Search results for: cell microarray platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5477

Search results for: cell microarray platform

1547 An Analytical Study on the Politics of Defection in India

Authors: Diya Sarkar, Prafulla C. Mishra

Abstract:

In a parliamentary system, party discipline is the impulse; when it falls short, the government usually falls. Conceivably, the platform of Indian politics suffers with innumerous practical disorders. The politics of defection is one such specie entailing gross miscarriage of fair conduct turning politics into a game of thrones (powers). This practice of political nomaditude can trace its seed in the womb of British House of Commons. Therein, if a legislator was found to cross the floor, the party considered him disloyal. In other words, the legislator lost his allegiance to his former party by joining another party. This very phenomenon, in practice has a two way traffic i.e. ruling party to the opposition party or vice versa. The democracies like USA, Australia and Canada were also aware of this fashion of swapping loyalties. There have been several instances of great politicians changing party allegiance, for example Winston Churchill, Ramsay McDonald, William Gladstone etc. Nevertheless, it is interesting to cite that irrespective of such practice of changing party allegiance, none of the democracies in the west ever desired or felt the need to legislatively ban defections. But, exceptionally India can be traced to have passed anti-defection laws. The politics of defection had been a unique popular phenomenon on the floor of Indian Parliamentary system gradually gulping the democratic essence and synchronization of the Federation. This study is both analytical and doctrinal, which tries to examine whether representative democracy has lost its essence due to political nomadism. The present study also analyzes the classical as well as contemporary pulse of floor crossing amidst dynastic politics in a representative democracy. It will briefly discuss the panorama of defections under the Indian federal structure in the light of the anti-defection law and an attempt has been made to add valuable suggestions to streamline remedy for the still prevalent political defections.

Keywords: constitutional law, defection, democracy, polarization, political anti-trust

Procedia PDF Downloads 364
1546 pH and Temperature Triggered Release of Doxorubicin from Hydogen Bonded Multilayer Films of Polyoxazolines

Authors: Meltem Haktaniyan, Eda Cagli, Irem Erel Goktepe

Abstract:

Polymers that change their properties in response to different stimuli (e.g. light, temperature, pH, ionic strength or magnetic field) are called ‘smart’ or ‘stimuli-responsive polymers’. These polymers have been widely used in biomedical applications such as sensors, gene delivery, drug delivery or tissue engineering. Temperature-responsive polymers have been studied extensively for controlled drug delivery applications. As regard of pseudo-peptides, poly (2-alky-2-oxazoline)s are considered as good candidates for delivery systems due to their stealth behavior and nontoxicity. In order to build responsive multilayer films for controlled drug release applications from surface, Layer by layer technique (LBL) is a powerful technique with an advantage of nanometer scale control over spatial architecture and morphology. Multilayers can be constructed on surface where non-covalent interactions including electrostatic interactions, hydrogen bonding, and charge-transfer or hydrophobic-hydrophobic interactions. In the present study, hydrogen bounded multilayer films of poly (2-alky-2-oxazoline) s with tannic acid were prepared in order to use as a platform to release Doxorubicin (DOX) from surface with pH and thermal triggers. For this purpose, poly (2-isopropyl-2-oxazoline) (PIPOX) and poly (2-ethyl-2-oxazoline) (PETOX) were synthesized via cationic ring opening polymerization (CROP) with hydroxyl end groups. Two polymeric multilayer systems ((PETOX)/(DOX)-(TA) complexes and (PIPOX)/(DOX)-(TA) complexes) were designed to investigate of controlled release of Doxorubicin (DOX) from surface with pH and thermal triggers. The drug release profiles from the multilayer thin films with alterations of pH and temperature will been examined with UV-Vis Spectroscopy and Fluorescence Spectroscopy.

Keywords: temperature responsive polymers, h-bonded multilayer films, drug release, polyoxazoline

Procedia PDF Downloads 294
1545 Synthesis and Characterization of Un-Doped and Velvet Tamarind Doped ZnS Crystals, Using Sol Gel Method

Authors: Uchechukwu Vincent Okpala

Abstract:

Under the Sun, energy is a key factor for the sustenance of life and its environment. The need to protect the environment as energy is generated and consumed has called for renewable and green energy sources. To be part of this green revolution, we synthesized and characterized undoped and velvet tamarind doped zinc sulfide (ZnS) crystals using sol-gel methods. Velvet tamarind was whittled down using the top-down approach of nanotechnology. Sodium silicate, tartaric acid, zinc nitrate, and thiourea were used as precursors. The grown samples were annealed at 105°C. Structural, optical, and compositional analyses of the grown samples revealed crystalline structures with varied crystallite sizes influenced by doping. Energy-dispersive X-ray spectroscopy confirmed elemental compositions of Zn, S, C and O in the films. Atomic percentages of the elements varied with VT doping. FT-IR analysis indicated the presence of functional groups like O-H stretching (alcohol), C=C=C stretching (alkene group), C=C bending, C-H stretching (alkane), N-H stretching (aliphatic primary amine) and N=C=S stretching (isothiocyanate) constituent in the film. The transmittance of the samples increased from the visible region to the infrared region making the samples good for poultry and solar energy applications. The bandgap energy of the films decreased as the number of VT drops increased, from 2.4 to 2.2. They were wide band gap materials and were good for optoelectronic, photo-thermal, high temperature, high power and solar cell applications.

Keywords: doping, sol-gel, velvet tamarind, ZnS.

Procedia PDF Downloads 30
1544 Information Management Approach in the Prediction of Acute Appendicitis

Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki

Abstract:

This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.

Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree

Procedia PDF Downloads 335
1543 Ethnopharmacological Analysis of Fermented Herbal Concoctions

Authors: Ishmael Ntlhamu

Abstract:

In Limpopo Province, the use of herbal concoctions is becoming very popular. These concoctions are claimed to be capable of treating ulcers, diabetes, certain STDs, blood cleansing, and many more types of diseases. The aim of this study was to evaluate the phytochemical composition, evaluate the pharmacological effects and consumption safety in herbal concoctions to treat various kinds of ailments in Limpopo. The concoctions were extracted with 80% acetone. Microorganisms in the concoctions were identified using the Vitek 2 compact system. Qualitative phytochemical analysis was determined using standard chemical tests and thin layer chromatography (TLC). Total polyphenol content was quantified. Antioxidant activity was quantified using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay and ferric reducing power. Antimicrobial activities were determined using a broth micro-dilution assay and bioautography. Cell viability assay was used to determine the cytotoxicity. Results showed that concoctions had antioxidant activity. Presence of different phytoconstituents was observed. Isolated microorganisms were identified as Burkholderia pseudomallei, Staphylococcus vitulimus, Enterococcus columbae, Kocuria kristanae, Staphylococcus intermedius, Cryptococcus laurenti. and Burkholderia pseudomallei (highly pathogenic). Therefore, phytochemicals prove that the concoctions can heal as the antimicrobial tests also displayed activity. Moreover, the concoctions did not exhibit cytotoxic effects. However, contaminants raise concerns, not only for consumer safety but also the quality of herbal concoctions available as part of the traditional medicinal practice in Limpopo.

Keywords: antimicrobials, concoctions, cytotoxicity, phytochemicals

Procedia PDF Downloads 124
1542 The Relationship between First-Day Body Temperature and Mortality in Traumatic Patients

Authors: Neda Valizadeh, Mani Mofidi, Sama Haghighi, Ali Hashemaghaee, Soudabeh Shafiee Ardestani

Abstract:

Background: There are many systems and parameters to evaluate trauma patients in the emergency department. Most of these evaluations are to distinguish patients with worse conditions so that the care systems have a better prediction of condition for a better care-giving. The purpose of this study is to determine the relationship between axillary body temperature and mortality in patients hospitalized in the intensive care unit (ICU) with multiple traumas and with other clinical and para-clinical factors. Methods: All patients between 16 and 75 years old with multiple traumas who were admitted into Emergency Department then hospitalized in the ICU were included in our study. An axillary temperature in the first and the second day of admission, Glasgow cola scale (GCS), systolic blood pressure, Serum glucose levels, and white blood cell counts of all patients at the admission day were recorded and their relationship with mortality were analyzed by SPSS software with suitable statistical tests. Results: Axillary body temperatures in the first and second day were statistically lower in expired traumatic patients (p=0.001 and p<0,001 respectively). Patients with lower GCS had a significantly lower first-day temperature and a significantly higher mortality. (p=0.006 and p=0.006 respectively). Furthermore, the first-day axillary temperature was significantly lower in patients with a lower first-day systolic blood pressure (p=0.014). Conclusion: Our results showed that lower axillary body temperature in the first day is associated with higher mortality, lower GCS, and lower systolic blood pressure. Thus, this could be used as a predictor of mortality in evaluation of traumatic patients in emergency settings.

Keywords: fever, trauma, mortality, emergency

Procedia PDF Downloads 358
1541 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification

Authors: Zahrasadat Hosseini, Jie Yuan

Abstract:

Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices.

Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping

Procedia PDF Downloads 66
1540 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform

Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr

Abstract:

Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.

Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing

Procedia PDF Downloads 66
1539 Impregnation Reduction Method for the Preparation of Platinum-Nickel/Carbon Black Alloy Nanoparticles as Faor Electrocatalyst

Authors: Maryam Kiani

Abstract:

In order to enhance the efficiency and stability of an electrocatalyst for formic acid electro-oxidation reaction (FAOR), we developed a method to create Pt/Ni nanoparticles with carbon black. These nanoparticles were prepared using a simple impregnation reduction technique. During the observation, it was found that the nanoparticles had a spherical shape. Additionally, the average particle size remained consistent, falling within the range of about 4 nm. This approach aimed to obtain a loaded Pt-based electrocatalyst that would exhibit improved performance and stability when used in FAOR applications. By utilizing the impregnation reduction method and incorporating Ni nanoparticles along with Pt, we sought to enhance the catalytic properties of the material. By incorporating Ni atoms into the Pt structure, the electronic properties of Pt are modified, resulting in a delay in the chemisorption of harmful CO intermediate species. This modification also promotes the dehydrogenation pathway of the formic acid oxidation reaction (FAOR). Through electrochemical analysis, it has been observed that the Pt3Ni-C catalyst exhibits enhanced performance in FAOR compared to traditional Pt catalysts. This means that the addition of Ni atoms improves the efficiency and effectiveness of the Pt3Ni-C catalyst in facilitating the FAOR process. Overall, the utilization of these alloy nanoparticles as electrocatalysts represents a significant advancement in fuel cell technology.

Keywords: electrocatalyst, impregnation reduction method, formic acid electro-oxidation reaction, fuel cells

Procedia PDF Downloads 93
1538 Antibacterial Activity and Cytotoxicity of Silver Nanoparticles Synthesized by Moringa oleifera Extract as Reducing Agent

Authors: Temsiri Suwan, Penpicha Wanachantararak, Sakornrat Khongkhunthian, Siriporn Okonogi

Abstract:

In the present study, silver nanoparticles (AgNPs) were synthesized by green synthesis approach using Moringa oleifera aqueous extract (ME) as a reducing agent and silver nitrate as a precursor. The obtained AgNPs were characterized using UV-Vis spectroscopy (UV-Vis), dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffractometry (XRD). The results from UV-Vis revealed that the maximum absorption of AgNPs was at 430 nm and the EDX spectrum confirmed Ag element. The results from DLS indicated that the amount of ME played an important role in particle size, size distribution, and zeta potential of the obtained AgNPs. The smallest size (62.4 ± 1.8 nm) with narrow distribution (0.18 ± 0.02) of AgNPs was obtained after using 1% w/v of ME. This system gave high negative zeta potential of -36.5 ± 2.8 mV. SEM results indicated that the obtained AgNPs were spherical in shape. Antibacterial activity using dilution method revealed that the minimum inhibitory and minimum bactericidal concentrations of the obtained AgNPs against Streptococcus mutans were 0.025 and 0.1 mg/mL, respectively. Cytotoxicity test of AgNPs on adenocarcinomic human alveolar basal epithelial cells (A549) indicated that the particles impacted against A549 cells. The percentage of cell growth inhibition was 87.5 ± 3.6 % when only 0.1 mg/mL AgNPs was used. These results suggest that ME is the potential reducing agent for green synthesis of AgNPs.

Keywords: antibacterial activity, Moringa oleifera extract, reducing agent, silver nanoparticles

Procedia PDF Downloads 97
1537 A Game-Based Product Modelling Environment for Non-Engineer

Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige

Abstract:

In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.

Keywords: game-based learning, knowledge based engineering, product modelling, design automation

Procedia PDF Downloads 137
1536 Knee Pain Reduction: Holistic vs. Traditional

Authors: Renee Moten

Abstract:

Introduction: Knee pain becomes chronic because the therapy used focuses only on the symptoms of knee pain and not the causes of knee pain. Preventing knee injuries is not in the toolbox of the traditional practitioner. This research was done to show that we must reduce the inflammation (holistically), reduce the swelling and regain flexibility before considering any type of exercise. This method of performing the correct exercise stops the bowing of the knee, corrects the walking gait, and starts to relieve knee, hip, back, and shoulder pain. Method: The holistic method that is used to heal knees is called the Knee Pain Recipe. It’s a six step system that only uses alternative medicine methods to reduce, relieve and restore knee joint mobility. The system is low cost, with no hospital bills, no physical therapy, and no painkillers that can cause damage to the kidneys and liver. This method has been tested on 200 women with knee, back, hip, and shoulder pain. Results: All 200 women reduce their knee pain by 50%, some by as much as 90%. Learning about ankle and foot flexibility, along with understanding the kinetic chain, helps improve the walking gait, which takes the pressure off the knee, hip and back. The knee pain recipe also has helped to reduce the need for a cortisone injection, stem cell procedures, to take painkillers, and surgeries. What has also been noted in the research was that if the women's knees were too far gone, the Knee Pain Recipe helped prepare the women for knee replacement surgery. Conclusion: It is believed that the Knee Pain Recipe, when performed by men and women from around the world, will give them a holistic alternative to drugs, injections, and surgeries.

Keywords: knee, surgery, healing, holistic

Procedia PDF Downloads 61
1535 Indigenous Understandings of Climate Vulnerability in Chile: A Qualitative Approach

Authors: Rosario Carmona

Abstract:

This article aims to discuss the importance of indigenous people participation in climate change mitigation and adaptation. Specifically, it analyses different understandings of climate vulnerability among diverse actors involved in climate change policies in Chile: indigenous people, state officials, and academics. These data were collected through participant observation and interviews conducted during October 2017 and January 2019 in Chile. Following Karen O’Brien, there are two types of vulnerability, outcome vulnerability and contextual vulnerability. How vulnerability to climate change is understood determines the approach, which actors are involved and which knowledge is considered to address it. Because climate change is a very complex phenomenon, it is necessary to transform the institutions and their responses. To do so, it is fundamental to consider these two perspectives and different types of knowledge, particularly those of the most vulnerable, such as indigenous people. For centuries and thanks to a long coexistence with the environment, indigenous societies have elaborated coping strategies, and some of them are already adapting to climate change. Indigenous people from Chile are not an exception. But, indigenous people tend to be excluded from decision-making processes. And indigenous knowledge is frequently seen as subjective and arbitrary in relation to science. Nevertheless, last years indigenous knowledge has gained particular relevance in the academic world, and indigenous actors are getting prominence in international negotiations. There are some mechanisms that promote their participation (e.g., Cancun safeguards, World Bank operational policies, REDD+), which are not absent from difficulties. And since 2016 parties are working on a Local Communities and Indigenous Peoples Platform. This paper also explores the incidence of this process in Chile. Although there is progress in the participation of indigenous people, this participation responds to the operational policies of the funding agencies and not to a real commitment of the state with this sector. The State of Chile omits a review of the structure that promotes inequality and the exclusion of indigenous people. In this way, climate change policies could be configured as a new mechanism of coloniality that validates a single type of knowledge and leads to new territorial control strategies, which increases vulnerability.

Keywords: indigenous knowledge, climate change, vulnerability, Chile

Procedia PDF Downloads 109
1534 Characterization of Solanum tuberosum Ammonium Transporter Gene Using Bioinformatics Approach

Authors: Adewole Tomiwa Adetunji, Francis Bayo Lewu, Richard Mundembe

Abstract:

Plants require nitrogen (N) to support desired production levels. There is a need for better understanding of N transport mechanism in order to improve N assimilation by plant root. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which N is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was amplified, sequenced and characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design 976 base pairs AMT1-specific primers which include forward primer 5’- GCCATCGCCGCCGCCGG-3’ and reverse primer 5’-GGGTCAGATCCATACCCGC-3’. These primers were used to amplify the Solanum tuberosum AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family due to the clade and high similarity it shared with other plant AMT1 genes. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1, and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th-10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport.

Keywords: ammonium transporter, bioinformatics, nitrogen, primers, Solanum tuberosum

Procedia PDF Downloads 212
1533 An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery

Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi

Abstract:

Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study.

Keywords: food waste, management technology, innovative method, bio converting food waste, microbial fuel cell

Procedia PDF Downloads 98
1532 Production of Nitric Oxide by Thienopyrimidine TP053

Authors: Elena G. Salina, Laurent R. Chiarelli, Maria R. Pasca, Vadim A. Makarov

Abstract:

Tuberculosis is one of the most challenging threats to human health, confronted by the problem of drug resistance. Evidently, new drugs for tuberculosis are urgently needed. Thienopyrimidine TP053 is one of the most promising new antitubercular prodrugs. Mycothiol-dependent reductase Mrx2, encoded by rv2466c, is known to be a TP053 activator; however, the precise mode of action of this compound remained unclear. Being highly active against both replicating and non-replicating tuberculosis bacilli, TP053 also revealed dose-escalating activity for M. tuberculosis-infected murine macrophages. The chemical structure of TP053 is characterized by the presence of NO₂ group which was suggested to be responsible for the toxic effects of the activated compound. Reduction of a nitroaromatic moiety of TP53 by Mrx2 was hypothesized to result in NO release. Analysis of the products of enzymatic activation of TP053 by Mrx2 by the Greiss reagent clearly demonstrated production of nitric oxide in a time-dependent manner. Mass-spectra of cell lysates of TP-treated M. tuberculosis bacilli demonstrated the transformation of TP053 to its non-active metabolite with Mw=261 that corresponds NO release. The mechanism of NO toxicity for bacteria includes DNA damage and degradation of iron-sulfur centers, especially under oxygen depletion. Thus, TP-053 drug-like scaffold is prospective for further development of novel anti-TB drug. This work was financially supported by the Russian Foundation for Basic Research (Grant 17-04-00342).

Keywords: drug discovery, M. tuberculosis, nitric oxide, NO donors

Procedia PDF Downloads 136
1531 Design of Liquid Crystal Based Interface to Study the Interaction of Gram Negative Bacterial Endotoxin with Milk Protein Lactoferrin

Authors: Dibyendu Das, Santanu Kumar Pal

Abstract:

Milk protein lactoferrin (Lf) exhibits potent antibacterial activity due to its interaction with Gram-negative bacterial cell membrane component, lipopolysaccharide (LPS). This paper represents fabrication of new Liquid crystals (LCs) based biosensors to explore the interaction between Lf and LPS. LPS self-assembled at aqueous/LCs interface and orients interfacial nematic 4-cyano-4’- pentylbiphenyl (5CB) LCs in a homeotropic fashion (exhibiting dark optical image under polarized optical microscope). Interestingly, on the exposure of Lf on LPS decorated aqueous/LCs interface, an optical image of LCs changed from dark to bright indicating an ordering alteration of interfacial LCs from homeotropic to tilted/planar state. The ordering transition reflects strong binding between Lf and interfacial LPS that, in turn, perturbs the orientation of LCs. With the help of epifluorescence microscopy, we further affirmed the interfacial LPS-Lf binding event by imaging the presence of FITC tagged Lf at the LPS laden aqueous/LCs interface. Finally, we have investigated the conformational behavior of Lf in solution as well as in the presence of LPS using Circular Dichroism (CD) spectroscopy and further reconfirmed with Vibrational Circular Dichroism (VCD) spectroscopy where we found that Lf undergoes alpha-helix to random coil-like structure in the presence of LPS. As a whole the entire results described in this paper establish a robust approach to envisage the interaction between LPS and Lf through the ordering transitions of LCs at aqueous/LCs interface.

Keywords: endotoxin, interface, lactoferrin, lipopolysaccharide

Procedia PDF Downloads 251
1530 A Theory-Based Analysis on Implications of Democracy in Cambodia

Authors: Puthsodary Tat

Abstract:

Democracy has been categorially accepted and used as foreign and domestic policy agendas for the hope of peace, economic growth and prosperity for more than 25 years in Cambodia. However, the country is now in the grip of dictatorship, human rights violations, and prospective economic sanctions. This paper examines different perceptions and experiences of democratic assistance. In this study, the author employs discourse theory, idealism and realism as a theory-based methodology for debating and assessing the implications of democratization. Discourse theory is used to establish a platform for understanding discursive formations, body of knowledge and the games of truth of democracy. Idealist approaches give rational arguments for adopting key tenets that work well on the ground. In contrast, realism allows for some sweeping critiques of utopian ideal and offers particular views on why Western hegemonic missions do not work well. From idealist views, the research finds that Cambodian people still believe that democracy is a prima facie universality for peace, growth and prosperity. From realism, democratization is on the brink of death in three reasons. Firstly, there are tensions between Western and local discourses about democratic values and norms. Secondly, democratic tenets have been undermined by the ruling party-controlled courts, corruption, structural oppression and political patronage-based institutions. The third pitfall is partly associated with foreign aid dependency and geopolitical power struggles in the region. Finally, the study offers a precise mosaic of democratic principles that may be used to avoid a future geopolitical and economic crisis.

Keywords: corruption, democracy, democratic principles, discourse theory, discursive formations, foreign aid dependency, games of truth, geopolitical and economic crisis, geopolitical power struggle, hegemonic mission, idealism, realism, utopian ideal

Procedia PDF Downloads 187
1529 Effect of Barium Doping on Structural, Morphological, Optical and Photocatalytic Properties of Sprayed ZnO Thin Films

Authors: H. Djaaboube, I. Loucif, Y. Bouachiba, R. Aouati, A. Maameri, A. Taabouche, A. Bouabellou

Abstract:

Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using a spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and, therefore, the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping; this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.

Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO

Procedia PDF Downloads 65
1528 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs

Authors: Anika Chebrolu

Abstract:

Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.

Keywords: drug design, multitargeticity, de-novo, reinforcement learning

Procedia PDF Downloads 71
1527 Development of a New Characterization Method to Analyse Cypermethrin Penetration in Wood Material by Immunolabelling

Authors: Sandra Tapin-Lingua, Katia Ruel, Jean-Paul Joseleau, Daouia Messaoudi, Olivier Fahy, Michel Petit-Conil

Abstract:

The preservative efficacy of organic biocides is strongly related to their capacity of penetration and retention within wood tissues. The specific detection of the pyrethroid insecticide is currently obtained after extraction followed by chemical analysis by chromatography techniques. However visualizing the insecticide molecule within the wood structure requires specific probes together with microscopy techniques. Therefore, the aim of the present work was to apply a new methodology based on antibody-antigen recognition and electronic microscopy to visualize directly pyrethroids in the wood material. A polyclonal antibody directed against cypermethrin was developed and implement it on Pinus sylvestris wood samples coated with technical cypermethrin. The antibody was tested on impregnated wood and the specific recognition of the insecticide was visualized in transmission electron microscopy (TEM). The immunogold-TEM assay evidenced the capacity of the synthetic biocide to penetrate in the wood. The depth of penetration was measured on sections taken at increasing distances from the coated surface of the wood. Such results correlated with chemical analyzes carried out by GC-ECD after extraction. In addition, the immuno-TEM investigation allowed visualizing, for the first time at the ultrastructure scale of resolution, that cypermethrin was able to diffuse within the secondary wood cell walls.

Keywords: cypermethrin, insecticide, wood penetration, wood retention, immuno-transmission electron microscopy, polyclonal antibody

Procedia PDF Downloads 395
1526 The Effect of Gamma-Aminobutyric Acid on Mechanical Properties, Water Vapor Permeability and Solubility of Pectin Films

Authors: Jitrawadee Meerasri, Rungsinee Sothornvit

Abstract:

Pectin is a structural polysaccharide from plant cell walls and can be used as a stabilizer, gelling and film-forming agents to improve many food products. Moreover, pectin film as a natural biopolymer can be a carrier of several active ingredients such as antioxidant and antimicrobial to provide an active or functional film. Gamma-aminobutyric acid (GABA) is a well-known agent to reduce neuronal excitability throughout the nervous system and it is interesting to investigate the GABA effect as a substitute of normal plasticizer (glycerol) on edible film properties. Therefore, the objective of this study was to determine the effect of GABA concentrations (5-15% of pectin) on film mechanical properties, moisture content, water vapor permeability, and solubility compared with those from glycerol (10% of pectin) plasticized pectin film including a control film (pectin film without any plasticizer). It was found that an increase in GABA concentrations decreased film tensile strength, modulus, solubility and water vapor permeability, but elongation was increased without a change in the moisture content. The smaller amount of GABA showed the equivalent film properties as using a higher amount of glycerol. Consequently, GABA can act as an alternative plasticizer substitute of glycerol at the lower amount used. Moreover, GABA provides the nutritional high value in the food products when the edible packaging material is consumed with products.

Keywords: gamma-aminobutyric acid, pectin, plasticizer, edible film

Procedia PDF Downloads 113
1525 Demetallization of Crude Oil: Comparative Analysis of Deasphalting and Electrochemical Removal Methods of Ni and V

Authors: Nurlan Akhmetov, Abilmansur Yeshmuratov, Aliya Kurbanova, Gulnar Sugurbekova, Murat Baisariyev

Abstract:

Extraction of the vanadium and nickel compounds is complex due to the high stability of porphyrin, nickel is catalytic poison which deactivates catalysis during the catalytic cracking of the oil, while vanadyl is abrasive and valuable metal. Thus, high concentration of the Ni and V in the crude oil makes their removal relevant. Two methods of the demetallization of crude oil were tested, therefore, the present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits in to the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for Ni and 51.2% for V. Thus, applying the voltammetry, ICP MS (Inductively coupled plasma mass spectrometry) and AAS (atomic absorption spectroscopy), these mentioned types of metal extraction methods were compared in this paper.

Keywords: electrochemistry, deasphalting of crude oil, demetallization of crude oil, petrolium engineering

Procedia PDF Downloads 216
1524 Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Dynamic Membrane Electroporation

Authors: Jiahui Song

Abstract:

The application of an electric field can cause poration at cell membranes. This includes the outer plasma membrane, as well as the membranes of intracellular organelles. In order to analyze and predict such electroporation effects, it becomes necessary to first evaluate the electric fields and the transmembrane voltages. This information can then be used to assess changes in the pore formation energy that finally yields the pore distributions and their radii based on the Smolchowski equation. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into the pore formation energy equation. These changes make the pore formation energy E(r) self-adjusting in response to pore formation without causing uncontrolled growth and expansion. By using dynamic membrane tension, membrane electroporation in response to a 180kV/cm trapezoidal pulse with a 10 ns on time and 1.5 ns rise- and fall-times is discussed. Poration is predicted to occur at times beyond the peak at around 9.2 ns. Modeling also yields time-dependent distributions of the membrane pore population after multiple pulses. It shows that the pore distribution shifts to larger values of the radius with multiple pulsing. Molecular dynamics (MD) simulations are also carried out for a fixed field of 0.5 V/nm to demonstrate nanopore formation from a microscopic point of view. The result shows that the pore is predicted to be about 0.9 nm in diameter and somewhat narrower at the central point.

Keywords: high-intensity, nanosecond, dynamics, electroporation

Procedia PDF Downloads 141
1523 Enhancement of Dissolved Oxygen Concentration during the Electrocoagulation Process Using an Innovative Flow Columns-Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar

Abstract:

Dissolved oxygen concentration (DO) plays a key role in the electrocoagulation process (EC) as it oxidizes the heavy metals, ammonia, and cyanide into other forms that can be removed easily from water. For instance, the DO oxidises Fe (II) to Fe (III), As (III) to As (V), and cyanide to cyanate and then to ammonia. As well as, removal of nitrogenous compounds accomplishes by the presence of DO. Hence, many of the previous investigations used external aerators to provide the required DO inside EC reactors especially when the water being treated has low DO (such as leachate and highly polluted waters with organic matter); or when the DO depleted during the EC treatment. Although the external aeration process effectively enhances the DO concentration, it has a significant impact on energy consumption. Where, the presence of air bubbles increases the electrical resistance of the EC cell that increase the energy consumption in consequence. Thus, the present project aims to fill this gap by an innovative use of perforated flow columns in the designing of a new EC reactor (ECR1). The new reactor (ECR1) consisted of a Perspex made cylinder container having a controllable working volume of 0.5 to 1 L. It supplied with a flow column that consisted of perorated discoid electrodes that made from aluminium. In order to investigate the performance of ECR1; water samples with a controlled DO concentration were pumped at different flow rates (110, 220, and 440 ml/min) to the ECR1 for 10 min. The obtained results demonstrated that the ECR1 increased the DO concentration from 5.0 to 9.54, 10.53, and 11.0 mg/L which equivalent to 90.8%, 110.6%, and 120% at flow rates of 110, 220, and 440 mL/min respectively.

Keywords: dissolved oxygen, flow column, electrocoagulation, aluminium electrodes

Procedia PDF Downloads 260
1522 Technology Futures in Global Militaries: A Forecasting Method Using Abstraction Hierarchies

Authors: Mark Andrew

Abstract:

Geopolitical tensions are at a thirty-year high, and the pace of technological innovation is driving asymmetry in force capabilities between nation states and between non-state actors. Technology futures are a vital component of defence capability growth, and investments in technology futures need to be informed by accurate and reliable forecasts of the options for ‘systems of systems’ innovation, development, and deployment. This paper describes a method for forecasting technology futures developed through an analysis of four key systems’ development stages, namely: technology domain categorisation, scanning results examining novel systems’ signals and signs, potential system-of systems’ implications in warfare theatres, and political ramifications in terms of funding and development priorities. The method has been applied to several technology domains, including physical systems (e.g., nano weapons, loitering munitions, inflight charging, and hypersonic missiles), biological systems (e.g., molecular virus weaponry, genetic engineering, brain-computer interfaces, and trans-human augmentation), and information systems (e.g., sensor technologies supporting situation awareness, cyber-driven social attacks, and goal-specification challenges to proliferation and alliance testing). Although the current application of the method has been team-centred using paper-based rapid prototyping and iteration, the application of autonomous language models (such as GPT-3) is anticipated as a next-stage operating platform. The importance of forecasting accuracy and reliability is considered a vital element in guiding technology development to afford stronger contingencies as ideological changes are forecast to expand threats to ecology and earth systems, possibly eclipsing the traditional vulnerabilities of nation states. The early results from the method will be subjected to ground truthing using longitudinal investigation.

Keywords: forecasting, technology futures, uncertainty, complexity

Procedia PDF Downloads 98
1521 Strengths and Weaknesses of Tally, an LCA Tool for Comparative Analysis

Authors: Jacob Seddlemeyer, Tahar Messadi, Hongmei Gu, Mahboobeh Hemmati

Abstract:

The main purpose of this first tier of the study is to quantify and compare the embodied environmental impacts associated with alternative materials applied to Adohi Hall, a residence building at the University of Arkansas campus, Fayetteville, AR. This 200,000square foot building has5 stories builtwith mass timber and is compared to another scenario where the same edifice is built with a steel frame. Based on the defined goal and scope of the project, the materials respectivetothe respective to the two building options are compared in terms of Global Warming Potential (GWP), starting from cradle to the construction site, which includes the material manufacturing stage (raw material extract, process, supply, transport, and manufacture) plus transportation to the site (module A1-A4, based on standard EN 15804 definition). The consumedfossil fuels and emitted CO2 associated with the buildings are the major reason for the environmental impacts of climate change. In this study, GWP is primarily assessed to the exclusion of other environmental factors. The second tier of this work is to evaluate Tally’s performance in the decision-making process through the design phases, as well as determine its strengths and weaknesses. Tally is a Life Cycle Assessment (LCA) tool capable of conducting a cradle-to-grave analysis. As opposed to other software applications, Tally is specifically targeted at buildings LCA. As a peripheral application, this software tool is directly run within the core modeling application platform called Revit. This unique functionality causes Tally to stand out from other similar tools in the building sector LCA analysis. The results of this study also provide insights for making more environmentally efficient decisions in the building environment and help in the move forward to reduce Green House Gases (GHGs) emissions and GWP mitigation.

Keywords: comparison, GWP, LCA, materials, tally

Procedia PDF Downloads 210
1520 Treatment of Leather Industry Wastewater with Advance Treatment Methods

Authors: Seval Yilmaz, Filiz Bayrakci Karel, Ali Savas Koparal

Abstract:

Textile products produced by leather have been indispensable for human consumption. Various chemicals are used to enhance the durability of end-products in the processing of leather products. The wastewaters from the leather industry which contain these chemicals exhibit toxic effects on the receiving environment and threaten the natural ecosystem. In this study, leather industry wastewater (LIW), which has high loads of contaminants, was treated using advanced treatment techniques instead of conventional methods. During the experiments, the performance of electrochemical methods was investigated. During the electrochemical experiments, the performance of batch electrooxidation (EO) using boron-doped diamond (BDD) electrodes with monopolar configuration for removal of chemical oxygen demand (COD) from LIW were investigated. The influences of electrolysis time, current density (which varies as 5 mA/cm², 10 mA/cm², 20 mA/cm², 30 mA/cm², 50 mA/cm²) and initial pH (which varies as 3,80 (natural pH of LIW), 7, 9) on removal efficiency were investigated in a batch stirred cell to determine the best treatment conditions. The current density applied to the electrochemical reactors is directly proportional to the consumption of electric energy, so electrical energy consumption was monitored during the experiment. The best experimental conditions obtained in electrochemical studies were as follows: electrolysis time = 60 min, current density = 30.0 mA/cm², pH 7. Using these parameters, 53.59% COD removal rates for LIW was achieved and total energy consumption was obtained as 13.03 kWh/m³. It is concluded that electrooxidation process constitutes a plausible and developable method for the treatment of LIW.

Keywords: BDD electrodes, COD removal, electrochemical treatment, leather industry wastewater

Procedia PDF Downloads 145
1519 Social Media as a Tool for Medication Adherence and Personal Health Management

Authors: Huang Wei-Chi, Li Wei, Yu Tien-Chieh

Abstract:

Medication adherence is crucial for treatment success. Adherence problem is common in patients with polypharmacy, especially in the geriatric population who are vulnerable to multiple chronic conditions but averagely less knowledgeable about diseases and medications. In order to help patients take medications appropriately and enhance the understanding of diseases or medications, a Line official account named e-Pharmacist was designed. The line is a popular freeware app with the highest penetration rate (95.7%) in Taiwan. The interface of e-Pharmacist is user-friendly for easy-to-read and convenient operating. Differ from other medication adherence apps, users just added e-Pharmacist as a LINE friend without installing any more apps and the drug lists were automatically downloaded from the personal electronic medical records with security permission. Over and above medication reminder, several additional capabilities were set up and engaged in the platform of e-Pharmacist including prescription refill reservation, laboratory examination consultation, medical appointment registration, and “Daily Health Log” where patients can record and track data of blood pressure/blood sugar and daily meals for self-health management as well as can share the important information to clinical professionals when seeking medical help. Additionally, a Line chatbot was utilized to provide tailored medicine information for the individual user. From July 2020 to March 2022, around 3000 patients added e-pharmacist as Line friends. Every day more than 1500 patients receive messages from e-pharmacist to notify them to take medicine. Thanks to the e-pharmacist alert system and Chatbot, the low-compliance patients (defined by Program on Adherence to Medication, PAM) significantly dropped from 36% to 6%, whereas the high-compliance patients dramatically increased from 13% to 77%. The user satisfaction is 98%. In brief, an e-pharmacist is not only a medication reminder but also a tailored personal assistant with value-added service for health management.

Keywords: e-pharmacist, self-health management, medication reminder, value-added service

Procedia PDF Downloads 140
1518 Therapeutic Evaluation of Bacopa Monnieri Extract on Liver Fibrosis in Rats

Authors: Yu Wen Wang, Shyh Ming Kuo, Hsia Ying Cheng, Yu Chiuan Wu

Abstract:

Liver fibrosis is caused by the activation of hepatic stellate cells in the liver to secrete excessive and deposition of extracellular matrix. In recent years, many treatment strategies have been developed to reduce the activation of hepatic stellate cells and therefore to increase the decomposition of extracellular matrix. Bacopa monnieri, an herbaceous plant of the scrophulariaceae, containing saponins and glycosides, which with antioxidant, anti-inflammation, pain relief and free radical scavenging characteristics. This study was to evaluate the inhibition of hepatic stellate cell activity by Bacopa monnieri extract and its therapeutic potential in treating thioacetamide-induced liver fibrosis in rats. The results showed that the IC50 of Bacopa monnieri extract was 0.39 mg/mL. Bacopa monnieri extract could effectively reduce H2O2-induced hepatic stellate cells inflammation. In the TAA-induced liver fibrosis animal studies, albumin secretion recovered to normal level after treated with Bacopa monnieri extract for 2-w, and fibrosis related proteins, α-SMA and TGF-1levels decreased indicating the extract exerted therapeutic effect on the liver fibrosis. However, inflammatory factors TNF- obviously decreased after 4-w treatment. In summary, we could successfully extract the main component-Bacopaside I from the plant and acquired a potential therapy using this component in treating TAA-induced liver fibrosis in rat.

Keywords: anti-inflammatory, Bacopa monnieri, fibrosis, hepatic stellate cells, water extract

Procedia PDF Downloads 91