Search results for: multichannel signal processing
1118 A Two Server Poisson Queue Operating under FCFS Discipline with an ‘m’ Policy
Authors: R. Sivasamy, G. Paulraj, S. Kalaimani, N.Thillaigovindan
Abstract:
For profitable businesses, queues are double-edged swords and hence the pain of long wait times in a queue often frustrates customers. This paper suggests a technical way of reducing the pain of lines through a Poisson M/M1, M2/2 queueing system operated by two heterogeneous servers with an objective of minimising the mean sojourn time of customers served under the queue discipline ‘First Come First Served with an ‘m’ policy, i.e. FCFS-m policy’. Arrivals to the system form a Poisson process of rate λ and are served by two exponential servers. The service times of successive customers at server ‘j’ are independent and identically distributed (i.i.d.) random variables and each of it is exponentially distributed with rate parameter μj (j=1, 2). The primary condition for implementing the queue discipline ‘FCFS-m policy’ on these service rates μj (j=1, 2) is that either (m+1) µ2 > µ1> m µ2 or (m+1) µ1 > µ2> m µ1 must be satisfied. Further waiting customers prefer the server-1 whenever it becomes available for service, and the server-2 should be installed if and only if the queue length exceeds the value ‘m’ as a threshold. Steady-state results on queue length and waiting time distributions have been obtained. A simple way of tracing the optimal service rate μ*2 of the server-2 is illustrated in a specific numerical exercise to equalize the average queue length cost with that of the service cost. Assuming that the server-1 has to dynamically adjust the service rates as μ1 during the system size is strictly less than T=(m+2) while μ2=0, and as μ1 +μ2 where μ2>0 if the system size is more than or equal to T, corresponding steady state results of M/M1+M2/1 queues have been deduced from those of M/M1,M2/2 queues. To conclude this investigation has a viable application, results of M/M1+M2/1 queues have been used in processing of those waiting messages into a single computer node and to measure the power consumption by the node.Keywords: two heterogeneous servers, M/M1, M2/2 queue, service cost and queue length cost, M/M1+M2/1 queue
Procedia PDF Downloads 3651117 Innovative Waste Management Practices in Remote Areas
Authors: Dolores Hidalgo, Jesús M. Martín-Marroquín, Francisco Corona
Abstract:
Municipal waste consist of a variety of items that are everyday discarded by the population. They are usually collected by municipalities and include waste generated by households, commercial activities (local shops) and public buildings. The composition of municipal waste varies greatly from place to place, being mostly related to levels and patterns of consumption, rates of urbanization, lifestyles, and local or national waste management practices. Each year, a huge amount of resources is consumed in the EU, and according to that, also a huge amount of waste is produced. The environmental problems derived from the management and processing of these waste streams are well known, and include impacts on land, water and air. The situation in remote areas is even worst. Difficult access when climatic conditions are adverse, remoteness of centralized municipal treatment systems or dispersion of the population, are all factors that make remote areas a real municipal waste treatment challenge. Furthermore, the scope of the problem increases significantly because the total lack of awareness of the existing risks in this area together with the poor implementation of advanced culture on waste minimization and recycling responsibly. The aim of this work is to analyze the existing situation in remote areas in reference to the production of municipal waste and evaluate the efficiency of different management alternatives. Ideas for improving waste management in remote areas include, for example: the implementation of self-management systems for the organic fraction; establish door-to-door collection models; promote small-scale treatment facilities or adjust the rates of waste generation thereof.Keywords: door to door collection, islands, isolated areas, municipal waste, remote areas, rural communities
Procedia PDF Downloads 2641116 Efficiency of PCR-RFLP for the Identification of Adulteries in Meat Formulation
Authors: Hela Gargouri, Nizar Moalla, Hassen Hadj Kacem
Abstract:
Meat adulteration affecting the safety and quality of food is becoming one of the main concerns of public interest across the world. The drastic consequences on the meat industry highlighted the urgent necessity to control the products' quality and to point out the complexity of both supply and processing circuits. Due to the expansion of this problem, the authentic testing of foods, particularly meat and its products, is deemed crucial to avoid unfair market competition and to protect consumers from fraudulent practices of meat adulteration. The adoption of authentication methods by the food quality-control laboratories is becoming a priority issue. However, in some developing countries, the number of food tests is still insignificant, although a variety of processed and traditional meat products are widely consumed. Little attention has been paid to provide an easy, fast, reproducible, and low-cost molecular test, which could be conducted in a basic laboratory. In the current study, the 359 bp fragment of the cytochrome-b gene was mapped by PCR-RFLP using firstly fresh biological supports (DNA and meat) and then turkey salami as an example of commercial processed meat. This technique has been established through several optimizations, namely: the selection of restriction enzymes. The digestion with BsmAI, SspI, and TaaI succeed to identify the seven included animal species when meat is formed by individual species and when the meat is a mixture of different origin. In this study, the PCR-RFLP technique using universal primer succeed to meet our needs by providing an indirect sequencing method identifying by restriction enzymes the specificities characterizing different species on the same amplicon reducing the number of potential tests.Keywords: adulteration, animal species, authentication, meat, mtDNA, PCR-RFLP
Procedia PDF Downloads 1191115 Designing Agricultural Irrigation Systems Using Drone Technology and Geospatial Analysis
Authors: Yongqin Zhang, John Lett
Abstract:
Geospatial technologies have been increasingly used in agriculture for various applications and purposes in recent years. Unmanned aerial vehicles (drones) fit the needs of farmers in farming operations, from field spraying to grow cycles and crop health. In this research, we conducted a practical research project that used drone technology to design and map optimal locations and layouts of irrigation systems for agriculture farms. We flew a DJI Mavic 2 Pro drone to acquire aerial remote sensing images over two agriculture fields in Forest, Mississippi, in 2022. Flight plans were first designed to capture multiple high-resolution images via a 20-megapixel RGB camera mounted on the drone over the agriculture fields. The Drone Deploy web application was then utilized to develop flight plans and subsequent image processing and measurements. The images were orthorectified and processed to estimate the area of the area and measure the locations of the water line and sprinkle heads. Field measurements were conducted to measure the ground targets and validate the aerial measurements. Geospatial analysis and photogrammetric measurements were performed for the study area to determine optimal layout and quantitative estimates for irrigation systems. We created maps and tabular estimates to demonstrate the locations, spacing, amount, and layout of sprinkler heads and water lines to cover the agricultural fields. This research project provides scientific guidance to Mississippi farmers for a precision agricultural irrigation practice.Keywords: drone images, agriculture, irrigation, geospatial analysis, photogrammetric measurements
Procedia PDF Downloads 821114 Application of Remote Sensing for Monitoring the Impact of Lapindo Mud Sedimentation for Mangrove Ecosystem, Case Study in Sidoarjo, East Java
Authors: Akbar Cahyadhi Pratama Putra, Tantri Utami Widhaningtyas, M. Randy Aswin
Abstract:
Indonesia as an archipelagic nation have very long coastline which have large potential marine resources, one of that is the mangrove ecosystems. Lapindo mudflow disaster in Sidoarjo, East Java requires mudflow flowed into the sea through the river Brantas and Porong. Mud material that transported by river flow is feared dangerous because they contain harmful substances such as heavy metals. This study aims to map the mangrove ecosystem seen from its density and knowing how big the impact of a disaster on the Lapindo mud to mangrove ecosystem and accompanied by efforts to address the mangrove ecosystem that maintained continuity. Mapping coastal mangrove conditions of Sidoarjo was done using remote sensing products that Landsat 7 ETM + images with dry months of recording time in 2002, 2006, 2009, and 2014. The density of mangrove detected using NDVI that uses the band 3 that is the red channel and band 4 that is near IR channel. Image processing was used to produce NDVI using ENVI 5.1 software. NDVI results were used for the detection of mangrove density is 0-1. The development of mangrove ecosystems of both area and density from year to year experienced has a significant increase. Mangrove ecosystems growths are affected by material deposition area of Lapindo mud on Porong and Brantas river estuary, where the silt is growing medium suitable mangrove ecosystem and increasingly growing. Increasing the density caused support by public awareness to prevent heavy metals in the material so that the Lapindo mud mangrove breeding done around the farm.Keywords: archipelagic nation, mangrove, Lapindo mudflow disaster, NDVI
Procedia PDF Downloads 4431113 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique
Authors: S. S. Sravanthi, Swati Ghosh Acharyya
Abstract:
Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity.Keywords: automobiles, welding, corrosion, lap joints, Micro XRD
Procedia PDF Downloads 1251112 A Phenomenological Approach to Computational Modeling of Analogy
Authors: José Eduardo García-Mendiola
Abstract:
In this work, a phenomenological approach to computational modeling of analogy processing is carried out. The paper goes through the consideration of the structure of the analogy, based on the possibility of sustaining the genesis of its elements regarding Husserl's genetic theory of association. Among particular processes which take place in order to get analogical inferences, there is one which arises crucial for enabling efficient base cases retrieval through long-term memory, namely analogical transference grounded on familiarity. In general, it has been argued that analogical reasoning is a way by which a conscious agent tries to determine or define a certain scope of objects and relationships between them using previous knowledge of other familiar domain of objects and relations. However, looking for a complete description of analogy process, a deeper consideration of phenomenological nature is required in so far, its simulation by computational programs is aimed. Also, one would get an idea of how complex it would be to have a fully computational account of the analogy elements. In fact, familiarity is not a result of a mere chain of repetitions of objects or events but generated insofar as the object/attribute or event in question is integrable inside a certain context that is taking shape as functionalities and functional approaches or perspectives of the object are being defined. Its familiarity is generated not by the identification of its parts or objective determinations as if they were isolated from those functionalities and approaches. Rather, at the core of such a familiarity between entities of different kinds lays the way they are functionally encoded. So, and hoping to make deeper inroads towards these topics, this essay allows us to consider that cognitive-computational perspectives can visualize, from the phenomenological projection of the analogy process reviewing achievements already obtained as well as exploration of new theoretical-experimental configurations towards implementation of analogy models in specific as well as in general purpose machines.Keywords: analogy, association, encoding, retrieval
Procedia PDF Downloads 1271111 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.Keywords: computer vision, drone control, keypoint detection, openpose
Procedia PDF Downloads 1891110 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System
Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu
Abstract:
Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance
Procedia PDF Downloads 4831109 Physicochemical Properties and Thermal Inactivation of Polyphenol Oxidase of African Bush Mango (Irvingia Gabonensis) Fruit
Authors: Catherine Joke Adeseko
Abstract:
Enzymatic browning is an economically important disorder that degrades organoleptic properties and prevent the consumer from purchasing fresh fruit and vegetables. Prevention and control of enzymatic browning in fruit and its product is imperative. Therefore, this study sought to investigate the catalytic effect of polyphenol oxidase (PPO) in the adverse browning of African bush mango (Irvingia gabonensis) fruit peel and pulp. PPO was isolated and purified, and its physicochemical properties, such as the effect of pH with SDS, temperature, and thermodynamic studies, which invariably led to thermal inactivation of purified PPO at 80 °C, were evaluated. The pH and temperature optima of PPO were found at 7.0 and 50, respectively. There was a gradual increase in the activity of PPO as the pH increases. However, the enzyme exhibited a higher activity at neutral pH 7.0, while enzymatic inhibition was observed at acidic region, pH 2.0. The presence of SDS at pH 5.0 downward was found to inhibit the activity of PPO from the peel and pulp of I. gabonensis. The average value of enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) obtained at 20 min of incubation and temperature 30 – 80 °C were respectively 39.93 kJ.mol-1, 431.57 J.mol-1 .K-1 and -107.99 kJ.mol-1 for peel PPO, and 37.92 kJ.mol-1, -442.51J.mol-1.K-1, and -107.22 kJ.mol-1 for pulp PPO. Thermal inactivation of PPO from I. gabonensis exhibited a reduction in catalytic activity as the temperature and duration of heat inactivation increases using catechol, reflected by an increment in k value. The half-life of PPO (t1/2) decreases as the incubation temperature increases due to the instability of the enzyme at high temperatures and was higher in pulp than peel. Both D and Z values decrease with increase in temperature. The information from this study suggests processing parameters for controlling PPO in the potential industrial application of I. gabonensis fruit in order to prolong the shelf-life of this fruit for maximum utilization.Keywords: enzymatic, browning, characterization, activity
Procedia PDF Downloads 951108 Cognitive Rehabilitation in Schizophrenia: A Review of the Indian Scenario
Authors: Garima Joshi, Pratap Sharan, V. Sreenivas, Nand Kumar, Kameshwar Prasad, Ashima N. Wadhawan
Abstract:
Schizophrenia is a debilitating disorder and is marked by cognitive impairment, which deleteriously impacts the social and professional functioning along with the quality of life of the patients and the caregivers. Often the cognitive symptoms are in their prodromal state and worsen as the illness progresses; they have proven to have a good predictive value for the prognosis of the illness. It has been shown that intensive cognitive rehabilitation (CR) leads to improvements in the healthy as well as cognitively-impaired subjects. As the majority of population in India falls in the lower to middle socio-economic status and have low education levels, using the existing packages, a majority of which are developed in the West, for cognitive rehabilitation becomes difficult. The use of technology is also restricted due to the high costs involved and the limited availability and familiarity with computers and other devices, which pose as an impedance for continued therapy. Cognitive rehabilitation in India uses a plethora of retraining methods for the patients with schizophrenia targeting the functions of attention, information processing, executive functions, learning and memory, and comprehension along with Social Cognition. Psychologists often have to follow an integrative therapy approach involving social skills training, family therapy and psychoeducation in order to maintain the gains from the cognitive rehabilitation in the long run. This paper reviews the methodologies and cognitive retaining programs used in India. It attempts to elucidate the evolution and development of methodologies used, from traditional paper-pencil based retraining to more sophisticated neuroscience-informed techniques in cognitive rehabilitation of deficits in schizophrenia as home-based or supervised and guided programs for cognitive rehabilitation.Keywords: schizophrenia, cognitive rehabilitation, neuropsychological interventions, integrated approached to rehabilitation
Procedia PDF Downloads 3661107 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions
Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang
Abstract:
Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.Keywords: computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity
Procedia PDF Downloads 1421106 Estimation Atmospheric parameters for Weather Study and Forecast over Equatorial Regions Using Ground-Based Global Position System
Authors: Asmamaw Yehun, Tsegaye Kassa, Addisu Hunegnaw, Martin Vermeer
Abstract:
There are various models to estimate the neutral atmospheric parameter values, such as in-suite and reanalysis datasets from numerical models. Accurate estimated values of the atmospheric parameters are useful for weather forecasting and, climate modeling and monitoring of climate change. Recently, Global Navigation Satellite System (GNSS) measurements have been applied for atmospheric sounding due to its robust data quality and wide horizontal and vertical coverage. The Global Positioning System (GPS) solutions that includes tropospheric parameters constitute a reliable set of data to be assimilated into climate models. The objective of this paper is, to estimate the neutral atmospheric parameters such as Wet Zenith Delay (WZD), Precipitable Water Vapour (PWV) and Total Zenith Delay (TZD) using six selected GPS stations in the equatorial regions, more precisely, the Ethiopian GPS stations from 2012 to 2015 observational data. Based on historic estimated GPS-derived values of PWV, we forecasted the PWV from 2015 to 2030. During data processing and analysis, we applied GAMIT-GLOBK software packages to estimate the atmospheric parameters. In the result, we found that the annual averaged minimum values of PWV are 9.72 mm for IISC and maximum 50.37 mm for BJCO stations. The annual averaged minimum values of WZD are 6 cm for IISC and maximum 31 cm for BDMT stations. In the long series of observations (from 2012 to 2015), we also found that there is a trend and cyclic patterns of WZD, PWV and TZD for all stations.Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour
Procedia PDF Downloads 661105 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables
Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner
Abstract:
High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line
Procedia PDF Downloads 1771104 Analysis study According Some of Physical and Mechanical Variables for Joint Wrist Injury
Authors: Nabeel Abdulkadhim Athab
Abstract:
The purpose of this research is to conduct a comparative study according analysis of programmed to some of physical and mechanical variables for joint wrist injury. As it can be through this research to distinguish between the amount of variation in the work of the joint after sample underwent rehabilitation program to improve the effectiveness of the joint and naturally restore its effectiveness. Supposed researcher that there is statistically significant differences between the results of the tests pre and post the members research sample, as a result of submission the sample to the program of rehabilitation, which led to the development of muscle activity that are working on wrist joint and this is what led to note the differences between the results of the tests pre and post. The researcher used the descriptive method. The research sample included (6) of injured players in the wrist joint, as the average age (21.68) and standard deviation (1.13) either length average (178cm) and standard deviation (2.08). And the sample as evidenced homogeneous among themselves. And where the data were collected, introduced in program for statistical processing to get to the most important conclusions and recommendations and that the most important: 1-The commitment of the sample program the qualifying process variables studied in the search for the heterogeneity of study activity and effectiveness of wrist joint for injured players. 2-The analysis programmed a high accuracy in the measurement of the research variables, and which led to the possibility of discrimination into account differences in motor ability camel and injured in the wrist joint. To search recommendations including: 1-The use of computer systems in the scientific research for the possibility of obtaining accurate research results. 2-Programming exercises rehabilitation according to an expert system for possible use by patients without reference to the person processor.Keywords: analysis of joint wrist injury, physical and mechanical variables, wrist joint, wrist injury
Procedia PDF Downloads 4331103 Time-dependent Association between Recreational Cannabinoid Use and Memory Performance in Healthy Adults: A Neuroimaging Study of Human Connectome Project
Authors: Kamyar Moradi
Abstract:
Background: There is mixed evidence regarding the association between recreational cannabinoid use and memory performance. One of the major reasons for the present controversy is different cannabinoid use-related covariates that influence the cognitive status of an individual. Adjustment of these confounding variables provides accurate insight into the real effects of cannabinoid use on memory status. In this study, we sought to investigate the association between recent recreational cannabinoid use and memory performance while correcting the model for other possible covariates such as demographic characteristics and duration, and amount of cannabinoid use. Methods: Cannabinoid users were assigned to two groups based on the results of THC urine drug screen test (THC+ group: n = 110, THC- group: n = 410). THC urine drug screen test has a high sensitivity and specificity in detecting cannabinoid use in the last 3-4 weeks. The memory domain of NIH Toolbox battery and brain MRI volumetric measures were compared between the groups while adjusting for confounding variables. Results: After Benjamini-Hochberg p-value correction, the performance in all of the measured memory outcomes, including vocabulary comprehension, episodic memory, executive function/cognitive flexibility, processing speed, reading skill, working memory, and fluid cognition, were significantly weaker in THC+ group (p values less than 0.05). Also, volume of gray matter, left supramarginal, right precuneus, right inferior/middle temporal, right hippocampus, left entorhinal, and right pars orbitalis regions were significantly smaller in THC+ group. Conclusions: this study provides evidence regarding the acute effect of recreational cannabis use on memory performance. Further studies are warranted to confirm the results.Keywords: brain MRI, cannabis, memory, recreational use, THC urine test
Procedia PDF Downloads 2021102 Gethuk Marillo: The New Product Development of Anti-Cancer Snacks Utilizing Xanthones and Anthocyanin in Mangosteen Pericarp and Tamarillo Fruit
Authors: Desi Meriyanti, Delina Puspa Rosana Firdaus, Ristia Rinati
Abstract:
Nowadays, the presence of free radicals become a big concern due to its negative impact to the body, which can triggers the formation of degenerative diseases such as cancer, heart disease cardiovascular, diabetic mellitus and others. Free radical oxidation can be prevented by the presence of antioxidants. Naturally, the human body produces its own antioxidants. Because of the free radicals exposure are so intense, especially from the environment, it is necessary to supply antioxidants needed from outside, through the consumption of functional foods with high antioxidant content. Gethuk is one of the traditional snacks in Indonesia. Gethuk is made from cassava with minimal processing such as boiling, destructing, and forming. Gethuk is classified as a familiar snack in the community, so it has a potential for developing, especially into a functional food. The low content of antioxidants in gethuk can be overcome with the development of a product called Gethuk Marillo. Gethuk Marillo is gethuk with the addition of natural antioxidants from mangosteen pericarp extract which has a high content of xanthones, these compounds are classified into flavonoids and act as antioxidants in the body. Gethuk Marillo served along with tamarillo fruit sauce which is also high in antioxidants such as anthocyanin. The combination between 300 grams gethuk Marillo and sauce contain flavonoid about 31% of human antioxidant needs per day. Gethuk Marillo called as a functional food because of high flavonoids content which can prevent degenerative diseases namely cancer, as many studies that the xanthone and anthocyanins compounds can effectively prevent the formation of cancer cells in human body.Keywords: Gethuk marillo, xanthones, anthocyanin, high antioxidants, anti-cancer
Procedia PDF Downloads 6601101 Hydrothermal Liquefaction for Astaxanthin Extraction from Wet Algae
Authors: Spandana Ramisetty, Mandan Chidambaram, Ramesh Bhujade
Abstract:
Algal biomass is not only a potential source for biocrude but also for high value chemicals like carotenoids, fatty acids, proteins, polysaccharides, vitamins etc. Astaxanthin is one such high value vital carotenoid which has extensive applications in pharmaceutical, aquaculture, poultry and cosmetic industries and expanding as dietary supplement to humans. Green microalgae Haematococcus pluvialis is identified as the richest natural source of astaxanthin and is the key source of commercial astaxanthin. Several extraction processes from wet and dry Haematococcus pluvialis biomass have been explored by researchers. Extraction with supercritical CO₂ and various physical disruption techniques like mortar and pestle, homogenization, ultrasonication and ball mill from dried algae are widely used extraction methods. However, these processes require energy intensive drying of biomass that escalates overall costs notably. From the process economics perspective, it is vital to utilize wet processing technology in order to eliminate drying costs. Hydrothermal liquefaction (HTL) is a thermo-chemical conversion process that converts wet biomass containing over 80% water to bio-products under high temperature and high pressure conditions. Astaxanthin is a lipid soluble pigment and is usually extracted along with lipid component. Mild HTL at 200°C and 60 bar has been demonstrated by researchers in a microfluidic platform achieving near complete extraction of astaxanthin from wet biomass. There is very limited work done in this field. An integrated approach of sequential HTL offers cost-effective option to extract astaxanthin/lipid from wet algal biomass without drying algae and also recovering water, minerals and nutrients. This paper reviews past work and evaluates the astaxanthin extraction processes with focus on hydrothermal extraction.Keywords: astaxanthin, extraction, high value chemicals, hydrothermal liquefaction
Procedia PDF Downloads 3091100 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame
Authors: Ardalan Sabamehr, Ashutosh Bagchi
Abstract:
Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform
Procedia PDF Downloads 2981099 Analyzing Environmental Emotive Triggers in Terrorist Propaganda
Authors: Travis Morris
Abstract:
The purpose of this study is to measure the intersection of environmental security entities in terrorist propaganda. To the best of author’s knowledge, this is the first study of its kind to examine this intersection within terrorist propaganda. Rosoka, natural language processing software and frame analysis are used to advance our understanding of how environmental frames function as emotive triggers. Violent jihadi demagogues use frames to suggest violent and non-violent solutions to their grievances. Emotive triggers are framed in a way to leverage individual and collective attitudes in psychological warfare. A comparative research design is used because of the differences and similarities that exist between two variants of violent jihadi propaganda that target western audiences. Analysis is based on salience and network text analysis, which generates violent jihadi semantic networks. Findings indicate that environmental frames are used as emotive triggers across both data sets, but also as tactical and information data points. A significant finding is that certain core environmental emotive triggers like “water,” “soil,” and “trees” are significantly salient at the aggregate level across both data sets. All environmental entities can be classified into two categories, symbolic and literal. Importantly, this research illustrates how demagogues use environmental emotive triggers in cyber space from a subcultural perspective to mobilize target audiences to their ideology and praxis. Understanding the anatomy of propaganda construction is necessary in order to generate effective counter narratives in information operations. This research advances an additional method to inform practitioners and policy makers of how environmental security and propaganda intersect.Keywords: propaganda analysis, emotive triggers environmental security, frames
Procedia PDF Downloads 1421098 Passive Attenuation of Nitrogen Species at Northern Mine Sites
Authors: Patrick Mueller, Alan Martin, Justin Stockwell, Robert Goldblatt
Abstract:
Elevated concentrations of inorganic nitrogen (N) compounds (nitrate, nitrite, and ammonia) are a ubiquitous feature to mine-influenced drainages due to the leaching of blasting residues and use of cyanide in the milling of gold ores. For many mines, the management of N is a focus for environmental protection, therefore understanding the factors controlling the speciation and behavior of N is central to effective decision making. In this paper, the passive attenuation of ammonia and nitrite is described for three northern water bodies (two lakes and a tailings pond) influenced by mining activities. In two of the water bodies, inorganic N compounds originate from explosives residues in mine water and waste rock. The third water body is a decommissioned tailings impoundment, with N compounds largely originating from the breakdown of cyanide compounds used in the processing of gold ores. Empirical observations from water quality monitoring indicate nitrification (the oxidation of ammonia to nitrate) occurs in all three waterbodies, where enrichment of nitrate occurs commensurately with ammonia depletion. The N species conversions in these systems occurred more rapidly than chemical oxidation kinetics permit, indicating that microbial mediated conversion was occurring, despite the cool water temperatures. While nitrification of ammonia and nitrite to nitrate was the primary process, in all three waterbodies nitrite was consistently present at approximately 0.5 to 2.0 % of total N, even following ammonia depletion. The persistence of trace amounts of nitrite under these conditions suggests the co-occurrence denitrification processes in the water column and/or underlying substrates. The implications for N management in mine waters are discussed.Keywords: explosives, mining, nitrification, water
Procedia PDF Downloads 3211097 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome
Authors: Agada N. Ihuoma, Nagata Yasunori
Abstract:
Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.Keywords: artificial Intelligence, backward elimination, linear regression, solar energy
Procedia PDF Downloads 1621096 Microstructure Evolution and Modelling of Shear Forming
Authors: Karla D. Vazquez-Valdez, Bradley P. Wynne
Abstract:
In the last decades manufacturing needs have been changing, leading to the study of manufacturing methods that were underdeveloped, such as incremental forming processes like shear forming. These processes use rotating tools in constant local contact with the workpiece, which is often also rotating, to generate shape. This means much lower loads to forge large parts and no need for expensive special tooling. Potential has already been established by demonstrating manufacture of high-value products, e.g., turbine and satellite parts, with high dimensional accuracy from difficult to manufacture materials. Thus, huge opportunities exist for these processes to replace the current method of manufacture for a range of high value components, e.g., eliminating lengthy machining, reducing material waste and process times; or the manufacture of a complicated shape without the development of expensive tooling. However, little is known about the exact deformation conditions during processing and why certain materials are better than others for shear forming, leading to a lot of trial and error before production. Three alloys were used for this study: Ti-54M, Jethete M154, and IN718. General Microscopy and Electron Backscatter Diffraction (EBSD) were used to measure strains and orientation maps during shear forming. A Design of Experiments (DOE) analysis was also made in order to understand the impact of process parameters in the properties of the final workpieces. Such information was the key to develop a reliable Finite Element Method (FEM) model that closely resembles the deformation paths of this process. Finally, the potential of these three materials to be shear spun was studied using the FEM model and their Forming Limit Diagram (FLD) which led to the development of a rough methodology for testing the shear spinnability of various metals.Keywords: shear forming, damage, principal strains, forming limit diagram
Procedia PDF Downloads 1671095 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 971094 Methodology and Credibility of Unmanned Aerial Vehicle-Based Cadastral Mapping
Authors: Ajibola Isola, Shattri Mansor, Ojogbane Sani, Olugbemi Tope
Abstract:
The cadastral map is the rationale behind city management planning and development. For years, cadastral maps have been produced by ground and photogrammetry platforms. Recent evolution in photogrammetry and remote sensing sensors ignites the use of Unmanned Aerial Vehicle systems (UAVs) for cadastral mapping. Despite the time-saving and multi-dimensional cost-effectiveness of the UAV platform, issues related to cadastral map accuracy are a hindrance to the wide applicability of UAVs' cadastral mapping. This study aims to present an approach leading to the generation and assessing the credibility of UAV cadastral mapping. Different sets of Red, Green, and Blue (RGB) photos were obtained from the Tarot 680-hexacopter UAV platform flown over the Universiti Putra Malaysia campus sports complex at an altitude range of 70 m, 100 m, and 250. Before flying the UAV, twenty-eight ground control points were evenly established in the study area with a real-time kinematic differential global positioning system. The second phase of the study utilizes an image-matching algorithm for photos alignment wherein camera calibration parameters and ten of the established ground control points were used for estimating the inner, relative, and absolute orientations of the photos. The resulting orthoimages are exported to ArcGIS software for digitization. Visual, tabular, and graphical assessments of the resulting cadastral maps showed a different level of accuracy. The results of the study show a gradual approach for generating UAV cadastral mapping and that the cadastral map acquired at 70 m altitude produced better results.Keywords: aerial mapping, orthomosaic, cadastral map, flying altitude, image processing
Procedia PDF Downloads 891093 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines
Authors: R. T. Aggangan
Abstract:
Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand
Procedia PDF Downloads 3381092 German for Business Lawyers: A Practical Example of a German University of Applied Sciences
Authors: Angelika Dorawa, Lena Kreppel
Abstract:
Writing in the disciplines plays a major role at Universities. On the one hand, lectures look at the substance of assignments and on the other hand, they expect students to meet professional standards of layout and proofreading. However, the integration of writing concepts into the range of subjects is new to German Universities of Applied Sciences, which are focused on technical and scientific contexts. The Westphalian University of Applied Sciences (WH) established a successful program Talente_schreiben (Writing_Talents) that was funded by the Federal Ministry of Education and Research to improve written language skills for first-semester students at the WH. Besides having the main focus on basic language skills on all language levels, we also concentrate on subject-specific programs such as writing in the disciplines and are pioneers in this field in Germany. Since 2013, we started to include learning-to-write programs since first-semester students of Business Law studies must complete a writing assignment in the form and writing style of a legal opinion in order to fulfill their undergraduate degree requirements. To support our students at its best, our course for business lawyers focuses not only on the writing skills per se, but also on teaching both, the content and the particular discourse of the discipline. Hence, a specialist in German studies and a faculty tutor share the experience of processing, producing and reflecting a text. Whereas the German studies specialist refers to the rhetorical context such as orthography, grammar etc., the tutor acts as a guide on the side referring to the course content itself. In our presentation, we want to give an insight of the practice of a business law discipline, the combination of rhetoric and composition and discuss the methodological and didactic approaches.Keywords: German for business lawyers, talent development, pioneer program, Germany
Procedia PDF Downloads 3281091 An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage
Authors: Paula Pascoal-Faria, Rúben Pereira, Elodie Pinto, Miguel Belbut, Ana Rosa, Inês Sousa, Nuno Alves
Abstract:
Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.Keywords: apple, fruit damage, impact during crop and post-crop, mechanical characterization of the apple, numerical evaluation of fruit damage, electronic device
Procedia PDF Downloads 3091090 Effects of Reclaimed Agro-Industrial Wastewater for Long-Term Irrigation of Herbaceous Crops on Soil Chemical Properties
Authors: E. Tarantino, G. Disciglio, G. Gatta, L. Frabboni, A. Libutti, A. Tarantino
Abstract:
Worldwide, about two-thirds of industrial and domestic wastewater effluent is discharged without treatment, which can cause contamination and eutrophication of the water. In particular, for Mediterranean countries, irrigation with treated wastewater would mitigate the water stress and support the agricultural sector. Changing global weather patterns will make the situation worse, due to increased susceptibility to drought, which can cause major environmental, social, and economic problems. The study was carried out in open field in an intensive agricultural area of the Apulian region in Southern Italy where freshwater resources are often scarce. As well as providing a water resource, irrigation with treated wastewater represents a significant source of nutrients for soil–plant systems. However, the use of wastewater might have further effects on soil. This study thus investigated the long-term impact of irrigation with reclaimed agro-industrial wastewater on the chemical characteristics of the soil. Two crops (processing tomato and broccoli) were cultivated in succession in Stornarella (Foggia) over four years from 2012 to 2016 using two types of irrigation water: groundwater and tertiary treated agro-industrial wastewater that had undergone an activated sludge process, sedimentation filtration, and UV radiation. Chemical analyses were performed on the irrigation waters and soil samples. The treated wastewater was characterised by high levels of several chemical parameters including TSS, EC, COD, BOD5, Na+, Ca2+, Mg2+, NH4-N, PO4-P, K+, SAR and CaCO3, as compared with the groundwater. However, despite these higher levels, the mean content of several chemical parameters in the soil did not show relevant differences between the irrigation treatments, in terms of the chemical features of the soil.Keywords: agro-industrial wastewater, broccoli, long-term re-use, tomato
Procedia PDF Downloads 3781089 Fake News Detection Based on Fusion of Domain Knowledge and Expert Knowledge
Authors: Yulan Wu
Abstract:
The spread of fake news on social media has posed significant societal harm to the public and the nation, with its threats spanning various domains, including politics, economics, health, and more. News on social media often covers multiple domains, and existing models studied by researchers and relevant organizations often perform well on datasets from a single domain. However, when these methods are applied to social platforms with news spanning multiple domains, their performance significantly deteriorates. Existing research has attempted to enhance the detection performance of multi-domain datasets by adding single-domain labels to the data. However, these methods overlook the fact that a news article typically belongs to multiple domains, leading to the loss of domain knowledge information contained within the news text. To address this issue, research has found that news records in different domains often use different vocabularies to describe their content. In this paper, we propose a fake news detection framework that combines domain knowledge and expert knowledge. Firstly, it utilizes an unsupervised domain discovery module to generate a low-dimensional vector for each news article, representing domain embeddings, which can retain multi-domain knowledge of the news content. Then, a feature extraction module uses the domain embeddings discovered through unsupervised domain knowledge to guide multiple experts in extracting news knowledge for the total feature representation. Finally, a classifier is used to determine whether the news is fake or not. Experiments show that this approach can improve multi-domain fake news detection performance while reducing the cost of manually labeling domain labels.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 78