conventional LID-BMPS on hydrologic and hydraulic performances through column studies in different configurations. The previous studies on the applications of LID-BMP treatment train that were developed to overcome the drawbacks of conventional LID-BMPs are reviewed and use as the guidelines for implementing this system in Universiti Teknologi Petronas (UTP) and elsewhere. The reviews on the analysis conducted for hydrologic and hydraulic performances using the artificial neural network (ANN) model are done in order to be utilized in this study. In this study, the role of the LID-BMP treatment train is tested by arranging bioretention cells in series in order to be implemented for controlling floods that occurred currently and in the future when the construction of the new buildings in UTP completed. A summary of the research findings on the performances of the system is provided which includes the proposed modifications on the designs.Keywords: bioretention system, LID-BMP treatment train, hydrological and hydraulic performance, ANN analysis
Procedia PDF Downloads 1184769 Contamination of Groundwater by Nitrates, Nitrites, Ammonium and Phosphate in the Guelma-bouchegouf Irrigated Area (Northeastern Algeria)
Authors: Benhamza Moussa, Aissaoui Marwa, Touati Mounira, Chaoui Widad
Abstract:
The Guelma-Bouchegouf irrigated area is located in the northeast of Algeria, and it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, the results of the chemical analyzes were plotted on the Piper diagram, which shows that the chemical facies are sulfate-calcium chloride and sulfate-calcium with a slight tendency to migrate to chlorinated sulphate - sodium. The predominance of sulphates in the waters of the region is geologically explained by the existence in the Guelma Basin of evaporitic deposits, which are mainly represented by rock salt and gypsum. In addition to this natural origin, we can mention the anthropogenic origin, following the use of chemical fertilizers in the Guelma-Bouchegouf irrigated area. Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. The values of the recorded conductivities vary from 1360 μs / cm (P3) to 4610 μs / cm (P10). These important values are due to dissolved salts on the one hand and the leaching of fertilizers by irrigation water on the other hand. NO₃⁻ and NH₄⁺ show little to significant pollution throughout the study area. Phosphate represents significant pollution, with excessive values far exceeding the allowable standard. With respect to ammonium, 87% of the sampling points present little pollution and 13 % significant pollution. Regarding phosphates, in the form of PO₄³⁻, groundwater in the study area represents significant pollution; all values far exceed the allowable standard.Keywords: groundwater, organic parameters, standards, Pollution
Procedia PDF Downloads 884768 Synthesis of Pendent Compartmental Ligand Derived from Polymethacrylate of 3-Formylsalicylic Acid Schiff Base and Its Application Studies
Authors: Dhivya Arumugam, Kaliyappan Thananjeyan
Abstract:
The monomer of (3-((4-(methacryloyloxy)phenylimino)methyl)-2-hydroxybenzoic acid) schiff base polymer was prepared by reacting methacryloyl chloride with imine compound derived from 3-formylsalisylic acid and 4- aminophenol. The monomer was polymerized in DMF at 70oC using benzoyl peroxide as free radical initiator. Polymer metal complex was obtained in DMF solution of polymer with aqueous solution of metal ions. The polymer and the polymer metal complex were characterized by elemental analysis and spectral studies. The elemental analysis data suggest that the metal to ligand ratio is 1:1 and hence, it acts as a binucleating compartmental ligand. The IR spectral data of these complexes suggest that the metals are coordinated through nitrogen of the imine group, the oxygen of carboxylate ion and the oxygen of the phenolic –OH group which also acts as the bridging ligand. The electronic spectra and magnetic moments of the polychelates shows that octahedral and square planar structure for Ni(II) and Cu(II) complexes respectively. X-ray diffraction studies revealed that polychelates are highly crystalline. The thermal and electrical properties, catalytic activity, structure property relationships are discussed. Further the synthesized polymer was used for metal uptake studies from waste water, which is one of the effective waste water treatment strategies. And also, the polymers and polychelates were investigated for antimicrobial activity with various microorganisms by using agar well diffusion method and the results have been discussed.Keywords: acyclic compartmental ligands, binucleating ligand, 3-formylsalicylic acid, free radical polymerization, polluting ions, polychelate
Procedia PDF Downloads 1254767 Ecological and Biological Effects of Pollution and Dredging Activities on Fisheries and Fisheries Products in Niger Delta Ecological Zone
Authors: Ikpesu, Thomas Ohwofasa, Babtunde Ilesanmi
Abstract:
The effects of anthropogenic activities on fish and fisheries products in Niger Delta water bodies were investigated. The rivers were selected based on their close proximity to contaminants and dredging activities. Three stations were chosen per river. The stations chosen to depicting downstream and upstream stations were visited and samples collected on monthly basis. The down streams stations are the polluted and heavily dredged sites, where the upstream station is far, without any evidence of pollution or human activities. During these periods, the fishes of the same species were collected and analyzed for morphological and physiological changes, after which they were returned back to the rivers. The physico-chemicals parameters of these stations were also taken. Morphological changes such as skin ulcerations and other lesions, as well as fungi infections were observed in the down streams fishes. The fish in up streams look healthier and bigger (though the age could not be affirmed) than the downstream fishes. The physico-chemical parameters between the up streams and down streams stations vary significantly (p < 0.01). These anthropogenic effects must have interfere with the normal migration pattern of these fishes, because there were changes in the composition of population and species diversity in the samples sites, with the upstream having true species diversity. The release of pollutants into the water in the Niger Delta areas may triggers off naturally occurring bio toxicity cycles and other fish poisoning. There is risk of biomagnifications of these poisons along the tropic level. This makes the normally valuable food resource dangerous for human consumption and thereby instances of human death caused by such poisoning.Keywords: anthropogenic, dredging, fisheries, niger delta, pollution, rivers
Procedia PDF Downloads 3084766 Hydrothermal Liquefaction for Astaxanthin Extraction from Wet Algae
Authors: Spandana Ramisetty, Mandan Chidambaram, Ramesh Bhujade
Abstract:
Algal biomass is not only a potential source for biocrude but also for high value chemicals like carotenoids, fatty acids, proteins, polysaccharides, vitamins etc. Astaxanthin is one such high value vital carotenoid which has extensive applications in pharmaceutical, aquaculture, poultry and cosmetic industries and expanding as dietary supplement to humans. Green microalgae Haematococcus pluvialis is identified as the richest natural source of astaxanthin and is the key source of commercial astaxanthin. Several extraction processes from wet and dry Haematococcus pluvialis biomass have been explored by researchers. Extraction with supercritical CO₂ and various physical disruption techniques like mortar and pestle, homogenization, ultrasonication and ball mill from dried algae are widely used extraction methods. However, these processes require energy intensive drying of biomass that escalates overall costs notably. From the process economics perspective, it is vital to utilize wet processing technology in order to eliminate drying costs. Hydrothermal liquefaction (HTL) is a thermo-chemical conversion process that converts wet biomass containing over 80% water to bio-products under high temperature and high pressure conditions. Astaxanthin is a lipid soluble pigment and is usually extracted along with lipid component. Mild HTL at 200°C and 60 bar has been demonstrated by researchers in a microfluidic platform achieving near complete extraction of astaxanthin from wet biomass. There is very limited work done in this field. An integrated approach of sequential HTL offers cost-effective option to extract astaxanthin/lipid from wet algal biomass without drying algae and also recovering water, minerals and nutrients. This paper reviews past work and evaluates the astaxanthin extraction processes with focus on hydrothermal extraction.Keywords: astaxanthin, extraction, high value chemicals, hydrothermal liquefaction
Procedia PDF Downloads 3074765 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging
Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs
Abstract:
Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.Keywords: biocomposites, nanocellulose, starch, wheat
Procedia PDF Downloads 2124764 Grassland Development on Evacuated Sites for Wildlife Conservation in Satpura Tiger Reserve, India
Authors: Anjana Rajput, Sandeep Chouksey, Bhaskar Bhandari, Shimpi Chourasia
Abstract:
Ecologically, grassland is any plant community dominated by grasses, whether they exist naturally or because of management practices. Most forest grasslands are anthropogenic and established plant communities planted for forage production, though some are established for soil and water conservation and wildlife habitat. In Satpura Tiger Reserve, Madhya Pradesh, India, most of the grasslands have been established on evacuated village sites. Total of 42 villages evacuated, and study was carried out in 23 sites to evaluate habitat improvement. Grasslands were classified into three categories, i.e., evacuated sites, established sites, and controlled sites. During the present study impact of various management interventions on grassland health was assessed. Grasslands assessment was done for its composition, status of palatable and non-palatable grasses, the status of herbs and legumes, status of weeds species, and carrying capacity of particular grassland. Presence of wild herbivore species in the grasslands with their abundance, availability of water resources was also assessed. Grassland productivity is dependent mainly on the biotic and abiotic components of the area, but management interventions may also play an important role in grassland composition and productivity. Variation in the status of palatable and non-palatable grasses, legumes, and weeds was recorded and found effected by management intervention practices. Overall in all the studied grasslands, the most dominant grasses recorded are Themeda quadrivalvis, Dichanthium annulatum, Ischaemum indicum, Oplismenus burmanii, Setaria pumilla, Cynodon dactylon, Heteropogon contortus, and Eragrostis tenella. Presence of wild herbivores, i.e., Chital, Sambar, Bison, Bluebull, Chinkara, Barking deer in the grassland area has been recorded through the installation of camera traps and estimated their abundance. Assessment of developed grasslands was done in terms of habitat suitability for Chital (Axis axis) and Sambar (Rusa unicolor). The parameters considered for suitability modeling are biotic and abiotic life requisite components existing in the area, i.e., density of grasses, density of legumes, availability of water, site elevation, site distance from human habitation. Findings of the present study would be useful for further grassland management and animal translocation programmes.Keywords: carrying capacity, dominant grasses, grassland, habitat suitability, management intervention, wild herbivore
Procedia PDF Downloads 1274763 Biofuel Production via Thermal Cracking of Castor Methyl Ester
Authors: Roghaieh Parvizsedghy, Seyed Mojtaba Sadrameli
Abstract:
Diminishing oil reserves, deteriorating health standards because of greenhouse gas emissions and associated environmental impacts have emerged biofuel production. Vegetable oils are proved to be valuable feedstock in these growing industries as they are renewable and potentially inexhaustible sources. Thermal Cracking of vegetable oils (triglycerides) leads to production of biofuels which are similar to fossil fuels in terms of composition but their combustion and physical properties have limits. Acrolein (very poisonous gas) and water production during cracking of triglycerides occurs because of presence of glycerin in their molecular structure. Transesterification of vegetable oil is a method to extract glycerol from triglycerides structure and produce methyl ester. In this study, castor methyl ester was used for thermal cracking in order to survey the efficiency of this method to produce bio-gasoline and bio-diesel. Thus, several experiments were designed by means of central composite method. Statistical studies showed that two reaction parameters, namely cracking temperature and feed flowrate, affect products yield significantly. At the optimized conditions (480 °C and 29 g/h) for maximum bio-gasoline production, 88.6% bio-oil was achieved which was distilled and separated as bio-gasoline (28%) and bio-diesel (48.2%). Bio-gasoline exposed a high octane number and combustion heat. Distillation curve and Reid vapor pressure of bio-gasoline fell in the criteria of standard gasoline (class AA) by ASTM D4814. Bio-diesel was compatible with standard diesel by ASTM D975. Water production was negligible and no evidence of acrolein production was distinguished. Therefore, thermal cracking of castor methyl ester could be used as a method to produce valuable biofuels.Keywords: bio-diesel, bio-gasoline, castor methyl ester, thermal cracking, transesterification
Procedia PDF Downloads 2404762 Salt-Induced Modulation in Biomass Production, Pigment Concentration, Ion Accumulation, Antioxidant System and Yield in Pea Plant
Abstract:
Salinity is one of the most important environmental factors that limit the production of crop plants to the greatest proportion than any other ones. Salt-induced changes in growth, pigment concentration, water status, malondialdehydes (MDA) and H₂O₂ content, enzymatic and non-enzymatic antioxidants, Na⁺, K⁺ content and yield attributes were examined in the glasshouse on ten pea (Pisum Sativum L.) accessions, namely ‘13240’, ‘18302’, ‘19666’, ‘19700’, ‘19776’, ‘19785’, ‘19788’, ‘20153’, ‘20155’, ‘26719’ were subjected to non-stress (0 mM NaCl) and salt stress (100 mM and150 mM NaCl) in pots containing sand medium. The results showed that salt stress at level150 mM substantially reduced biomass production, leaf water status, pigment concentration (chlorophyll ‘a’, ‘b’, ‘carotenoid content’ total chlorophyll), K⁺ content, quantum yield and yield attributes as compared to plants treated with 100 mM NaCl. Antioxidant enzymes, Catalase (CAT), Peroxidase (POD), Superoxide dismutase (SOD) and Ascorbate peroxidase (APX), proline content, total soluble protein, total amino acids, Malondialdehyde content (MDA), Hydrogen peroxide (H₂O₂) content and Na⁺ uptake markedly enhanced due to the influence of salt stress. On the basis of analyses (expressed as percent of control), of 10 accessions of pea plant, two were ranked as salt tolerant namely (‘19666’, ‘20153’), four were moderately tolerant namely (‘19700’, ‘19776’, ‘19785’, ‘20155’), and three were salt sensitive namely (‘13240’, ‘18302’, ‘26719’) at 150 mM NaCl level.Keywords: antioxidant enzymes, ion uptake, pigment concentration, salt stress, yield attributes
Procedia PDF Downloads 1074761 Upper Jurassic Foraminiferal Assemblages and Palaeoceanographical Changes in the Central Part of the East European Platform
Authors: Clementine Colpaert, Boris L. Nikitenko
Abstract:
The Upper Jurassic foraminiferal assemblages of the East European Platform have been strongly investigated through the 20th century with biostratigraphical and in smaller degree palaeoecological and palaeobiogeographical purposes. Over the Late Jurassic, the platform was a shallow epicontinental sea that extended from Tethys to the Artic through the Pechora Sea and further toward the northeast in the West Siberian Sea. Foraminiferal assemblages of the Russian Sea were strongly affected by sea-level changes and were controlled by alternated Boreal to Peritethyan influences. The central part of the East European Platform displays very rich and diverse foraminiferal assemblages. Two sections have been analyzed; the Makar'yev Section in the Moscow Depression and the Gorodishi Section in the Yl'yanovsk Depression. Based on the evolution of foraminiferal assemblages, palaeoenvironment has been reconstructed, and sea-level changes have been refined. The aim of this study is to understand palaeoceanographical changes throughout the Oxfordian – Kimmeridgian of the central part of the Russian Sea. The Oxfordian was characterized by a general transgressive event with intermittency of small regressive phases. The platform was connected toward the south with Tethys and Peritethys. During the Middle Oxfordian, opening of a pathway of warmer water from the North-Tethys region to the Boreal Realm favoured the migration of planktonic foraminifera and the appearance of new benthic taxa. It is associated with increased temperature and primary production. During the Late Oxfordian, colder water inputs associated with the microbenthic community crisis may be a response to the closure of this warm-water corridor and the disappearance of planktonic foraminifera. The microbenthic community crisis is probably due to the increased sedimentation rate in the transition from the maximum flooding surface to a second-order regressive event, increasing productivity and inputs of organic matter along with sharp decrease of oxygen into the sediment. It is following during the Early Kimmeridgian by a replacement of foraminiferal assemblages. The almost all Kimmeridgian is characterized by the abundance of many common with Boreal and Subboreal Realm. Connections toward the South began again dominant after a small regressive event recorded during the Late Kimmeridgian and associated with the abundance of many common taxa with Subboreal Realm and Peritethys such as Crimea and Caucasus taxa. Foraminiferal assemblages of the East European Platform are strongly affected by palaeoecological changes and may display a very good model for biofacies typification under Boreal and Subboreal environments. The East European Platform appears to be a key area for the understanding of Upper Jurassic big scale palaeoceanographical changes, being connected with Boreal to Peritethyan basins.Keywords: foraminifera, palaeoceanography, palaeoecology, upper jurassic
Procedia PDF Downloads 2474760 Synthesis and Characterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging Application
Authors: Adeshina Fadeyibi
Abstract:
Application of pure thermoplastic film in food packaging is greatly limited because of its poor service performance, often enhanced by the addition of organic or inorganic particles in the range of 1–100 nm. Thus, this study was conducted to develop cassava starch zinc-nanocomposite films for applications in food packaging. Three blending ratios of 1000 g cassava starch, 45–55 % (w/w) glycerol and 0–2 % (w/w) zinc nanoparticles were formulated, mixed and mechanically homogenized to form the nanocomposite. Thermoplastic were prepared, from a dispersed mixture of 24 g of the nanocomposite and 600 ml of distilled water, and heated to 90oC for 30 minutes. Plastic molds of 350 ×180 mm dimension and 8, 10 and 12 mm depths were used for film casting and drying at 60oC and 80 % RH for 24 hour. The average thicknesses of the dried films were found to be 15, 16 and 17 µm. The films were characterized based on their barrier, thermal, mechanical and structural properties. The results show that the oxygen and water vapor barrier properties increased with glycerol concentration and decreased with thickness; but the full width at half maximum (FWHM) and d- spacing increased with thickness. The higher degree of d- spacing obtained is a consequence of higher polymer intercalation and exfoliation. Also, only 2 % weight degradation was observed when the films were exposed to temperature between 30–60oC; indicating that they are thermally stable and can be used for packaging applications in the tropics. The mechanical properties of the film were higher than that of the pure thermoplastic but comparable with the LDPE films. The information on the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justifies their alternative application to pure thermoplastic and conventional films for food packaging.Keywords: synthesis, characterization, casaava Starch, nanocomposite film, packaging
Procedia PDF Downloads 1194759 Erosion Modeling of Surface Water Systems for Long Term Simulations
Authors: Devika Nair, Sean Bellairs, Ken Evans
Abstract:
Flow and erosion modeling provides an avenue for simulating the fine suspended sediment in surface water systems like streams and creeks. Fine suspended sediment is highly mobile, and many contaminants that may have been released by any sort of catchment disturbance attach themselves to these sediments. Therefore, a knowledge of fine suspended sediment transport is important in assessing contaminant transport. The CAESAR-Lisflood Landform Evolution Model, which includes a hydrologic model (TOPMODEL) and a hydraulic model (Lisflood), is being used to assess the sediment movement in tropical streams on account of a disturbance in the catchment of the creek and to determine the dynamics of sediment quantity in the creek through the years by simulating the model for future years. The accuracy of future simulations depends on the calibration and validation of the model to the past and present events. Calibration and validation of the model involve finding a combination of parameters of the model, which, when applied and simulated, gives model outputs similar to those observed for the real site scenario for corresponding input data. Calibrating the sediment output of the CAESAR-Lisflood model at the catchment level and using it for studying the equilibrium conditions of the landform is an area yet to be explored. Therefore, the aim of the study was to calibrate the CAESAR-Lisflood model and then validate it so that it could be run for future simulations to study how the landform evolves over time. To achieve this, the model was run for a rainfall event with a set of parameters, plus discharge and sediment data for the input point of the catchment, to analyze how similar the model output would behave when compared with the discharge and sediment data for the output point of the catchment. The model parameters were then adjusted until the model closely approximated the real site values of the catchment. It was then validated by running the model for a different set of events and checking that the model gave similar results to the real site values. The outcomes demonstrated that while the model can be calibrated to a greater extent for hydrology (discharge output) throughout the year, the sediment output calibration may be slightly improved by having the ability to change parameters to take into account the seasonal vegetation growth during the start and end of the wet season. This study is important to assess hydrology and sediment movement in seasonal biomes. The understanding of sediment-associated metal dispersion processes in rivers can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by present and historical metal mining.Keywords: erosion modelling, fine suspended sediments, hydrology, surface water systems
Procedia PDF Downloads 844758 Preparation and Characterization of Chitosan Nanoparticles for Delivery of Oligonucleotides
Authors: Gyati Shilakari Asthana, Abhay Asthana, Dharm Veer Kohli, Suresh Prasad Vyas
Abstract:
Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self-assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1, and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, the particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide
Procedia PDF Downloads 8494757 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property
Authors: Neha Verma, Manik Rakhra
Abstract:
Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor
Procedia PDF Downloads 1554756 Resolution Method for Unforeseen Ground Condition Problem Case in Coal Fired Steam Power Plant Project Location Adipala, Indonesia
Authors: Andi Fallahi, Bona Ryan Situmeang
Abstract:
The Construction Industry is notoriously risky. Much of the preparatory paperwork that precedes construction project can be viewed as the formulation of risk allocation between the owner and the Contractor. The Owner is taking the risk that his project will not get built on the schedule that it will not get built for what he has budgeted and that it will not be of the quality he expected. The Contractor Face a multitude of risk. One of them is an unforeseen condition at the construction site. The Owner usually has the upper hand here if the unforeseen condition occurred. Site data contained in Ground Investigation report is often of significant contractual importance in disputes related to the unforeseen ground condition. A ground investigation can never fully disclose all the details of the underground condition (Risk of an unknown ground condition can never be 100% eliminated). Adipala Coal Fired Steam Power Plant (CSFPP) 1 x 660 project is one of the large CSFPP project in Indonesia based on Engineering, Procurement, and Construction (EPC) Contract. Unforeseen Ground Condition it’s responsible by the Contractor has stipulated in the clausal of Contract. In the implementation, there’s indicated unforeseen ground condition at Circulating Water Pump House (CWPH) area which caused the Contractor should be changed the Method of Work that give big impact against Time of Completion and Cost Project. This paper tries to analyze the best way for allocating the risk between The Owner and The Contractor. All parties that allocating of sharing risk fairly can ultimately save time and money for all parties, and get the job done on schedule for the least overall cost.Keywords: unforeseen ground condition, coal fired steam power plant, circulating water pump house, Indonesia
Procedia PDF Downloads 3284755 An Ultrasonic Approach to Investigate the Effect of Aeration on Rheological Properties of Soft Biological Materials with Bubbles Embedded
Authors: Hussein M. Elmehdi
Abstract:
In this paper, we present the results of our recent experiments done to examine the effect of air bubbles, which were introduced to bio-samples during preparation, on the rheological properties of soft biological materials. To effectively achieve this, we three samples each prepared with differently. Our soft biological systems comprised of three types of flour dough systems made from different flour varieties with variable protein concentrations. The samples were investigated using ultrasonic waves operated at low frequency in transmission mode. The sample investigated included dough made from bread flour, wheat flour and all-purpose flour. During mixing, the main ingredient of the samples (the flour) was transformed into cohesive dough comprised of the continuous dough matrix and air pebbles. The rheological properties of such materials determine the quality of the end cereal product. Two ultrasonic parameters, the longitudinal velocity and attenuation coefficient were found to be very sensitive to properties such as the size of the occluded bubbles, and hence have great potential of providing quantitative evaluation of the properties of such materials. The results showed that the magnitudes of the ultrasonic velocity and attenuation coefficient peaked at optimum mixing times; the latter of which is taken as an indication of the end of the mixing process. There was an agreement between the results obtained by conventional rheology and ultrasound measurements, thus showing the potential of the use of ultrasound as an on-line quality control technique for dough-based products. The results of this work are explained with respect to the molecular changes occurring in the dough system as the mixing process proceeds; particular emphasis is placed on the presence of free water and bound water.Keywords: ultrasound, soft biological materials, velocity, attenuation
Procedia PDF Downloads 2774754 Exploring the Optimum Temperature and Diet for Growth and Gastric Emptying Time of Juvenile Malabar Blood Snapper (Lutjanus malabaricus)
Authors: Sabuj Kanti Mazumder, Mazlan Abd Ghaffar, Simon Kumar Das
Abstract:
In this study, we analyzed the effects of water temperature and diet on the growth properties and gastric emptying period of juvenile Malabar blood snapper (Lutjanus malabaricus) over a 30day experimental period. Fish were collected from a local hatchery of Pulau Ketam, Selangor, Malaysia and immediately transferred to flow-through sea water system and subjected to four different temperatures (22, 26, 30, and 34 °C) and two diets (formulated pellet and shrimp). Body weight gain, food consumption, food conversion ratio, food consumption efficiency, specific growth rate, relative growth rate, daily growth rate, and gastric emptying period were significantly influenced by temperature and diet (P<0.05). The best food conversion ratio was with the shrimp group recorded at 30°C (1.33±0.08). The highest growth rate was observed in the shrimp group at 30°C (3.97±0.57% day-1), and the lowest was observed in the formulated pellet group at 22°C (1.63±0.29% day-1). No significant difference was observed between the groups subjected to temperatures of 26 and 30°C. Similarly, the lowest gastric emptying period was detected in the shrimp group at 30°C (16h), where the proportion of meal residues in the stomach decreased from 100% to less than 8% after 12h of starvation. A significantly longer gastric emptying period was observed in the formulated pellet group at 22°C (28h). Overall, the best results were observed on shrimp group subjected to a 30°C temperature. The data obtained from this study suggest that a shrimp diet fed on L. malabaricus at 30°C will optimize the commercial production of this commercially important fish species.Keywords: aquaculture, diet, digestion rate, growth, Malabar blood snapper
Procedia PDF Downloads 2864753 Pickering Dry Emulsion System for Dissolution Enhancement of Poorly Water Soluble Drug (Fenofibrate)
Authors: Nitin Jadhav, Pradeep R. Vavia
Abstract:
Poor water soluble drugs are difficult to promote for oral drug delivery as they demonstrate poor and variable bioavailability because of its poor solubility and dissolution in GIT fluid. Nowadays lipid based formulations especially self microemulsifying drug delivery system (SMEDDS) is found as the most effective technique. With all the impressive advantages, the need of high amount of surfactant (50% - 80%) is the major drawback of SMEDDS. High concentration of synthetic surfactant is known for irritation in GIT and also interference with the function of intestinal transporters causes changes in drug absorption. Surfactant may also reduce drug activity and subsequently bioavailability due to the enhanced entrapment of drug in micelles. In chronic treatment these issues are very conspicuous due to the long exposure. In addition the liquid self microemulsifying system also suffers from stability issues. Recently one novel approach of solid stabilized micro and nano emulsion (Pickering emulsion) has very admirable properties such as high stability, absence or very less concentration of surfactant and easily converts into the dry form. So here we are exploring pickering dry emulsion system for dissolution enhancement of anti-lipemic, extremely poorly water soluble drug (Fenofibrate). Oil moiety for emulsion preparation was selected mainly on the basis of higher solubility of drug. Captex 300 was showed higher solubility for fenofibrate, hence selected as oil for emulsion. With Silica (solid stabilizer); Span 20 was selected to improve the wetting property of it. Emulsion formed by Silica and Span20 as stabilizer at the ratio 2.5:1 (silica: span 20) was found very stable at the particle size 410 nm. The prepared emulsion was further preceded for spray drying and formed microcapsule evaluated for in-vitro dissolution study, in-vivo pharmacodynamic study and characterized for DSC, XRD, FTIR, SEM, optical microscopy etc. The in vitro study exhibits significant dissolution enhancement of formulation (85 % in 45 minutes) as compared to plain drug (14 % in 45 minutes). In-vivo study (Triton based hyperlipidaemia model) exhibits significant reduction in triglyceride and cholesterol with formulation as compared to plain drug indicating increasing in fenofibrate bioavailability. DSC and XRD study exhibit loss of crystallinity of drug in microcapsule form. FTIR study exhibit chemical stability of fenofibrate. SEM and optical microscopy study exhibit spherical structure of globule coated with solid particles.Keywords: captex 300, fenofibrate, pickering dry emulsion, silica, span20, stability, surfactant
Procedia PDF Downloads 4984752 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting
Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo
Abstract:
Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells
Procedia PDF Downloads 2294751 The Relationship between Demographic, Social and Economic Characteristics and the Level of Implementation of Rural Women’s Practices to Preserve the Environment in the Governorates of Sharkia and Beni Suef
Authors: Asmaa Ahmed Nasr El-Din
Abstract:
The Egyptian countryside faces many environmental problems in the field of environmental pollution in a wide range due to the current bad behavior patterns towards the environment, where the rural people continued to follow unconscious environmental practices in addition to the lack of environmental awareness among the rural people in terms of legislation, and the damages resulting from those practices. Rural women play an important and vital role that cannot be neglected in the field of reducing environmental pollution and rationalizing environmental resources, and it is their responsibility to maintain the safety of environmental elements such as water, air, food, and soil from pollution, either through limiting their personal practice that leads to the pollution of these elements or from During the upbringing of her children on the right behaviors towards these elements to protect them from pollution and thus avoid the infection of family members with diseases arising from environmental pollution that may affect their health and production capacity. Therefore, the research aimed to identify the level of rural women’s implementation of environmental practices (land, water, air, public health, and food waste), as well as determining the nature of the relationship between the studied independent variables (demographic, social and economic characteristics) and the level of rural women’s implementation of their role in preserving the environment and identifying some women’s information sources rural environment to preserve the environment. The research was conducted in the villages of Tarout and Qam al-Arous in the governorates of Sharkia and BeniSuef, respectively, and a random sample of 333 rural women was selected using the Yamani equation. Statistical ratio analysis, arithmetic mean, Pearson simple correlation coefficient value, and T-test.Keywords: environment, rural women, EL-sharkia, banuef
Procedia PDF Downloads 1104750 Anticancer Effect of Resveratrol-Loaded Gelatin Nanoparticles in NCI-H460 Non-Small Cell Lung Carcinoma Cell Lines
Authors: N. Rajendra Prasad
Abstract:
Resveratrol (RSV), a grape phytochemical, has drawn greater attention because of its beneficial ef-fects against cancer. However, RSV has some draw-backs such as unstabilization, poor water solubility and short biological half time, which limit the utili-zation of RSV in medicine, food and pharmaceutical industries. In this study, we have encapsulated RSV in gelatin nanoparticles (GNPs) and studied its anti-cancer efficacy in NCI-H460 lung cancer cells. SEM and DLS studies have revealed that the prepared RSV-GNPs possess spherical shape with a mean diameter of 294 nm. The successful encapsulation of RSV in GNPs has been achieved by the cross-linker glutaraldehyde probably through Schiff base reaction and hydrogen bond interaction. Spectrophotometric analysis revealed that the max-imum of 93.6% of RSV has been entrapped in GNPs. In vitro drug release kinetics indicated that there was an initial burst release followed by a slow and sustained release of RSV from GNPs. The prepared RSV-GNPs exhibited very rapid and more efficient cellular uptake than free RSV. Further, RSV-GNPs treatment showed greater antiproliferative efficacy than free RSV treatment in NCI-H460 cells. It has been found that greater ROS generation, DNA damage and apoptotic incidence in RSV-GNPs treated cells than free RSV treatment. Erythrocyte aggregation assay showed that the prepared RSV-GNPs formulation elicit no toxic response. HPLC analysis revealed that RSV-GNPs was more bioavailable and had a longer half-life than free RSV. Hence, GNPs carrier system might be a promising mode for controlled delivery and for improved therapeutic index of poorly water soluble RSV.Keywords: resveratrol, coacervation, anticancer gelatin nanoparticles, lung cancer, controlled release
Procedia PDF Downloads 4474749 Assessment of Amphibian Diversity and Status of Their Habitats through Physico-Chemical Parameters in Sindh, Pakistan
Authors: Kalsoom Shaikh, Ghulam Sarwar Gachal, Saima Memon
Abstract:
Our study aimed to assess diversity and habitats of amphibian fauna in Sindh province as amphibians are among most vulnerable animals and the risk of their extinction is increasing in many parts of world mainly due to habitat degradation. Present study consisted of field surveys and laboratory analytical work; field surveys were carried out to confirm amphibian diversity and collection of water samples from their habitats, whereas laboratory work was conducted for identification of species and analysis of water quality of habitats through physico-chemical parameters. For identification of amphibian species, morphology was thoroughly examined using taxonomic key, whereas water quality was assessed via physico-chemical parameters including pH, electric conductivity (EC), total dissolved solids (TDS), total hardness (T. Hard), total alkalinity (T. Alk), chloride (Cl), carbon dioxide (CO₂), sulfate (SO₄), phosphate (PO₄), nitrite (NO₂) and nitrate (NO₃) using material and methods of analytical grade. pH value was analyzed using pH meter, whereas levels of EC and TDS were recorded using conductivity meter and TDS meter, respectively. Other parameters with exception of non-metallic parameters (SO₄, PO₄, NO₂, and NO₃) were analyzed through distinct titration methods. Concentration of non-metallic parameters was evaluated using ultra-violet spectrophotometer. This study revealed existence of four amphibian species including Hoplobatrachus tigerinus, Euphlyctis cyanophlyctis, Allopa hazarensis belonging to Family Ranidae and Bufo stomaticus (Family Bufonidae) randomly distributed in district Ghotki, Jamshoro, Kashmor, Larkana, Matiari and Shikarpur in Sindh. Assessment of aquatic habitats in different areas found value of parameters as followed: Habitats in district Ghoki (pH: 7.8 ± 0.3, EC: 2165.3 ± 712.6, TDS: 1507.0 ± 413.1, T-Hard: 416.4 ± 67.5, T. Alk: 393.4 ± 78.4, Cl: 362.4 ± 70.1, CO₂: 21.1 ± 3.5, SO₄: 429.3 ± 100.1, PO₄: 487.5 ± 122.5, NO₂: 13.7 ± 1.0, NO₃: 14.7 ± 2.5), district Jamshoro habitats (pH: 8.1 ± 0.4, EC: 2403.8 ± 55.4, TDS: 1697.2 ± 77.0, T. Hard: 548.7 ± 43.2, T. Alk: 294.4 ± 29.0, Cl: 454.7 ± 50.8 CO₂: 16.9 ± 2.4, SO₄: 713.0 ± 49.3, PO₄: 826.2 ± 53.0, NO₂: 15.2 ± 3.4, NO₃: 21.6 ± 3.7), habitats in Kashmor district (pH: 8.0 ± 0.5, EC: 2450.3 ± 610.9, TDS: 1745.3 ± 440.9, T. Hard: 624.6 ± 305.8, T. Alk: 445.7 ± 120.5, Cl: 448.9 ± 128.8, CO₂: 18.9 ± 4.5, SO₄: 619.8 ± 205.8, PO₄: 474.1 ± 94.2, NO₂: 15.2 ± 3.1, NO₃ 14.3 ± 2.6), district Larkana habitats (pH: 8.4 ± 0.4, EC: 2555.8 ± 70.3, TDS: 1784.4 ± 36.9, T. Hard: 623.0 ± 42.5, T. Alk: 329.6 ± 36.7, Cl: 614.3 ± 89.5, CO₂: 17.6 ± 1.2, SO₄: 845.1 ± 67.6, PO₄: 895.0 ± 61.4, NO₂: 13.6 ± 3.8, NO₃: 23.1 ± 2.8), district Matiari habitats (pH: 8.0 ± 0.4 EC: 2492.3 ± 928.1, TDS: 430.0 ± 161.3, T. Hard: 396.7 ± 183.3, T. Alk: 388.1 ± 97.4, Cl: 551.6 ± 73.4, CO₂: 15.8 ± 2.9, SO₄: 576.5 ± 200.0, PO₄: 434.7 ± 100.6, NO₂: 15.8 ± 2.9, NO₃: 15.2 ± 3.0) and habitats in Shikarpur district (pH: 8.1 ± 0.6, EC: 2191.7 ± 765.1, TDS: 1764.9 ± 409.2, T. Hard: 431.9 ± 68.4,T. Alk: 350.3 ± 44.3, Cl: 381.5 ± 29.5, CO₂: 18.0 ± 4.0, SO₄: 518.8 ± 97.9, PO₄: 493.6 ± 64.6, NO₂: 14.0 ± 0.8, NO₃: 16.1 ± 2.8). Values of physico-chemical parameters were found higher than permissible level of Environmental Protectiona Agency (EPA). Monthly variation in concentration of physico-chemical parameters was also prominently recorded at all the study locals. This study discovered poor diversity of amphibian fauna and condition of their habitats was also observed as pitiable. This study established base line information that may be used in execution of an effective management plan and future monitoring of amphibian diversity and their habitats in Sindh.Keywords: amphibians, diversity, habitats, Pakistan, Sindh
Procedia PDF Downloads 1644748 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management
Authors: Gokul Prasad, Pennan Chinnasamy
Abstract:
The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer
Procedia PDF Downloads 474747 A Study of Influence of Freezing on Mechanical Properties of Tendon Fascicles
Authors: Martyna Ekiert, Andrzej Mlyniec
Abstract:
Tendons are the biological structures, which primary function is to transfer force generated by muscles to the bones. Unfortunately, damages of tendons are also one of the most common injuries of the human musculoskeletal system. For the most severe cases of tendon rupture, such as the tear of calcaneus tendon or anterior cruciate ligament of the knee, a surgical procedure is the only possible way of full recovery. Tendons used as biological grafts are usually subjected to the process of deep freezing and subsequent thawing. This, in particular for multiple freezing/thawing cycles, may result in changes of tendon internal structure causing deterioration of mechanical properties of the tissue. Therefore, studies on the influence of freezing on tendons biomechanics, including internal water content in soft tissue, seems to be greatly needed. An experimental study of the influence of freezing on mechanical properties of the tendon was performed on fascicles samples dissected form bovine flexor tendons. The preparation procedure was performed with the presence of 0.9% saline solution in order to prevent an excessive tissue drying. All prepared samples were subjected to the different number of freezing/thawing cycles. For freezing part of the protocol we used -80°C temperature while for slow thawing we used fridge temperature (4°C) combined with equalizing temperatures in the standard state (25°C). After final thawing, the mechanical properties of each sample was examined using cyclic loading test. Our results may contribute for better understanding of negative effects of soft tissues freezing, resulting from abnormal thermal expansion of water. This also may help to determine the limit of freezing/thawing cycles disqualifying tissue for surgical purposes and thus help optimize tissues storage conditions.Keywords: freezing, soft tissue, tendon, bovine fascicles
Procedia PDF Downloads 2194746 Effect of Irrigation Regime and Plant Density on Chickpea (Cicer arietinum L.) Yield in a Semi-Arid Environment
Authors: Atif Naim, Faisal E. Ahmed, Sershen
Abstract:
A field experiment was conducted for two consecutive winter seasons at the Demonstration Farm of the Faculty of Agriculture, University of Khartoum, Sudan, to study effects of different levels of irrigation regime and plant density on yield of introduced small seeded (desi type) chickpea cultivar (ILC 482). The experiment was laid out in a 3X3 factorial split-plot design with 4 replications. The treatments consisted of three irrigation regimes (designated as follows: I1 = optimum irrigation, I2 = moderate stress and I3 = severe stress; this corresponded with irrigation after drainage of 50%, 75% and 100% of available water based on 70%, 60% and 50% of field capacity, respectively) assigned as main plots and three plant densities (D₁=20, D₂= 40 and D₃= 60 plants/m²) assigned as subplots. The results indicated that the yield components (number of pods per plant, number of seeds per pod, 100 seed weight), seed yield per plant, harvest index and yield per unit area of chickpea were significantly (p < 0.05) affected by irrigation regime. Decreasing irrigation regime significantly (p < 0.05) decreased all measured parameters. Alternatively, increasing plant density significantly (p < 0.05) decreased the number of pods and seed yield per plant and increased seed yield per unit area. While number of seeds per pod and harvest index were not significantly (p > 0.05) affected by plant density. Interaction between irrigation regime and plant density was also significantly (p < 0.05) affected all measured parameters of yield, except for harvest index. It could be concluded that the best irrigation regime was full irrigation (after drainage of 50% available water at 70% field capacity) and the optimal plant density was 20 plants/m² under conditions of semi-arid regions.Keywords: irrigation regime, Cicer arietinum, chickpea, plant density
Procedia PDF Downloads 2254745 Assessment of Estrogenic Contamination and Potential Risk in Taihu Lake, China
Authors: Guanghua Lu, Zhenhua Yan
Abstract:
To investigate the estrogenic contamination and potential risk of Taihu Lake, eight active biomonitoring points in the northern section of Taihu Lake were set up and located in Wangyuhe River outlet (P1), Gonghu Bay (P2 and P3), Meiliang Bay (P4 and P5), Zhushan Bay (P6 and P7) and Lake Centre (P8). A suite of biomarkers in caged fish after in situ exposure for 28 days, coupled with six selected exogenous estrogens in water, were determined in May and December 2011. Six target estrogens, namely estrone (E1), 17b-estradiol (E2), ethinylestradiol (EE2), estriol (E3), diethylstilbestrol (DES) and bisphenol A (BPA), were quantified using UPLC/MS/MS. The concentrations of E1, E2, E3, EE2, DES and BPA ranged from ND to 3.61 ng/L, ND to 17.3 ng/L, ND to 1.65 ng/L, ND to 10.2 ng/L, ND to 34.6 ng/L, and 3.95 to 207 ng/L, respectively. BPA was detected at all sampling points at all test periods, E2 was detected at 95% of samples, E1 and EE2 was detected at 75% of samples, and E3 was detected only in December 2011 with quite low concentrations. Each individual estrogen concentration measured at each sampling point was multiplied by its relative potency to gain the estradiol equivalent (EEQ). The total EEQ values in all the monitoring points ranged from 5.69 to 17.8 ng/L in May 2011, and from 4.46 to 21.1 ng/L in December 2011. E2 and EE2 were thought to be the major causal agents responsible for the estrogenic activities. Serum vitellogenin and E2 levels, gonadal DNA damage, and gonadosomatic index were measured in the in situ exposed fish. An enhanced integrated biomarker response (EIBR) was calculated and used to evaluate potential feminization risk of fish in the polluted area of Taihu Lake. EIBR index showed good agreement with the observed total EEQ levels in water. Our results indicated that Gong bay and the lake center had a low estrogenic risk, whereas Wangyuhe River, Meiliang Bay, and Zhushan Bay might present a higher risk to fish.Keywords: active biomonitoring, estrogen, feminization risk, Taihu Lake
Procedia PDF Downloads 2774744 Chitosan Stabilized Oil-in-Water Pickering Emulsion Optimized for Food-Grade Application
Authors: Ankit Patil, Tushar D. Deshpande, Yogesh M. Nimdeo
Abstract:
Pickering emulsions (PE) were developed in response to increased demand for organic, eco-friendly, and biocompatible products. These emulsions are usually stabilized by solid particles. In this research, we created chitosan-based sunflower oil-in-water (O/W) PE without the need for a surfactant. In our work, we employed chitosan, a biopolymer derived from chitin, as a stabilizer. This decision was influenced by chitosan's biocompatibility and biodegradability, as well as its anti-inflammatory and antibacterial capabilities. It also has other functional properties, such as antioxidant activity, a probiotic delivery mechanism, and the ability to encapsulate bioactive compounds. The purpose of this study was to govern key parameters that can be changed to obtain stable PE, such as the concentration of chitosan (0.3-0.5 wt.%), the concentration of oil (0.8-1 vol%), the pH of the emulsion (3-7) manipulated by the addition of 1M HCl/ 4M NaOH, and the amount of electrolyte (NaCl-0-300mM) added to increase or decrease ionic strength. A careful combination of these properties resulted in the production of the most stable and optimal PE. Particle size study found that emulsions with pH 6, 0.4% chitosan, and 300 mM salts were exceptionally stable, with droplet size 886 nm, PI of 0.1702, and zeta potential of 32.753.83 mV. It is fair to infer that when ionic strength rises, particle size, zeta potential, and PI value decrease. A lower PI value suggests that emulsion nanoparticles are more homogeneous. The addition of sodium chloride increases the ionic strength of the emulsion, facilitating the formation of more compact and ordered particle layers. These findings provide light on the creation of stimulus-responsive chitosan-based PE capable of encapsulating bioactive materials, functioning as antioxidants, and serving as food-grade emulsifiers.Keywords: pickering emulsion, biocompatibility, eco-friendly, chitosan
Procedia PDF Downloads 2384743 Composite Coatings of Piezoelectric Quartz Sensors Based on Viscous Sorbents and Casein Micelles
Authors: Shuba Anastasiia, Kuchmenko Tatiana, Umarkhanov Ruslan
Abstract:
The development of new sensitive coatings for sensors is one of the key directions in the development of sensor technologies. Recently, there has been a trend towards the creation of multicomponent coatings for sensors, which make it possible to increase the sensitivity, and specificity, and improve the performance properties of sensors. When analyzing samples with a complex matrix of biological origin, the inclusion of micelles of bioactive substances (amino and nucleic acids, peptides, proteins) in the composition of the sensor coating can also increase useful analytical information. The purpose of this work is to evaluate the analytical characteristics of composite coatings of piezoelectric quartz sensors based on medium-molecular viscous sorbents with incorporated micellar casein concentrate during the sorption of vapors of volatile organic compounds. The sorption properties of the coatings were studied by piezoelectric quartz microbalance. Macromolecular compounds (dicyclohexyl-18-crown-6, triton X-100, lanolin, micellar casein concentrate) were used as sorbents. Highly volatile organic compounds of various classes (alcohols, acids, aldehydes, esters) and water were selected as test substances. It has been established that composite coatings of sensors with the inclusion of micellar casein are more stable and selective to vapors of highly volatile compounds than to water vapors. The method and technique of forming a composite coating using molecular viscous sorbents do not affect the kinetic features of VOC sorption. When casein micelles are used, the features of kinetic sorption depend on the matrix of the coating.Keywords: piezoquartz sensor, viscous sorbents, micellar casein, coating, volatile compounds
Procedia PDF Downloads 122