Search results for: citizenship learning
3397 Entrepreneurship and Innovation: The Essence of Sustainable, Smart and Inclusive Economies
Authors: Isabel Martins, Orlando Pereira, Ana Martins
Abstract:
This study aims to highlight that, in changing environments, organisations need to adapt their behaviours to the demands of the new economic reality. The main purpose of this study focuses on the relationship between entrepreneurship, innovation with learning as the mediating factor. It is within this entrepreneurial spirit that literature reveals a concern with the current economic perspective towards knowledge and considers it as both the production factor par excellence and a source of entrepreneurial capacity and innovation. Entrepreneurship is a mind-set focused on identifying opportunities of economic value and translates these into the pursuit of business opportunities through innovation. It connects art and science and is a way of life, as opposed to a simple mode of business creation and profiteering. This perspective underlines the need to develop the global individual for the globalised world, the strategic key to economic and social development. The objective of this study is to explore the notion that relational capital which is established between the entrepreneur and all the other economic role players both inside and outside the organization, is indeed determinant in developing the entrepreneurial capacity. However, this depends on the organizational culture of innovation. In this context, entrepreneurship is an ‘entrepreneurial capital’ inherent in the organization that is not limited to skills needed for work. This study is a critique of extant literature review which will be also be supported by primary data collection gathered to study graduates’ perceptions towards their entrepreneurial capital. Limitations are centered on both the design and of the sample of this study. This study is of added value for both scholars and organisations in the current innovation economy.Keywords: entrepreneurship, innovation, learning, relational capital
Procedia PDF Downloads 2283396 A Valid Professional Development Framework For Supporting Science Teachers In Relation To Inquiry-Based Curriculum Units
Authors: Fru Vitalis Akuma, Jenna Koenen
Abstract:
The science education community is increasingly calling for learning experiences that mirror the work of scientists. Although inquiry-based science education is aligned with these calls, the implementation of this strategy is a complex and daunting task for many teachers. Thus, policymakers and researchers have noted the need for continued teacher Professional Development (PD) in the enactment of inquiry-based science education, coupled with effective ways of reaching the goals of teacher PD. This is a complex problem for which educational design research is suitable. The purpose at this stage of our design research is to develop a generic PD framework that is valid as the blueprint of a PD program for supporting science teachers in relation to inquiry-based curriculum units. The seven components of the framework are the goal, learning theory, strategy, phases, support, motivation, and an instructional model. Based on a systematic review of the literature on effective (science) teacher PD, coupled with developer screening, we have generated a design principle per component of the PD framework. For example, as per the associated design principle, the goal of the framework is to provide science teachers with experiences in authentic inquiry, coupled with enhancing their competencies linked to the adoption, customization and design; then the classroom implementation and the revision of inquiry-based curriculum units. The seven design principles have allowed us to synthesize the PD framework, which, coupled with the design principles, are the preliminary outcomes of the current research. We are in the process of evaluating the content and construct validity of the framework, based on nine one-on-one interviews with experts in inquiry-based classroom and teacher learning. To this end, we have developed an interview protocol with the input of eight such experts in South Africa and Germany. Using the protocol, the expert appraisal of the PD framework will involve three experts from Germany, South Africa, and Cameroon, respectively. These countries, where we originate and/or work, provide a variety of inquiry-based science education contexts, making the countries suitable in the evaluation of the generic PD framework. Based on the evaluation, we will revise the framework and its seven design principles to arrive at the final outcomes of the current research. While the final content and construct a valid version of the framework will serve as an example of the needed ways through which effective inquiry-based science teacher PD may be achieved, the final design principles will be useful to researchers when transforming the framework for use in any specific educational context. For example, in our further research, we will transform the framework to one that is practical and effective in supporting inquiry-based practical work in resource-constrained physical sciences classrooms in South Africa. Researchers in other educational contexts may similarly consider the final framework and design principles in their work. Thus, our final outcomes will inform practice and research around the support of teachers to increase the incorporation of learning experiences that mirror the work of scientists in a worldwide manner.Keywords: design principles, educational design research, evaluation, inquiry-based science education, professional development framework
Procedia PDF Downloads 1493395 Examining Language as a Crucial Factor in Determining Academic Performance: A Case of Business Education in Hong Kong
Authors: Chau So Ling
Abstract:
I.INTRODUCTION: Educators have always been interested in exploring factors that contribute to students’ academic success. It is beyond question that language, as a medium of instruction, will affect student learning. This paper tries to investigate whether language is a crucial factor in determining students’ achievement in their studies. II. BACKGROUND AND SIGNIFICANCE OF STUDY: The issue of using English as a medium of instruction in Hong Kong is a special topic because Hong Kong is a post-colonial and international city which a British colony. In such a specific language environment, researchers in the education field have always been interested in investigating students’ language proficiency and its relation to academic achievement and other related educational indicators such as motivation to learn, self-esteem, learning effectiveness, self-efficacy, etc. Along this line of thought, this study specifically focused on business education. III. METHODOLOGY: The methodology in this study involved two sequential stages, namely, a focus group interview and a data analysis. The whole study was directed towards both qualitative and quantitative aspects. The subjects of the study were divided into two groups. For the first group participating in the interview, a total of ten high school students were invited. They studied Business Studies, and their English standard was varied. The theme of the discussion was “Does English affect your learning and examination results of Business Studies?” The students were facilitated to discuss the extent to which English standard affected their learning of Business subjects and requested to rate the correlation between English and performance of Business Studies on a five-point scale. The second stage of the study involved another group of students. They were high school graduates who had taken the public examination for entering universities. A database containing their public examination results for different subjects has been obtained for the purpose of statistical analysis. Hypotheses were tested and evidence was obtained from the focus group interview to triangulate the findings. V. MAJOR FINDINGS AND CONCLUSION: By sharing of personal experience, the discussion of focus group interviews indicated that higher English standards could help the students achieve better learning and examination performance. In order to end the interview, the students were asked to indicate the correlation between English proficiency and performance of Business Studies on a five-point scale. With point one meant least correlated, ninety percent of the students gave point four for the correlation. The preliminary results illustrated that English plays an important role in students’ learning of Business Studies, or at least this was what the students perceived, which set the hypotheses for the study. After conducting the focus group interview, further evidence had to be gathered to support the hypotheses. The data analysis part tried to find out the relationship by correlating the students’ public examination results of Business Studies and levels of English standard. The results indicated a positive correlation between their English standard and Business Studies examination performance. In order to highlight the importance of the English language to the study of Business Studies, the correlation between the public examination results of other non-business subjects was also tested. Statistical results showed that language does play a role in affecting students’ performance in studying Business subjects than the other subjects. The explanation includes the dynamic subject nature, examination format and study requirements, the specialist language used, etc. Unlike Science and Geography, students in their learning process might find it more difficult to relate business concepts or terminologies to their own experience, and there are not many obvious physical or practical activities or visual aids to serve as evidence or experiments. It is well-researched in Hong Kong that English proficiency is a determinant of academic success. Other research studies verified such a notion. For example, research revealed that the more enriched the language experience, the better the cognitive performance in conceptual tasks. The ability to perform this kind of task is particularly important to students taking Business subjects. Another research was carried out in the UK, which was geared towards identifying and analyzing the reasons for underachievement across a cohort of GCSE students taking Business Studies. Results showed that weak language ability was the main barrier to raising students’ performance levels. It seemed that the interview result was successfully triangulated with data findings. Although education failure cannot be restricted to linguistic failure and language is just one of the variables to play in determining academic achievement, it is generally accepted that language does affect students’ academic performance. It is just a matter of extent. This paper provides recommendations for business educators on students’ language training and sheds light on more research possibilities in this area.Keywords: academic performance, language, learning, medium of instruction
Procedia PDF Downloads 1213394 A Study of the Effect of the Flipped Classroom on Mixed Abilities Classes in Compulsory Secondary Education in Italy
Authors: Giacoma Pace
Abstract:
The research seeks to evaluate whether students with impairments can achieve enhanced academic progress by actively engaging in collaborative problem-solving activities with teachers and peers, to overcome the obstacles rooted in socio-economic disparities. Furthermore, the research underscores the significance of fostering students' self-awareness regarding their learning process and encourages teachers to adopt a more interactive teaching approach. The research also posits that reducing conventional face-to-face lessons can motivate students to explore alternative learning methods, such as collaborative teamwork and peer education within the classroom. To address socio-cultural barriers it is imperative to assess their internet access and possession of technological devices, as these factors can contribute to a digital divide. The research features a case study of a Flipped Classroom Learning Unit, administered to six third-year high school classes: Scientific Lyceum, Technical School, and Vocational School, within the city of Turin, Italy. Data are about teachers and the students involved in the case study, some impaired students in each class, level of entry, students’ performance and attitude before using Flipped Classrooms, level of motivation, family’s involvement level, teachers’ attitude towards Flipped Classroom, goal obtained, the pros and cons of such activities, technology availability. The selected schools were contacted; meetings for the English teachers to gather information about their attitude and knowledge of the Flipped Classroom approach. Questionnaires to teachers and IT staff were administered. The information gathered, was used to outline the profile of the subjects involved in the study and was further compared with the second step of the study made up of a study conducted with the classes of the selected schools. The learning unit is the same, structure and content are decided together with the English colleagues of the classes involved. The pacing and content are matched in every lesson and all the classes participate in the same labs, use the same materials, homework, same assessment by summative and formative testing. Each step follows a precise scheme, in order to be as reliable as possible. The outcome of the case study will be statistically organised. The case study is accompanied by a study on the literature concerning EFL approaches and the Flipped Classroom. Document analysis method was employed, i.e. a qualitative research method in which printed and/or electronic documents containing information about the research subject are reviewed and evaluated with a systematic procedure. Articles in the Web of Science Core Collection, Education Resources Information Center (ERIC), Scopus and Science Direct databases were searched in order to determine the documents to be examined (years considered 2000-2022).Keywords: flipped classroom, impaired, inclusivity, peer instruction
Procedia PDF Downloads 533393 Avoidance and Selectivity in the Acquisition of Arabic as a Second/Foreign Language
Authors: Abeer Heider
Abstract:
This paper explores and classifies the different kinds of avoidances that students commonly make in the acquisition of Arabic as a second/foreign language, and suggests specific strategies to help students lessen their avoidance trends in hopes of streamlining the learning process. Students most commonly use avoidance strategies in grammar, and word choice. These different types of strategies have different implications and naturally require different approaches. Thus the question remains as to the most effective way to help students improve their Arabic, and how teachers can efficiently utilize these techniques. It is hoped that this research will contribute to understand the role of avoidance in the field of the second language acquisition in general, and as a type of input. Yet some researchers also note that similarity between L1 and L2 may be problematic as well since the learner may doubt that such similarity indeed exists and consequently avoid the identical constructions or elements (Jordens, 1977; Kellermann, 1977, 1978, 1986). In an effort to resolve this issue, a case study is being conducted. The present case study attempts to provide a broader analysis of what is acquired than is usually the case, analyzing the learners ‘accomplishments in terms of three –part framework of the components of communicative competence suggested by Michele Canale: grammatical competence, sociolinguistic competence and discourse competence. The subjects of this study are 15 students’ 22th year who came to study Arabic at Qatar University of Cairo. The 15 students are in the advanced level. They were complete intermediate level in Arabic when they arrive in Qatar for the first time. The study used discourse analytic method to examine how the first language affects students’ production and output in the second language, and how and when students use avoidance methods in their learning. The study will be conducted through Fall 2015 through analyzing audio recordings that are recorded throughout the entire semester. The recordings will be around 30 clips. The students are using supplementary listening and speaking materials. The group will be tested at the end of the term to assess any measurable difference between the techniques. Questionnaires will be administered to teachers and students before and after the semester to assess any change in attitude toward avoidance and selectivity methods. Responses to these questionnaires are analyzed and discussed to assess the relative merits of the aforementioned strategies to avoidance and selectivity to further support on. Implications and recommendations for teacher training are proposed.Keywords: the second language acquisition, learning languages, selectivity, avoidance
Procedia PDF Downloads 2773392 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm
Procedia PDF Downloads 3273391 Impact of Electric Vehicles on Energy Consumption and Environment
Authors: Amela Ajanovic, Reinhard Haas
Abstract:
Electric vehicles (EVs) are considered as an important means to cope with current environmental problems in transport. However, their high capital costs and limited driving ranges state major barriers to a broader market penetration. The core objective of this paper is to investigate the future market prospects of various types of EVs from an economic and ecological point of view. Our method of approach is based on the calculation of total cost of ownership of EVs in comparison to conventional cars and a life-cycle approach to assess the environmental benignity. The most crucial parameters in this context are km driven per year, depreciation time of the car and interest rate. The analysis of future prospects it is based on technological learning regarding investment costs of batteries. The major results are the major disadvantages of battery electric vehicles (BEVs) are the high capital costs, mainly due to the battery, and a low driving range in comparison to conventional vehicles. These problems could be reduced with plug-in hybrids (PHEV) and range extenders (REXs). However, these technologies have lower CO₂ emissions in the whole energy supply chain than conventional vehicles, but unlike BEV they are not zero-emission vehicles at the point of use. The number of km driven has a higher impact on total mobility costs than the learning rate. Hence, the use of EVs as taxis and in car-sharing leads to the best economic performance. The most popular EVs are currently full hybrid EVs. They have only slightly higher costs and similar operating ranges as conventional vehicles. But since they are dependent on fossil fuels, they can only be seen as energy efficiency measure. However, they can serve as a bridging technology, as long as BEVs and fuel cell vehicle do not gain high popularity, and together with PHEVs and REX contribute to faster technological learning and reduction in battery costs. Regarding the promotion of EVs, the best results could be reached with a combination of monetary and non-monetary incentives, as in Norway for example. The major conclusion is that to harvest the full environmental benefits of EVs a very important aspect is the introduction of CO₂-based fuel taxes. This should ensure that the electricity for EVs is generated from renewable energy sources; otherwise, total CO₂ emissions are likely higher than those of conventional cars.Keywords: costs, mobility, policy, sustainability,
Procedia PDF Downloads 2253390 Institutional Effectiveness in Fostering Student Retention and Success in First Year
Authors: Naziema B. Jappie
Abstract:
The objective of this study is to examine the relationship between college readiness characteristics and learning outcome assessment scores. About this, it is important to examine the first-year retention and success rate. In order to undertake this study, it will be necessary to look at proficiency levels on general and domain-specific knowledge and skills reflected on national benchmark test scores (NBT), in-college interventions and course-taking patterns. Preliminary results based on data from more than 1000 students suggest that there is a positive association between NBT scores and students’ 1st-year college GPA and their retention status. For example, 63% of students with a proficient level of math skills in the NBT had the highest level of GPA at the end of 1st-year of college in comparison to 56% of those who started with a primary or intermediate level, respectively. The retention rates among those with proficiency levels were also higher than those with basic or intermediate levels (98% vs. 93% and 88%, respectively). By the end of 3rd year in college, students with intermediate or proficient entering NBT math skills had 7% and 8% of dropout rate, compared to 14% for those started at primary level; a greater percentage of students qualified by the end of 3rd-year qualified among proficient students than that among intermediate or basic level students (50% vs. 44% and 27% respectively). The findings of this study added knowledge to the field in South Africa and are expected to help stakeholders and policymakers to better understand college learning and challenges for students with disadvantaged backgrounds and provide empirical evidence in support of related practices and policies.Keywords: assessment, data analysis, performance, proficiency, policy, student success
Procedia PDF Downloads 1323389 Nursing Students' Experience of Using Electronic Health Record System in Clinical Placements
Authors: Nurten Tasdemir, Busra Baloglu, Zeynep Cingoz, Can Demirel, Zeki Gezer, Barıs Efe
Abstract:
Student nurses are increasingly exposed to technology in the workplace after graduation with the growing numbers of electric health records (EHRs), handheld computers, barcode scanner medication dispensing systems, and automatic capture of patient data such as vital signs. Internationally, electronic health records (EHRs) systems are being implemented and evaluated. Students will inevitably encounter EHRs in the clinical learning environment and their professional practice. Nursing students must develop competency in the use of EHR. Aim: The study aimed to examine nursing students’ experiences of learning to use electronic health records (EHR) in clinical placements. Method: This study adopted a descriptive approach. The study population consisted of second and third-year nursing students at the Zonguldak School of Health in the West Black Sea Region of Turkey; the study was conducted during the 2015–2016 academic year. The sample consisted of 315 (74.1% of 425 students) nursing students who volunteered to participate. The students, who were involved in clinical practice, were invited to participate in the study Data were collected by a questionnaire designed by the researchers based on the relevant literature. Data were analyzed descriptively using the Statistical Package for Social Sciences (SPSS) for Windows version 16.0. The data are presented as means, standard deviations, and percentages. Approval for the study was obtained from the Ethical Committee of the University (Reg. Number: 29/03/2016/112) and the director of Nursing Department. Findings: A total of 315 students enrolled in this study, for a response rate of 74.1%. The mean age of the sample was 22.24 ± 1.37 (min: 19, max: 32) years, and most participants (79.7%) were female. Most of the nursing students (82.3%) stated that they use information technologies in clinical practice. Nearly half of the students (42.5%) reported that they have not accessed to EHR system. In addition, 61.6% of the students reported that insufficient computers available in clinical placement. Of the students, 84.7% reported that they prefer to have patient information from EHR system, and 63.8% of them found more effective to preparation for the clinical reporting. Conclusion: This survey indicated that nursing students experience to learn about EHR systems in clinical placements. For more effective learning environment nursing education should prepare nursing students for EHR systems in their educational life.Keywords: electronic health record, clinical placement, nursing student, nursing education
Procedia PDF Downloads 2913388 How Technology Can Help Teachers in Reflective Practice
Authors: Ambika Perisamy, Asyriawati binte Mohd Hamzah
Abstract:
The focus of this presentation is to discuss teacher professional development (TPD) through the use of technology. TPD is necessary to prepare teachers for future challenges they will face throughout their careers and to develop new skills and good teaching practices. We will also be discussing current issues in embracing technology in the field of early childhood education and the impact on the professional development of teachers. Participants will also learn to apply teaching and learning practices through the use of technology. One major objective of this presentation is to coherently fuse practical, technology and theoretical content. The process begins by concretizing a set of preconceived ideas which need to be joined with theoretical justifications found in the literature. Technology can make observations fairer and more reliable, easier to implement, and more preferable to teachers and principals. Technology will also help principals to improve classroom observations of teachers and ultimately improve teachers’ continuous professional development. Video technology allows the early childhood teachers to record and keep the recorded video for reflection at any time. This will also provide opportunities for her to share with her principals for professional dialogues and continuous professional development plans. A total of 10 early childhood teachers and 4 principals were involved in these efforts which identified and analyze the gaps in the quality of classroom observations and its co relation to developing teachers as reflective practitioners. The methodology used involves active exploration with video technology recordings, conversations, interviews and authentic teacher child interactions which forms the key thrust in improving teaching and learning practice. A qualitative analysis of photographs, videos, transcripts which illustrates teacher’s reflections and classroom observation checklists before and after the use of video technology were adopted. Arguably, although PD support can be magnanimously strong, if teachers could not connect or create meaning out of the opportunities made available to them, they may remain passive or uninvolved. Therefore, teachers must see the value of applying new ideas such as technology and approaches to practice while creating personal meaning out of professional development. These video recordings are transferable, can be shared and edited through social media, emails and common storage between teachers and principals. To conclude the importance of reflective practice among early childhood teachers and addressing the concerns raised before and after the use of video technology, teachers and principals shared the feasibility, practical and relevance use of video technology.Keywords: early childhood education, reflective, improve teaching and learning, technology
Procedia PDF Downloads 5023387 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 393386 Technology and the Need for Integration in Public Education
Authors: Eric Morettin
Abstract:
Cybersecurity and digital literacy are pressing issues among Canadian citizens, yet formal education does not provide today’s students with the necessary knowledge and skills needed to adapt to these challenging issues within the physical and digital labor-market. Canada’s current education systems do not highlight the importance of these respective fields, aside from using technology for learning management systems and alternative methods of assignment completion. Educators are not properly trained to integrate technology into the compulsory courses within public education, to better prepare their learners in these topics and Canada’s digital economy. ICTC addresses these gaps in education and training through cross-Canadian educational programming in digital literacy and competency, cybersecurity and coding which is bridged with Canada’s provincially regulated K-12 curriculum guidelines. After analyzing Canada’s provincial education, it is apparent that there are gaps in learning related to technology, as well as inconsistent educational outcomes that do not adequately represent the current Canadian and global economies. Presently only New Brunswick, Nova Scotia, Ontario, and British Columbia offer curriculum guidelines for cybersecurity, computer programming, and digital literacy. The remaining provinces do not address these skills in their curriculum guidelines. Moreover, certain courses across some provinces not being updated since the 1990’s. The three territories respectfully take curriculum strands from other provinces and use them as their foundation in education. Yukon uses all British Columbia curriculum. Northwest Territories and Nunavut respectfully use a hybrid of Alberta and Saskatchewan curriculum as their foundation of learning. Education that is provincially regulated does not allow for consistency across the country’s educational outcomes and what Canada’s students will achieve – especially when curriculum outcomes have not been updated to reflect present day society. Through this, ICTC has aligned Canada’s provincially regulated curriculum and created opportunities for focused education in the realm of technology to better serve Canada’s present learners and teachers; while addressing inequalities and applicability within curriculum strands and outcomes across the country. As a result, lessons, units, and formal assessment strategies, have been created to benefit students and teachers in this interdisciplinary, cross-curricular, practice - as well as meeting their compulsory education requirements and developing skills and literacy in cyber education. Teachers can access these lessons and units through ICTC’s website, as well as receive professional development regarding the assessment and implementation of these offerings from ICTC’s education coordinators, whose combines experience exceeds 50 years of teaching in public, private, international, and Indigenous schools. We encourage you to take this opportunity that will benefit students and educators, and will bridge the learning and curriculum gaps in Canadian education to better reflect the ever-changing public, social, and career landscape that all citizens are a part of. Students are the future, and we at ICTC strive to ensure their futures are bright and prosperous.Keywords: cybersecurity, education, curriculum, teachers
Procedia PDF Downloads 823385 Exploring Inclusive Culture and Practice: The Perspectives of Macao Teachers in Informing Inclusive Teacher Education Programmes in Higher Education
Authors: Elisa Monteiro, Kiiko Ikegami
Abstract:
The inclusion of children with diverse learning needs and/or disabilities in regular classrooms has been identified as crucial to the provision of educational equity and quality for all students. In this, teachers play an essential role, as they have a strong impact on student attainment. Whilst the adoption of inclusive practice is increasing, with potential benefits for the teaching profession, there is also a rise in the level of its challenges in Macao as many more students with learning disabilities are now being included in general education classes. Consequently, there has been a significant focus on teacher professional development to ensure that teachers are adequately prepared to teach in inclusive classrooms that give access to diverse students. Major changes in teacher education will need to take place to include more inclusive education content and to equip teachers with the necessary skills in the area of inclusive practice. This paper draws on data from in-depth interviews with 20 teachers to examine teachers’ views of support, challenges, and barriers to inclusive practices at the school and classroom levels. Thematic analysis was utilised to determine major themes within the data. Several themes emerged and serve to illustrate the identified barriers and the potential value of effective teacher education. Suggestions for increased professional development opportunities for inclusive education specific to higher education institutions are presented and the implications for practice and teacher education are discussed.Keywords: inclusion, inclusive practice, teacher education, higher education
Procedia PDF Downloads 843384 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia
Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany
Abstract:
In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities
Procedia PDF Downloads 743383 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 563382 Teachers as Agents of Change in Diverse Classrooms: An Overview of the Literature
Authors: Anna Sanczyk
Abstract:
Diverse students may experience different forms of discrimination. Some of the oppression students experience in schools are racism, sexism, classism, or homophobia that may affect their achievement, and teachers need to make sure they create inclusive, equitable classroom environments. The broader literature on social change in education shows that teachers who challenge oppression and want to promote equitable and transformative education face institutional, social, and political constraints. This paper discusses research on teachers’ work to create socially just and culturally inclusive classrooms and schools. The practical contribution of this literature review is that it provides a comprehensive compilation of the studies presenting teachers’ roles and efforts in affecting social change. The examination of the research on social change in education points to the urgency of teachers addressing the needs of marginalized students and resisting systemic oppression in schools. The implications of this literature review relate to the concerns that schools should provide greater advocacy for marginalized students in diverse learning contexts, and teacher education programs should prepare teachers to be active advocates for diverse students. The literature review has the potential to inform educators to enhance educational equity and improve the learning environment. This literature review illustrates teachers as agents of change in diverse classrooms and contributes to understanding various ways of taking action towards fostering more equitable and transformative education in today’s schools.Keywords: agents of change, diversity, opression, social change
Procedia PDF Downloads 1403381 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 1273380 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach
Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista
Abstract:
The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.Keywords: depth, deep learning, geovisualisation, satellite images
Procedia PDF Downloads 103379 Intercultural and Inclusive Teaching Competency Implementation within a Canadian Polytechnic's Academic Model: A Pre- and Post-Assessment Analysis
Authors: Selinda England, Ben Bodnaryk
Abstract:
With an unprecedented increase in provincial immigration and government support for greater international and culturally diverse learners, a trade/applied learning-focused polytechnic with four campuses within one Canadian province saw the need for intercultural awareness and an intercultural teaching competence strategy for faculty training. An institution-wide pre-assessment needs survey was conducted in 2018, in which 87% of faculty professed to have some/no training when working with international and/or culturally diverse learners. After researching fellow Polytechnics in Canada and seeing very little in the way of faculty support for intercultural competence, an institutional project team comprised of members from all facets of the Polytechnic was created and included: Indigenous experts, Academic Chairs, Directors, Human Resource Managers, and international/settlement subject matter experts. The project team was organized to develop and implement a new academic model focused on enriching intercultural competence among faculty. Utilizing a competency based model, the project team incorporated inclusive terminology into competency indicators and devised a four-phase proposal for implementing intercultural teacher training: a series of workshops focused on the needs of international and culturally diverse learners, including teaching strategies based on current TESOL methodologies, literature and online resources for quick access when planning lessons, faculty assessment examples and models of interculturally proficient instructors, and future job descriptions - all which promote and encourage development of specific intercultural skills. Results from a post-assessment survey (to be conducted in Spring 2020) and caveats regarding improvements and next steps will be shared. The project team believes its intercultural and inclusive teaching competency-based model is one of the first, institution-wide faculty supported initiatives within the Canadian college and Polytechnic post-secondary educational environment; it aims to become a leader in both the province and nation regarding intercultural competency training for trades, industry, and business minded community colleges and applied learning institutions.Keywords: cultural diversity and education, diversity training teacher training, teaching and learning, teacher training
Procedia PDF Downloads 1173378 Using Authentic and Instructional Materials to Support Intercultural Communicative Competence in ELT
Authors: Jana Beresova
Abstract:
The paper presents a study carried out in 2015-2016 within the national scheme of research - VEGA 1/0106/15 based on theoretical research and empirical verification of the concept of intercultural communicative competence. It focuses on the current conception concerning target languages teaching compatible with the Common European Framework of Reference for Languages: Learning, teaching, assessment. Our research had revealed how the concept of intercultural communicative competence had been perceived by secondary-school teachers of English in Slovakia before they were intensively trained. Intensive workshops were based on the use of both authentic and instructional materials with the goal to support interculturally oriented language teaching aimed at challenging thinking. The former concept that supported the development of the students´ linguistic knowledge and the use of a target language to obtain information about the culture of the country whose language learners were learning was expanded by the meaning-making framework which views language as a typical means by which culture is mediated. The goal of the workshop was to influence English teachers to better understand the concept of intercultural communicative competence, combining theory and practice optimally. The results of the study will be presented and analysed, providing particular recommendations for language teachers and suggesting some changes in the National Educational Programme from which English learners should benefit in their future studies or professional careers.Keywords: authentic materials, English language teaching, instructional materials, intercultural communicative competence
Procedia PDF Downloads 2703377 Investigating the Neural Heterogeneity of Developmental Dyscalculia
Authors: Fengjuan Wang, Azilawati Jamaludin
Abstract:
Developmental Dyscalculia (DD) is defined as a particular learning difficulty with continuous challenges in learning requisite math skills that cannot be explained by intellectual disability or educational deprivation. Recent studies have increasingly recognized that DD is a heterogeneous, instead of monolithic, learning disorder with not only cognitive and behavioral deficits but so too neural dysfunction. In recent years, neuroimaging studies employed group comparison to explore the neural underpinnings of DD, which contradicted the heterogenous nature of DD and may obfuscate critical individual differences. This research aimed to investigate the neural heterogeneity of DD using case studies with functional near-infrared spectroscopy (fNIRS). A total of 54 aged 6-7 years old of children participated in this study, comprising two comprehensive cognitive assessments, an 8-minute resting state, and an 8-minute one-digit addition task. Nine children met the criteria of DD and scored at or below 85 (i.e., the 16th percentile) on the Mathematics or Math Fluency subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III) (both subtest scores were 90 and below). The remaining 45 children formed the typically developing (TD) group. Resting-state data and brain activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), and intraparietal sulcus (IPS) were collected for comparison between each case and the TD group. Graph theory was used to analyze the brain network under the resting state. This theory represents the brain network as a set of nodes--brain regions—and edges—pairwise interactions across areas to reveal the architectural organizations of the nervous network. Next, a single-case methodology developed by Crawford et al. in 2010 was used to compare each case’s brain network indicators and brain activation against 45 TD children’s average data. Results showed that three out of the nine DD children displayed significant deviation from TD children’s brain indicators. Case 1 had inefficient nodal network properties. Case 2 showed inefficient brain network properties and weaker activation in the IFG and IPS areas. Case 3 displayed inefficient brain network properties with no differences in activation patterns. As a rise above, the present study was able to distill differences in architectural organizations and brain activation of DD vis-à-vis TD children using fNIRS and single-case methodology. Although DD is regarded as a heterogeneous learning difficulty, it is noted that all three cases showed lower nodal efficiency in the brain network, which may be one of the neural sources of DD. Importantly, although the current “brain norm” established for the 45 children is tentative, the results from this study provide insights not only for future work in “developmental brain norm” with reliable brain indicators but so too the viability of single-case methodology, which could be used to detect differential brain indicators of DD children for early detection and interventions.Keywords: brain activation, brain network, case study, developmental dyscalculia, functional near-infrared spectroscopy, graph theory, neural heterogeneity
Procedia PDF Downloads 533376 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas
Authors: Sahithi Yarlagadda
Abstract:
The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm
Procedia PDF Downloads 1103375 Intensive Use of Software in Teaching and Learning Calculus
Authors: Nodelman V.
Abstract:
Despite serious difficulties in the assimilation of the conceptual system of Calculus, software in the educational process is used only occasionally, and even then, mainly for illustration purposes. The following are a few reasons: The non-trivial nature of the studied material, Lack of skills in working with software, Fear of losing time working with software, The variety of the software itself, the corresponding interface, syntax, and the methods of working with the software, The need to find suitable models, and familiarize yourself with working with them, Incomplete compatibility of the found models with the content and teaching methods of the studied material. This paper proposes an active use of the developed non-commercial software VusuMatica, which allows removing these restrictions through Broad support for the studied mathematical material (and not only Calculus). As a result - no need to select the right software, Emphasizing the unity of mathematics, its intrasubject and interdisciplinary relations, User-friendly interface, Absence of special syntax in defining mathematical objects, Ease of building models of the studied material and manipulating them, Unlimited flexibility of models thanks to the ability to redefine objects, which allows exploring objects characteristics, and considering examples and counterexamples of the concepts under study. The construction of models is based on an original approach to the analysis of the structure of the studied concepts. Thanks to the ease of construction, students are able not only to use ready-made models but also to create them on their own and explore the material studied with their help. The presentation includes examples of using VusuMatica in studying the concepts of limit and continuity of a function, its derivative, and integral.Keywords: counterexamples, limitations and requirements, software, teaching and learning calculus, user-friendly interface and syntax
Procedia PDF Downloads 813374 Investigating Interference Errors Made by Azzawia University 1st year Students of English in Learning English Prepositions
Authors: Aimen Mohamed Almaloul
Abstract:
The main focus of this study is investigating the interference of Arabic in the use of English prepositions by Libyan university students. Prepositions in the tests used in the study were categorized, according to their relation to Arabic, into similar Arabic and English prepositions (SAEP), dissimilar Arabic and English prepositions (DAEP), Arabic prepositions with no English counterparts (APEC), and English prepositions with no Arabic counterparts (EPAC). The subjects of the study were the first year university students of the English department, Sabrata Faculty of Arts, Azzawia University; both males and females, and they were 100 students. The basic tool for data collection was a test of English prepositions; students are instructed to fill in the blanks with the correct prepositions and to put a zero (0) if no preposition was needed. The test was then handed to the subjects of the study. The test was then scored and quantitative as well as qualitative results were obtained. Quantitative results indicated the number, percentages and rank order of errors in each of the categories and qualitative results indicated the nature and significance of those errors and their possible sources. Based on the obtained results the researcher could detect that students made more errors in the EPAC category than the other three categories and these errors could be attributed to the lack of knowledge of the different meanings of English prepositions. This lack of knowledge forced the students to adopt what is called the strategy of transfer.Keywords: foreign language acquisition, foreign language learning, interference system, interlanguage system, mother tongue interference
Procedia PDF Downloads 3873373 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk
Authors: Yilin Liao, Hewen Li, Paula McConvey
Abstract:
Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.Keywords: artificial neural networks, concussion, machine learning, impact, speed skater
Procedia PDF Downloads 1093372 Using Autoencoder as Feature Extractor for Malware Detection
Authors: Umm-E-Hani, Faiza Babar, Hanif Durad
Abstract:
Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.Keywords: malware, auto encoders, automated feature engineering, classification
Procedia PDF Downloads 723371 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1163370 Biographical Learning and Its Impact on the Democratization Processes of Post War Societies
Authors: Rudolf Egger
Abstract:
This article shows some results of an ongoing project in Kosova. This project deals with the meaning of social transformation processes in the life-courses of Kosova people. One goal is to create an oral history archive in this country. In the last seven years we did some interpretative work (using narrative interviews) concerning the experiences and meanings of social changes from the perspective of life course. We want to reconstruct the individual possibilities in creating one's life in new social structures. After the terrible massacres of ethnical-territorially defined nationalism in former Yugoslavia it is the main focus to find out something about the many small daily steps which must be done, to build up a kind of “normality” in this country. These steps can be very well reconstructed by narrations, by life stories, because personal experiences are naturally linked with social orders. Each individual story is connected with further stories, in which the collective history will be negotiated and reflected. The view on the biographical narration opens the possibility to analyze the concreteness of the “individual case” in the complexity of collective history. Life stories contain thereby a kind of a transition character, that’s why they can be used for the reconstruction of periods of political transformation. For example: In the individual story we can find very clear the national or mythological character of the Albanian people in Kosova. The shown narrations can be read also as narrative lines in relation to the (re-)interpretation of the past, in which lived life is fixed into history in the so-called collective memory in Kosova.Keywords: biographical learning, adult education, social change, post war societies
Procedia PDF Downloads 4193369 Smart Disassembly of Waste Printed Circuit Boards: The Role of IoT and Edge Computing
Authors: Muhammad Mohsin, Fawad Ahmad, Fatima Batool, Muhammad Kaab Zarrar
Abstract:
The integration of the Internet of Things (IoT) and edge computing devices offers a transformative approach to electronic waste management, particularly in the dismantling of printed circuit boards (PCBs). This paper explores how these technologies optimize operational efficiency and improve environmental sustainability by addressing challenges such as data security, interoperability, scalability, and real-time data processing. Proposed solutions include advanced machine learning algorithms for predictive maintenance, robust encryption protocols, and scalable architectures that incorporate edge computing. Case studies from leading e-waste management facilities illustrate benefits such as improved material recovery efficiency, reduced environmental impact, improved worker safety, and optimized resource utilization. The findings highlight the potential of IoT and edge computing to revolutionize e-waste dismantling and make the case for a collaborative approach between policymakers, waste management professionals, and technology developers. This research provides important insights into the use of IoT and edge computing to make significant progress in the sustainable management of electronic wasteKeywords: internet of Things, edge computing, waste PCB disassembly, electronic waste management, data security, interoperability, machine learning, predictive maintenance, sustainable development
Procedia PDF Downloads 313368 Implementation of an Online-Platform at the University of Freiburg to Help Medical Students Cope with Stress
Authors: Zoltán Höhling, Sarah-Lu Oberschelp, Niklas Gilsdorf, Michael Wirsching, Andrea Kuhnert
Abstract:
A majority of medical students at the University of Freiburg reported stress-related psychosomatic symptoms which are often associated with their studies. International research supports these findings, as medical students worldwide seem to be at special risk for mental health problems. In some countries and institutions, psychologically based interventions that assist medical students in coping with their stressors have been implemented. It turned out that anonymity is an important aspect here. Many students fear a potential damage of reputation when being associated with mental health problems, which may be due to a high level of competitiveness in classes. Therefore, we launched an online-platform where medical students could anonymously seek help and exchange their experiences with fellow students and experts. Medical students of all semesters have access to it through the university’s learning management system (called “ILIAS”). The informative part of the platform consists of exemplary videos showing medical students (actors) who act out scenes that demonstrate the antecedents of stress-related psychosomatic disorders. These videos are linked to different expert comments, describing the exhibited symptoms in an understandable and normalizing way. The (inter-)active part of the platform consists of self-help tools (such as meditation exercises or general tips for stress-coping) and an anonymous interactive forum where students can describe their stress-related problems and seek guidance from experts and/or share their experiences with fellow students. Besides creating an immediate proposal to help affected students, we expect that competitiveness between students might be diminished and bondage improved through mutual support between them. In the initial phase after the platform’s launch, it was accessed by a considerable number of medical students. On a closer look it appeared that platform sections like general information on psychosomatic-symptoms and self-treatment tools were accessed far more often than the online-forum during the first months after the platform launch. Although initial acceptance of the platform was relatively high, students showed a rather passive way of using our platform. While user statistics showed a clear demand for information on stress-related psychosomatic symptoms and its possible remedies, active engagement in the interactive online-forum was rare. We are currently advertising the platform intensively and trying to point out the assured anonymity of the platform and its interactive forum. Our plans, to assure students their anonymity through the use of an e-learning facility and promote active engagement in the online forum, did not (yet) turn out as expected. The reasons behind this may be manifold and based on either e-learning related issues or issues related to students’ individual needs. Students might, for example, question the assured anonymity due to a lack of trust in the technological functioning university’s learning management system. However, one may also conclude that reluctance to discuss stress-related psychosomatic symptoms with peer medical students may not be solely based on anonymity concerns, but could be rooted in more complex issues such as general mistrust between students.Keywords: e-tutoring, stress-coping, student support, online forum
Procedia PDF Downloads 385