Search results for: structural steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5500

Search results for: structural steel

1570 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script

Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim

Abstract:

A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.

Keywords: butterfly valve, flow coefficient, automatic CFD analysis, FSI analysis

Procedia PDF Downloads 227
1569 Program Accreditation as a Change Enterprise in Oman

Authors: Mahmoud Mohamed Emam, Yasser Fathy Hendawy Al-Mahdy

Abstract:

Higher education institutions (HEIs) in Arab countries have witnessed large scope transformations as a result of embracing globalised practices. The introduction of program academic accreditation in HEIs in the Arab context has been regarded as a change enterprise that has proponents and opponents. In essence, introducing new systems or practices trigger changes that may shatter employees at a given organization. Therefore, it is argued that the interaction between organizational, contextual, and individual-related variables are likely to determine how the organization succeeds in facing resistance to change. This study investigated a mediated-effects model of organizational support and citizenship behavior. The model proposes organizational support as an antecedent of citizenship behavior and commitment to change as a mediator in the organizational support–citizenship behavior relationship. Survey data were collected and analyzed from university faculty (n=221) using structural equation modeling. Findings showed that organizational support significantly contributes to increasedcitizenshipbehaviour and the commitment of university faculty to program accreditation as a change enterprise, which has a significant and direct impact on their citizenship behaviour. We conclude that university-level organizational support shapes faculty’s commitment to change both directly and indirectly. The findings have significant practical implications for HEIs in Arab countries when they introduce new practices that aim at improving institutional effectiveness.

Keywords: organizational support, accreditation, commitment, citizenship behaviour

Procedia PDF Downloads 77
1568 Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties

Authors: Martial Pouzet, Marc Dubois, Karine Charlet, Alexis Béakou

Abstract:

The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments.

Keywords: cellulose, spectroscopy, surface treatment, water absorption

Procedia PDF Downloads 188
1567 The Contact Behaviors of Seals Under Combined Normal and Tangential Loading: A Multiscale Finite Element Contact Analysis

Authors: Runliang Wang, Jianhua Liu, Duo Jia, Xiaoyu Ding

Abstract:

The contact between sealing surfaces plays a vital role in guaranteeing the sealing performance of various seals. To date, analyses of sealing structures have rarely considered both structural parameters (macroscale) and surface roughness information (microscale) of sealing surfaces due to the complex modeling process. Meanwhile, most of the contact analyses applied to seals were conducted only under normal loading, which still existssome distance from real loading conditions in engineering. In this paper, a multiscale rough contact model, which took both macrostructural parameters of seals and surface roughness information of sealing surfaces into consideration for the cone-cone seal, was established. By using the finite element method (FEM), the combined normal and tangential loading was applied to the model to simulate the assembly process of the cone-cone seal. The evolution of the contact behaviors during the assembly process, such as the real contact area (RCA), the distribution of contact pressure, and contact status, are studied in detail. The results showed the non-linear relationship between the RCA and the load, which was different from the normal loading cases. In addition, the evolution of the real contact area of cone-cone seals with isotropic and anisotropic rough surfaces are also compared quantitatively.

Keywords: contact mechanics, FEM, randomly rough surface, real contact area, sealing

Procedia PDF Downloads 166
1566 Nd³⁺: Si₂N₂O (Sinoite) Phosphors for White Light Emitting Diodes

Authors: Alparslan A. Balta, Hilmi Yurdakul, Orkun Tunckan, Servet Turan, Arife Yurdakul

Abstract:

A silicon oxynitride (Si2N2O), the mineralogical name is “Sinoite”, reveals the outstanding physical, mechanical and thermal properties, e.g., good oxidation resistance at high temperatures, high fracture toughness with rod shape, high hardness, low theoretical density, good thermal shock resistance by low thermal expansion coefficient and high thermal conductivity. In addition, the orthorhombic crystal structure of Si2N2O allows accommodating the rare earth (RE) element atoms along the “c” axis due to existing large structural interstitial sites. Here, 0.02 to 0.12 wt. % Nd3+ doped Si2N2O samples were successfully synthesized by spark plasma sintering (SPS) method at 30MPa pressure and 1650oC temperature. Li2O was also utilized as a sintering additive to take advantage of low eutectic point during synthesizing. The specimens were characterized in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and cathodoluminescence (CL) in SEM and photoluminescence (PL) spectroscopy. Based on the overall results, the Si2N2O phase was obtained above 90% by the SPS route. Furthermore, Nd3+: Si2N2O samples showed a very broad intense emission peak between 400-700 nm, which corresponds to white color. Therefore, this material can be considered as a promising candidate for white light-emitting diodes (WLEDs) purposes. This study was supported by TUBITAK under project number 217M667.

Keywords: neodymium, oxynitride, Si₂N₂O, WLEDs

Procedia PDF Downloads 116
1565 Rhizospheric Oxygen Release of Hydroponically Grown Wetland Macrophytes as Passive Source for Cathodic Reduction in Microbial Fuel Cell

Authors: Chabungbam Niranjit Khuman, Makarand Madhao Ghangrekar, Arunabha Mitra

Abstract:

The cost of aeration is one of the limiting factors in the upscaling of microbial fuel cells (MFC) for field-scale applications. Wetland macrophytes have the ability to release oxygen into the water to maintain aerobic conditions in their root zone. In this experiment, the efficacy of rhizospheric oxygen release of wetland macrophytes as a source of oxygen in the cathodic chamber of MFC was conducted. The experiment was conducted in an MFC consisting of a three-liter anodic chamber made of ceramic cylinder and a 27 L cathodic chamber. Untreated carbon felts were used as electrodes (i.e., anode and cathode) and connected to an external load of 100 Ω using stainless steel wire. Wetland macrophytes (Canna indica) were grown in the cathodic chamber of the MFC in a hydroponic fashion using a styrofoam sheet (termed as macrophytes assisted-microbial fuel cell, M-MFC). The catholyte (i.e., water) in the M-MFC had negligible contact with atmospheric air due to the styrofoam sheet used for maintaining the hydroponic condition. There was no mixing of the catholyte in the M-MFC. Sucrose based synthetic wastewater having chemical oxygen demand (COD) of 3000 mg/L was fed into the anodic chamber of the MFC in fed-batch mode with a liquid retention time of four days. The C. indica thrived well throughout the duration of the experiment without much care. The average dissolved oxygen (DO) concentration and pH value in the M-MFC were 3.25 mg/L and 7.07, respectively, in the catholyte. Since the catholyte was not in contact with air, the DO in the catholyte might be considered as solely liberated from the rhizospheric oxygen release of C. indica. The maximum COD removal efficiency of M-MFC observed during the experiment was 76.9%. The inadequacy of terminal electron acceptor in the cathodic chamber in M-MFC might have hampered the electron transfer, which in turn, led to slower specific microbial activity, thereby resulting in lower COD removal efficiency than the traditional MFC with aerated catholyte. The average operating voltage (OV) and open-circuit voltage (OCV) of 294 mV and 594 mV, respectively, were observed in M-MFC. The maximum power density observed during polarization was 381 mW/m³, and the maximum sustainable power density observed during the experiment was 397 mW/m³ in M-MFC. The maximum normalized energy recovery and coulombic efficiency of 38.09 Wh/m³ and 1.27%, respectively, were observed. Therefore, it was evidenced that rhizospheric oxygen release of wetland macrophytes (C. indica) was capable of sustaining the cathodic reaction in MFC for field-scale applications.

Keywords: hydroponic, microbial fuel cell, rhizospheric oxygen release, wetland macrophytes

Procedia PDF Downloads 117
1564 Demographic Factor in Ensuring Sustainable Development of the Western Region of the Republic of Kazakhstan

Authors: Nyussupova Gulnara, Kenespayeva Laura, Kelinbayeva Roza, Aubakirova Gaukhar, Zhumagulov Chingiz, Aidarkhanova Gaukhar

Abstract:

The article analyzes the development of demographic processes in four regions of the Western region of the Republic of Kazakhstan (Aktobe, Atyrau, West Kazakhstan, and Mangystau) for the period from 2000 to 2022. This study uses theoretical and methodological analysis of scientific literature, methods of comparative, statistical analysis, GIS methods, grouping and systematization, index method and structural analysis. The research identified regional characteristics, development trends, and disproportions in the population of the studied areas within the framework of sustainable demographic development. The population dynamics, the age-sex structure of the population, life expectancy, natural movement of the population, including maternal and infant mortality, are considered as important indicators of the region’s sustainability. The features of migration processes in the Western region of Kazakhstan and the factors that determine them are identified. Conclusions are drawn about the level of sustainable development of the population of the studied region based on demographic processes. The results obtained will provide scientific, methodological and information support in the sectors of economics and science, including the preparation of socio-economic development programs and the development of scientific research using GIS.

Keywords: sustainable development, demographic processes, Western Region, Republic of Kazakhstan, population structure, natural population movement, migration

Procedia PDF Downloads 48
1563 Compression and Air Storage Systems for Small Size CAES Plants: Design and Off-Design Analysis

Authors: Coriolano Salvini, Ambra Giovannelli

Abstract:

The use of renewable energy sources for electric power production leads to reduced CO2 emissions and contributes to improving the domestic energy security. On the other hand, the intermittency and unpredictability of their availability poses relevant problems in fulfilling safely and in a cost efficient way the load demand along the time. Significant benefits in terms of “grid system applications”, “end-use applications” and “renewable applications” can be achieved by introducing energy storage systems. Among the currently available solutions, CAES (Compressed Air Energy Storage) shows favorable features. Small-medium size plants equipped with artificial air reservoirs can constitute an interesting option to get efficient and cost-effective distributed energy storage systems. The present paper is addressed to the design and off-design analysis of the compression system of small size CAES plants suited to absorb electric power in the range of hundreds of kilowatt. The system of interest is constituted by an intercooled (in case aftercooled) multi-stage reciprocating compressor and a man-made reservoir obtained by connecting large diameter steel pipe sections. A specific methodology for the system preliminary sizing and off-design modeling has been developed. Since during the charging phase the electric power absorbed along the time has to change according to the peculiar CAES requirements and the pressure ratio increases continuously during the filling of the reservoir, the compressor has to work at variable mass flow rate. In order to ensure an appropriately wide range of operations, particular attention has been paid to the selection of the most suitable compressor capacity control device. Given the capacity regulation margin of the compressor and the actual level of charge of the reservoir, the proposed approach allows the instant-by-instant evaluation of minimum and maximum electric power absorbable from the grid. The developed tool gives useful information to appropriately size the compression system and to manage it in the most effective way. Various cases characterized by different system requirements are analysed. Results are given and widely discussed.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), compressor design, compression system management.

Procedia PDF Downloads 210
1562 Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications

Authors: Sara Mercedes Barroso Pinzón, Álvaro Jesús Caicedo Castro, Antonio Javer Sánchez Herencia

Abstract:

In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 36
1561 GraphNPP: A Graphormer-Based Architecture for Network Performance Prediction in Software-Defined Networking

Authors: Hanlin Liu, Hua Li, Yintan AI

Abstract:

Network performance prediction (NPP) is essential for the management and optimization of software-defined networking (SDN) and contributes to improving the quality of service (QoS) in SDN to meet the requirements of users. Although current deep learning-based methods can achieve high effectiveness, they still suffer from some problems, such as difficulty in capturing global information of the network, inefficiency in modeling end-to-end network performance, and inadequate graph feature extraction. To cope with these issues, our proposed Graphormer-based architecture for NPP leverages the powerful graph representation ability of Graphormer to effectively model the graph structure data, and a node-edge transformation algorithm is designed to transfer the feature extraction object from nodes to edges, thereby effectively extracting the end-to-end performance characteristics of the network. Moreover, routing oriented centrality measure coefficient for nodes and edges is proposed respectively to assess their importance and influence within the graph. Based on this coefficient, an enhanced feature extraction method and an advanced centrality encoding strategy are derived to fully extract the structural information of the graph. Experimental results on three public datasets demonstrate that the proposed GraphNPP architecture can achieve state-of-the-art results compared to current NPP methods.

Keywords: software-defined networking, network performance prediction, Graphormer, graph neural network

Procedia PDF Downloads 23
1560 Analysis of the Reasons behind the Deteriorated Standing of Engineering Companies during the Financial Crisis

Authors: Levan Sabauri

Abstract:

In this paper, we discuss the deteriorated standing of engineering companies, some of the reasons behind it and the problems facing engineering enterprises during the financial crisis. We show the part that financial analysis plays in the detection of the main factors affecting the standing of a company, classify internal problems and the reasons influencing efficiency thereof. The publication contains the analysis of municipal engineering companies in post-Soviet transitional economies. In the wake of the 2008 world financial crisis the issue became even more poignant. It should be said though that even before the problem had been no less acute for some post-Soviet states caught up in a lengthy transitional period. The paper highlights shortcomings in the management of transportation companies, with new, more appropriate methods suggested. In analyzing the financial stability of a company, three elements need to be considered: current assets, investment policy and structural management of the funding sources leveraging the stability, should be focused on. Inappropriate management of the three may create certain financial problems, with timely and accurate detection thereof being an issue in terms of improved standing of an enterprise. In this connection, the publication contains a diagram reflecting the reasons behind the deteriorated financial standing of a company, as well as a flow chart thereof. The main reasons behind low profitability are also discussed.

Keywords: efficiency, financial management, financial analysis funding structure, financial sustainability, investment policy, profitability, solvency, working capital

Procedia PDF Downloads 286
1559 In vitro Evaluation of Capsaicin Patches for Transdermal Drug Delivery

Authors: Alija Uzunovic, Sasa Pilipovic, Aida Sapcanin, Zahida Ademovic, Berina Pilipović

Abstract:

Capsaicin is a naturally occurring alkaloid extracted from capsicum fruit extracts of different of Capsicum species. It has been employed topically to treat many diseases such as rheumatoid arthritis, osteoarthritis, cancer pain and nerve pain in diabetes. The high degree of pre-systemic metabolism of intragastrical capsaicin and the short half-life of capsaicin by intravenous administration made topical application of capsaicin advantageous. In this study, we have evaluated differences in the dissolution characteristics of capsaicin patch 11 mg (purchased from market) at different dissolution rotation speed. The proposed patch area is 308 cm2 (22 cm x 14 cm; it contains 36 µg of capsaicin per square centimeter of adhesive). USP Apparatus 5 (Paddle Over Disc) is used for transdermal patch testing. The dissolution study was conducted using USP apparatus 5 (n=6), ERWEKA DT800 dissolution tester (paddle-type) with addition of a disc. The fabricated patch of 308 cm2 is to be cut into 9 cm2 was placed against a disc (delivery side up) retained with the stainless-steel screen and exposed to 500 mL of phosphate buffer solution pH 7.4. All dissolution studies were carried out at 32 ± 0.5 °C and different rotation speed (50± 5; 100± 5 and 150± 5 rpm). 5 ml aliquots of samples were withdrawn at various time intervals (1, 4, 8 and 12 hours) and replaced with 5 ml of dissolution medium. Withdrawn were appropriately diluted and analyzed by reversed-phase liquid chromatography (RP-LC). A Reversed Phase Liquid Chromatography (RP-LC) method has been developed, optimized and validated for the separation and quantitation of capsaicin in a transdermal patch. The method uses a ProntoSIL 120-3-C18 AQ 125 x 4,0 mm (3 μm) column maintained at 600C. The mobile phase consisted of acetonitrile: water (50:50 v/v), the flow rate of 0.9 mL/min, the injection volume 10 μL and the detection wavelength 222 nm. The used RP-LC method is simple, sensitive and accurate and can be applied for fast (total chromatographic run time was 4.0 minutes) and simultaneous analysis of capsaicin and dihydrocapsaicin in a transdermal patch. According to the results obtained in this study, we can conclude that the relative difference of dissolution rate of capsaicin after 12 hours was elevated by increase of dissolution rotation speed (100 rpm vs 50 rpm: 84.9± 11.3% and 150 rpm vs 100 rpm: 39.8± 8.3%). Although several apparatus and procedures (USP apparatus 5, 6, 7 and a paddle over extraction cell method) have been used to study in vitro release characteristics of transdermal patches, USP Apparatus 5 (Paddle Over Disc) could be considered as a discriminatory test. would be able to point out the differences in the dissolution rate of capsaicin at different rotation speed.

Keywords: capsaicin, in vitro, patch, RP-LC, transdermal

Procedia PDF Downloads 207
1558 Numerical Homogenization of Nacre

Authors: M. Arunachalam, M. Pandey

Abstract:

Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis.

Keywords: finite element, homogenization, inelastic deformation, staggered arrangement

Procedia PDF Downloads 302
1557 The Significance of Intellectual Capital and Strategic Orientations on Innovation Capability in Malaysian ICTSMEs

Authors: Juliana Osman, David Gilbert, Caroline Tan

Abstract:

Innovation capability is recognized as a critical factor that contributes to promoting firm growth and wealth creation. While studies on innovation are in abundance, few empirical studies have been undertaken to examine the relationships of intellectual capital with innovation capability, and research investigating the combinations of strategic orientation dimensions is limited and virtually nothing in regard to the Malaysian context. This research investigates the impact of intellectual capital and three strategic orientations on the innovation capability and firm performance of Malaysian ICT SMEs. Data was collected from 213 firms relating to intellectual capital and the three strategic orientations; market orientation, learning orientation and technology orientation. Using partial least squares structural equation modelling (PLS-SEM) to analyse the data, results indicate that while market orientation has a direct negative relationship to firm performance, it is positively related to performance through the mediating effect of innovation capability. Learning orientation and technology orientation are mediated by innovation capability, while intellectual capital was found to be partially mediated by innovation capability. Findings indicate that firm performance is positively and significantly related to innovation capability and that market orientation, learning orientation, technology orientation and intellectual capital are all significant and positively related to innovation capability. The developed model indicates that Malaysian ICT SMEs would perform better with greater emphasis on developing innovation capability through enhancement of intellectual capital and the strategic orientations measured in this study.

Keywords: innovation capability, intellectual capital, strategic orientations, PLS-SEM

Procedia PDF Downloads 453
1556 Understanding the Effect of Material and Deformation Conditions on the “Wear Mode Diagram”: A Numerical Study

Authors: A. Mostaani, M. P. Pereira, B. F. Rolfe

Abstract:

The increasing application of Advanced High Strength Steel (AHSS) in the automotive industry to fulfill crash requirements has introduced higher levels of wear in stamping dies and parts. Therefore, understanding wear behaviour in sheet metal forming is of great importance as it can help to reduce the high costs currently associated with tool wear. At the contact between the die and the sheet, the tips of hard tool asperities interact with the softer sheet material. Understanding the deformation that occurs during this interaction is important for our overall understanding of the wear mechanisms. For these reasons, the scratching of a perfectly plastic material by a rigid indenter has been widely examined in the literature; with finite element modelling (FEM) used in recent years to further understand the behaviour. The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation, and cutting. This diagram, which is based on 2D slip line theory and upper bound method for perfectly plastic work-piece and rigid indenter, relates different wear modes to attack angle and interfacial strength. This diagram has been the basis for many wear studies and wear models to date. Additionally, it has been concluded that galling is most likely to occur during the wedge formation mode. However, there has been little analysis in the literature of how the material behaviour and deformation conditions associated with metal forming processes influence the wear behaviour. Therefore, the first aim of this work is first to use a commercial FEM package (Abaqus/Explicit) to build a 3D model to capture wear modes during scratching with indenters with different attack angles and different interfacial strengths. The second goal is to utilise the developed model to understand how wear modes might change in the presence of bulk deformation of the work-piece material as a result of the metal forming operation. Finally, the effect of the work-piece material properties, including strain hardening, will be examined to understand how these influence the wear modes and wear behaviour. The results show that both strain hardening and substrate deformation can change the critical attack angle at which the wedge formation regime is activated.

Keywords: finite element, pile-up, scratch test, wear mode

Procedia PDF Downloads 313
1555 Gender Inequality and Human Trafficking

Authors: Kimberly McCabe

Abstract:

The trafficking of women and children for abuse and exploitation is not a new problem under the umbrella of human trafficking; however, over the last decade, the problem has attracted increased attention from international governments and non-profits attempting to reduce victimization and provide services for survivors. Research on human trafficking suggests that the trafficking of human beings is, largely, a symptom of poverty. As the trafficking of human beings may be viewed as a response to the demand for people for various forms of exploitation, a product of poverty, and a consequence of the subordinate positions of women and children in society, it reaches beyond randomized victimization. Hence, human trafficking, and especially the trafficking of women and children, goes beyond the realm of poorness. Therefore, to begin to understand the reasons for the existence of human trafficking, one must identify and consider not only the immediate causes but also those underlying structural determinants that facilitate this form of victimization. Specifically, one must acknowledge the economic, social, and cultural factors that support human trafficking. This research attempts to study human trafficking at the country level by focusing on economic, social, and cultural characteristics. This study focuses on inequality and, in particular, gender inequality as related to legislative attempts to address human trafficking. Within the design of this project is the use of the US State Department’s tier classification system for Trafficking in Persons (TIP) and the USA CIA Fact Sheet of country characteristics for over 150 countries in an attempt to model legal outcomes as related to human trafficking. Results of this research demonstrate the significance of characteristics beyond poverty as related to country-level responses to human trafficking.

Keywords: child trafficking, gender inequality, human trafficking, inequality

Procedia PDF Downloads 210
1554 A New Family of Integration Methods for Nonlinear Dynamic Analysis

Authors: Shuenn-Yih Chang, Chiu-LI Huang, Ngoc-Cuong Tran

Abstract:

A new family of structure-dependent integration methods, whose coefficients of the difference equation for displacement increment are functions of the initial structural properties and the step size for time integration, is proposed in this work. This family method can simultaneously integrate the controllable numerical dissipation, explicit formulation and unconditional stability together. In general, its numerical dissipation can be continuously controlled by a parameter and it is possible to achieve zero damping. In addition, it can have high-frequency damping to suppress or even remove the spurious oscillations high frequency modes. Whereas, the low frequency modes can be very accurately integrated due to the almost zero damping for these low frequency modes. It is shown herein that the proposed family method can have exactly the same numerical properties as those of HHT-α method for linear elastic systems. In addition, it still preserves the most important property of a structure-dependent integration method, which is an explicit formulation for each time step. Consequently, it can save a huge computational efforts in solving inertial problems when compared to the HHT-α method. In fact, it is revealed by numerical experiments that the CPU time consumed by the proposed family method is only about 1.6% of that consumed by the HHT-α method for the 125-DOF system while it reduces to be 0.16% for the 1000-DOF system. Apparently, the saving of computational efforts is very significant.

Keywords: structure-dependent integration method, nonlinear dynamic analysis, unconditional stability, numerical dissipation, accuracy

Procedia PDF Downloads 623
1553 Exploring Labor Market Participation of Highly Skilled Immigrant Women in the United States: Barriers and Strategies

Authors: Yurdum Cokadar

Abstract:

The United States is the country where the majority of highly skilled immigrants are hosted. Two-thirds of foreign-born migrants from Turkey - an underrepresented and understudied immigrant group in the United States - are highly skilled. Generated by the aim of filling this gap in the literature, the motivation of this research is to understand highly skilled Turkish immigrant women’s integration into the U.S. labor market, including barriers that they face and strategies they develop to rebuild their career after relocation. The in-depth interviews of 20 highly skilled Turkish women residing in the U.S. revealed that the majority of women participants are either not integrated into the labor market, occupy positions below their skill, or cannot reach the same upper segments of the labor market in the host country, arising from a range of structural and personal barriers interplaying in their career trajectories. Furthermore, many of them cannot transfer their social and cultural capital gained in their home country into the United States. The labor market participation process of these women is analyzed in the light of Bourdieu’s theory of capital and the intersectional approach of gender, class and ethnicity in order to understand the positions of highly skilled immigrant women in the host country labor market.

Keywords: deskilling, gender, class and ethnicity, highly skilled women immigrants, integration into the U.S. the labor market, labor market participation, skilled migration, theory of capital

Procedia PDF Downloads 169
1552 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers

Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner

Abstract:

In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.

Keywords: Al₂O₃ thin film, electrical insulation coating, PVD process, SiC fibre, single fibre tensile test

Procedia PDF Downloads 106
1551 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications

Authors: Khurram Munir, Cuie Wen, Yuncang Li

Abstract:

Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.

Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion

Procedia PDF Downloads 145
1550 Tourist Cultural Literacy: Scale Development and Validation

Authors: Yun-Ru Tsai, Jo-Hui Lin

Abstract:

The cultural interactions between tourists and destination communities have received increased attention. Tourists play an important role in constructing a rewarding intercultural experience and cultural understanding. Cultural literacy is the ability for tourists to negotiate different cultures, this research aimed to develop a measurement of Tourist Cultural Literacy (TCL), the result provides a theoretical framework to assess how tourists interact with different cultural destinations. A pilot qualitative research was conducted in order to generate the initial items. In this study, the procedure of developing the TCL scale was divided into two parts. First, an exploratory factor analysis was conducted, a 25-item TCL scale was developed and six factors were identified: cultural sensitivity, appreciation of the culture, respect for the culture, knowledge of the culture, participate in the culture, and empathy for the culture. Second, confirmatory factor analyses and structural equation modeling were employed, the six-factor model was verified, and was proven to have good fit, reliability, convergent validity, discriminant validity, and criterion-related validity. The study provides managerial implications for tourist management and education, the popularization of TCL might increase the respect and understanding between tourists and local societies as well as decrease the cultural shocks and negative social-cultural impacts derived from tourism activities, thereby reducing the maintenance cost of management and allowing tourists to obtain a better cultural experience. Future research suggestions are also provided.

Keywords: cultural literacy, cultural tourism, scale development, tourism contact

Procedia PDF Downloads 333
1549 Improving Swelling Performance Using Industrial Waste Products

Authors: Mohieldin Elmashad, Salwa Yassin

Abstract:

Expansive soils regarded as one of the most problematic unsaturated formations in the Egyptian arid zones and present a great challenge in civil engineering, in general, and geotechnical engineering, in particular. Severe geotechnical complications and consequent structural damages have been arising due to an excessive and differential volumetric change upon wetting and change in water content. Different studies have been carried out concerning the swelling performance of the expansive soils using different additives including phospho-gypsum as an industrial waste product. However, this paper describes the results of a comprehensive testing programme that was carried out to investigate the effect of phospho-gypsum (PG) and sodium chloride (NaCl), as an additive mixture, on the swelling performance of constituent samples of swelling soils. The constituent samples comprise commercial bentonite collected from a natural site, mixed with different percentages of PG-NaCl mixture. The testing programme had been scoped to cover the physical and chemical properties of the constituent samples. In addition, a mineralogical study using x-ray diffraction (XRD) was performed on the collected bentonite and the mixed bentonite with PG-NaCl mixture samples. The obtained results of this study showed significant improvement in the swelling performance of the tested samples with the increase of the proposed PG-NaCl mixture content.

Keywords: expansive soils, industrial waste, mineralogical study, swelling performance, X-ray diffraction

Procedia PDF Downloads 257
1548 A Pragma-Rhetorical Study of Christian Religious Pentecostal Sermons in Nigeria

Authors: Samuel Alaba Akinwotu

Abstract:

Effectiveness in communication requires the deployment of pragmatic and rhetorical strategies in religious sermons. In spite of high volume of works in religious discourse, scholars have not adequately accounted for the persuasive and argumentation strategies employed in Christian religious Pentecostal sermons. This study examines communicative intentions and the pragma-rhetorical strategies deployed to maintain balance and effectiveness in selected sermons of Pastor E. A. Adeboye, Bishop D. Oyedepo and Pastor W. F. Kumuyi. Fifteen sermons, delivered orally and transcribed into the written mode, were selected and analysed using Jacob Mey’s theory of pragmeme, Aristotle’s rhetoric and the theory of argumentation by van Eemeren and Grootendorst. Speakers pract stating, encouraging, assuring, warning, condemning, directing, praising, thanking, etc. through rhetorical question, repetition, direct address, direct command and structural parallelism. They assume divine role by speaking authoritatively and they tactically and logically select words to legitimise their ideology. They also categorise and portray individuals and/or issues either as good or bad, sinner/sin or righteous/righteousness, etc. The study provides clearer insight into the pragmatic import and the communicative effectiveness of Christian Pentecostal sermons. Further research can juxtapose the pragma-rhetorical and argumentation strategies of preachers of two clearly differentiated movements within the Christian religion.

Keywords: argumentation, communicative intentions, pentecostal sermons, pragmeme, rhetoric

Procedia PDF Downloads 176
1547 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 353
1546 In vitro Cytotoxicity Study on Silver Powders Synthesized via Different Routes

Authors: Otilia Ruxandra Vasile, Ecaterina Andronescu, Cristina Daniela Ghitulica, Bogdan Stefan Vasile, Roxana Trusca, Eugeniu Vasile, Alina Maria Holban, Carmen Mariana Chifiriuc, Florin Iordache, Horia Maniu

Abstract:

Engineered powders offer great promise in several applications, but little information is known about cytotoxicity effects. The aim of the current study was the synthesis and cytotoxicity examination of silver powders using pyrosol method at temperatures of 600°C, 650°C and 700°C, respectively sol-gel method and calcinations at 500°C, 600°C, 700°C and 800°C. We have chosen to synthesize and examine silver particles cytotoxicity due to its use in biological applications. The synthesized Ag powders were characterized from the structural, compositional and morphological point of view by using XRD, SEM, and TEM with SAED. In order to determine the influence of the synthesis route on Ag particles cytotoxicity, different sizes of micro and nanosilver synthesized powders were evaluated for their potential toxicity. For the study of their cytotoxicity, cell cycle and apoptosis have been done analysis through flow cytometry on human colon carcinoma cells and mesenchymal stem cells and through the MTT assay, while the viability and the morphological changes of the cells have been evaluated by using cloning studies. The results showed that the synthesized silver nanoparticles have displayed significant cytotoxicity effects on cell cultures. Our synthesized silver powders were found to present toxicity in a synthesis route and time-dependent manners for pyrosol synthesized nanoparticles; whereas a lower cytotoxicity has been measured after cells were treated with silver nanoparticles synthesized through sol-gel method.

Keywords: Ag, cytotoxicity, pyrosol method, sol-gel method

Procedia PDF Downloads 574
1545 Innovative Activity and Development: Analysing Firm Data from Eurozone Country-Members

Authors: Ilias A. Makris

Abstract:

In this work, we attempt to associate firm characteristics with innovative activity. We collect microdata from listed firms of selected Eurozone Country-members, after the beginning of 2007 financial crisis. The following literature, several indicators of growth and performance were selected and tested for their ability to interpret innovative activity. The main scope is to examine the possible differences in performance and growth between innovative and non-innovative firms, during a severe recession. Additionally to that, a special focus will be held on whether macroeconomic performance and national innovation system, determines the extent of innovators' performance. Preliminary findings, through correlation matrices and non-parametric tests, strongly indicate the positive relation between innovative activity and most of the measures used (profitability, size, employment), confirming that even during a recessionary period, innovative firms not only survive but also seem to succeed better economic results in almost all indexes relative to non-innovative. However, even though innovators seem to perform better in all economies examined, the extent of that performance seems to be strongly affected by the supportive mechanisms (financial and structural) that their country provides. Thus, it is clear, that the technologically intensive 'gap' between European South and North, during the economic crisis, became chaotic, due to the harsh austerity measures and reduced budgets in those countries, even in sectors with high potentials in economic activity and employment, impairing the effects of crisis and enhancing the vicious circle of recession.

Keywords: eurozone, innovative activity, development, firm performance, non-parametric tests

Procedia PDF Downloads 421
1544 Prediction Factor of Recurrence Supraventricular Tachycardia After Adenosine Treatment in the Emergency Department

Authors: Chaiyaporn Yuksen

Abstract:

Backgroud: Supraventricular tachycardia (SVT) is an abnormally fast atrial tachycardia characterized by narrow (≤ 120 ms) and constant QRS. Adenosine was the drug of choice; the first dose was 6 mg. It can be repeated with the second and third doses of 12 mg, with greater than 90% success. The study found that patients observed at 4 hours after normal sinus rhythm was no recurrence within 24 hours. The objective of this study was to investigate the factors that influence the recurrence of SVT after adenosine in the emergency department (ED). Method: The study was conducted retrospectively exploratory model, prognostic study at the Emergency Department (ED) in Faculty of Medicine, Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand. The study was conducted for ten years period between 2010 and 2020. The inclusion criteria were age > 15 years, visiting the ED with SVT, and treating with adenosine. Those patients were recorded with the recurrence SVT in ED. The multivariable logistic regression model developed the predictive model and prediction score for recurrence PSVT. Result: 264 patients met the study criteria. Of those, 24 patients (10%) had recurrence PSVT. Five independent factors were predictive of recurrence PSVT. There was age>65 years, heart rate (after adenosine) > 100 per min, structural heart disease, and dose of adenosine. The clinical risk score to predict recurrence PSVT is developed accuracy 74.41%. The score of >6 had the likelihood ratio of recurrence PSVT by 5.71 times Conclusion: The clinical predictive score of > 6 was associated with recurrence PSVT in ED.

Keywords: clinical prediction score, SVT, recurrence, emergency department

Procedia PDF Downloads 135
1543 Climate Change Impact on Water Resources above the Territory of Georgia

Authors: T. Davitashvili

Abstract:

At present impact of global climate change on the territory of Georgia is evident at least on the background of the Caucasus glaciers melting which during the last century have decreased to half their size. Glaciers are early indicators of ongoing global and regional climate change. Knowledge of the Caucasus glaciers fluctuation (melting) is an extremely necessary tool for planning hydro-electric stations and water reservoir, for development tourism and agriculture, for provision of population with drinking water and for prediction of water supplies in more arid regions of Georgia. Otherwise, the activity of anthropogenic factors has resulted in decreasing of the mowing, arable, unused lands, water resources, shrubs and forests, owing to increasing the production and building. Transformation of one type structural unit into another one has resulted in local climate change and its directly or indirectly impacts on different components of water resources on the territory of Georgia. In the present paper, some hydrological specifications of Georgian water resources and its potential pollutants on the background of regional climate change are presented. Some results of Georgian’s glaciers pollution and its melting process are given. The possibility of surface and subsurface water pollution owing to accidents at oil pipelines or railway routes are discussed. The specific properties of regional climate warming process in the eastern Georgia are studied by statistical methods. The effect of the eastern Georgian climate change upon water resources is investigated.

Keywords: climate, droughts, pollution, water resources

Procedia PDF Downloads 465
1542 Proposal of Non-Destructive Inspection Function Based on Internet of Things Technology Using Drone

Authors: Byoungjoon Yu, Jihwan Park, Sujung Sin, Junghyun Im, Minsoo Park, Sehwan Park, Seunghee Park

Abstract:

In this paper, we propose a technology to monitor the soundness of an Internet-based bridge using a non-conductive inspection function. There has been a collapse accident due to the aging of the bridge structure, and it is necessary to prepare for the deterioration of the bridge. The NDT/SHM system for maintenance of existing bridge structures requires a large number of inspection personnel and expensive inspection costs, and access of expensive and large equipment to measurement points is required. Because current drone inspection equipment can only be inspected through camera, it is difficult to inspect inside damage accurately, and the results of an internal damage evaluation are subjective, and it is difficult for non-specialists to recognize the evaluation results. Therefore, it is necessary to develop NDT/SHM techniques for maintenance of new-concept bridge structures that allow for free movement and real-time evaluation of measurement results. This work is financially supported by Korea Ministry of Land, Infrastructure, and Transport (MOLIT) as 'Smart City Master and Doctor Course Grant Program' and a grant (14SCIP-B088624-01) from Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: Structural Health Monitoring, SHM, non-contact sensing, nondestructive testing, NDT, Internet of Things, autonomous self-driving drone

Procedia PDF Downloads 252
1541 Music in the Early Stages of Life: Considerations from Working with Groups of Mothers and Babies

Authors: Ana Paula Melchiors Stahlschmidt

Abstract:

This paper discusses the role of music as a ludic activity and constituent element of voice in the construction and consolidation of the relationship of the baby and his/her mother or caretaker, evaluating its implications in his/her psychic structure and constitution as a subject. The work was based on the research developed as part of the author’s doctoral activities carried out from her insertion in a project of the Music Department of Federal University of Rio Grande do Sul - UFRGS, which objective was the development of musical activities with groups of babies from 0 to 24 months old and their caretakers. Observations, video recordings of the meetings, audio testemonies, and evaluation tools applied to group participants were used as instruments for this research. Information was collected on the participation of 195 babies, among which 8 were more focused on through interviews with their mothers or caretakers. These interviews were analyzed based on the referential of French Discourse Analysis, Psychoanalysis, Psychology of Development and Musical Education. The results of the research were complemented by other posterior experiences that the author developed with similar groups, in a context of a private clinic. The information collected allowed the observation of the ludic and structural functions of musical activities, when developed in a structured environment, as well as the importance of the musicality of the mother’s voice to the psychical structuring of the baby, allowing his/her insertion in the language and his/her constituition as a subject.

Keywords: music and babies, maternal voice, Psychoanalysis and music, psychology and music

Procedia PDF Downloads 437