Search results for: state of learning
10128 The Relationship Between Social Support, Happiness, Work-Family Conflict and State-Trait Anxiety Among Single Mothers by Choice at Time of Covid-19 Pandemic
Authors: Shamir Balderman Orit, Shamir Michal
Abstract:
Israel often deals with crisis situations, but most have been characterized as security crises (e.g., war). This is the first time that the Israel has dealt with a health and social emergency as part of a global crisis. The crisis began in January 2020 with the emergence of the novel coronavirus (Covid-19), which was defined as a pandemic (World Health Organization, 2020) and arrived in Israel in early March 2020. This study examined how single mothers by choice (SMBC) experience state anxiety (SA), social support, work–family conflict (WFC), and happiness. This group has not been studied in the context of crises in general or a global crisis. Using a snowball sample, 386 SMBCanswered an online questionnaire. The findings show a negative relationship between income and level of state anxiety. State anxiety was also negatively associated with social support, level of happiness, and WFC. Finally, a stepwise regression analysis indicated that happiness explained 34% of the variance in SA. We also found that most of the women did not turn to formal support agencies such as social workers, other Government Ministries, or municipal welfare. A positive and strong correlations was also found between SA and WFC. The findings of the study reinforce the understanding that although these women made a conscious and informed decision regarding the choice of their family cell, their situation is more complex in the absence of a spouse support. Therefore, this study, as other future studies in the field of SMBC, may contribute to the improvement of their social status and the understanding that they are a unique group. Although SMBC are a growing sector of society in the past few years, there are still special needs and special attention that is needed from the formal and informal supports systems. A comparative study of these two groups and in different countries would shed light on SA among mothers in general, regardless of their relationship status and location. Researchers should expand this study by comparing mothers in relationships and exploring how SMBC coped in other countries. In summary, the findings of the study contribute knowledge on three levels: (a) knowledge about SMBC in general and during crisis situations; (b) examination of social support using tools assessing receipt of assistance and support, some of which were developed for the present study; and (c) insights regarding counseling, accompaniment, and guidance of welfare mechanisms.Keywords: single mothers by choice, state anxiety, social support, happiness, work-family conflict
Procedia PDF Downloads 10610127 Child Feeding Practices Among Mothers in Urban Areas of Akure, Ondo State, Nigeria
Authors: Olufemi Samuel Shola, Oladapo Adenike Adesola
Abstract:
Inadequate dietary intake has increased the susceptibility of under five children to malnutrition and infections. This study, therefore, assessed the feeding practices of children of 0-23 months of age among mothers in urban areas of Akure, Ondo State, Nigeria. Simple random sampling technique was used to select four hundred (400) mothers out of 710 mothers from 7 primary health care centres in Akure metropolis for the study. Data were collected using modified WHO 2003 Questionnaire on child feeding practices. Data were analyzed using descriptive statistics, while chi-square was used to determine the association between variables. Results showed that 52.0% of the children were males, with 47.5% in the 6-8 months age group. More than half (57.0%) of the mothers were between the ages of 20-29 years, and 45.0% had secondary education. Majority (94.3%) of the mothers breastfed their children in the last 24 hours preceding the survey. The feeding practices history of mothers showed that 28.0% and 53.7% of the mothers initiated breastfeeding less than 30 minutes and between 30 minutes to 1 hour after delivery, respectively. Also, 52.0% of mothers practiced exclusive breastfeeding for six months, while 26.2% breastfed from 6 months up to 2 years of age. Dietary diversity of the children age 6-23 months revealed that 68.7% of the children attained the minimum dietary diversity by consuming 4 or more food groups in the last 24 hours. There was a significant association (P < 0.05) between mothers’ education (n=180), occupation(n=41) and dietary diversity (n= 150) and meal frequency (n=209). Therefore, the study concluded that the duration of breastfeeding and time of introduction of complementary food did not meet WHO recommended guidelines. There is urgent need to launching more programmes.Keywords: breastfeeding, mothers, child feeding, urban areas, ondo state, nigeria
Procedia PDF Downloads 13210126 Academic Goal Setting Practices of University Students in Lagos State, Nigeria: Implications for Counselling
Authors: Asikhia Olubusayo Aduke
Abstract:
Students’ inability to set data-based (specific, measurable, attainable, reliable, and time-bound) personal improvement goals threatens their academic success. Hence, the study aimed to investigate year-one students’ academic goal-setting practices at Lagos State University of Education, Nigeria. Descriptive survey research was used in carrying out this study. The study population consisted of 3,101 year-one students of the University. A sample size of five hundred (501) participants was selected through a proportional and simple random sampling technique. The Formative Goal Setting Questionnaire (FGSQ) developed by Research Collaboration (2015) was adapted and used as an instrument for the study. Two main research questions were answered, while two null hypotheses were formulated and tested for the study. The study revealed higher data-based goals for all students than personal improvement goals. Nevertheless, data-based and personal improvement goal-setting for female students was higher than for male students. One sample test statistic and Anova used to analyse data for the two hypotheses also revealed that the mean difference between male and female year one students’ data-based and personal improvement goal-setting formation was statistically significant (p < 0.05). This means year one students’ data-based and personal improvement goals showed significant gender differences. Based on the findings of this study, it was recommended, among others, that therapeutic techniques that can help to change students’ faulty thinking and challenge their lack of desire for personal improvement should be sought to treat students who have problems with setting high personal improvement goals. Counsellors also need to advocate continued research into how to increase the goal-setting ability of male students and should focus more on counselling male students’ goal-setting ability. The main contributions of the study are higher institutions must prioritize early intervention in first-year students' academic goal setting. Researching gender differences in this practice reveals a crucial insight: male students often lag behind in setting meaningful goals, impacting their motivation and performance. Focusing on this demographic with data-driven personal improvement goals can be transformative. By promoting goal setting that is specific, measurable, and focused on self-growth (rather than competition), male students can unlock their full potential. Researchers and counselors play a vital role in detecting and supporting students with lower goal-setting tendencies. By prioritizing this intervention, we can empower all students to set ambitious, personalized goals that ignite their passion for learning and pave the way for academic success.Keywords: academic goal setting, counselling, practice, university, year one students
Procedia PDF Downloads 6610125 Academic Staff Development: A Lever to Address the Challenges of the 21st Century University Classroom
Authors: Severino Machingambi
Abstract:
Most academics entering Higher education as lecturers in South Africa do not have qualifications in Education or teaching. This creates serious problems since they are not sufficiently equipped with pedagogical approaches and theories that inform their facilitation of learning strategies. This, arguably, is one of the reasons why higher education institutions are experiencing high student failure rate. In order to mitigate this problem, it is critical that higher education institutions devise internal academic staff development programmes to capacitate academics with pedagogical skills and competencies so as to enhance the quality of student learning. This paper reported on how the Teaching and Learning Development Centre of a university used design-based research methodology to conceptualise and implement an academic staff development programme for new academics at a university of technology. This approach revolves around the designing, testing and refining of an educational intervention. Design-based research is an important methodology for understanding how, when, and why educational innovations work in practice. The need for a professional development course for academics arose due to the fact that most academics at the university did not have teaching qualifications and many of them were employed straight from industry with little understanding of pedagogical approaches. This paper examines three key aspects of the programme namely, the preliminary phase, the teaching experiment and the retrospective analysis. The preliminary phase is the stage in which the problem identification takes place. The problem that this research sought to address relates to the unsatisfactory academic performance of the majority of the students in the institution. It was therefore hypothesized that the problem could be dealt with by professionalising new academics through engagement in an academic staff development programme. The teaching experiment phase afforded researchers and participants in the programme the opportunity to test and refine the proposed intervention and the design principles upon which it was based. The teaching experiment phase revolved around the testing of the new academics professional development programme. This phase created a platform for researchers and academics in the programme to experiment with various activities and instructional strategies such as case studies, observations, discussions and portfolio building. The teaching experiment phase was followed by the retrospective analysis stage in which the research team looked back and tried to give a trustworthy account of the teaching/learning process that had taken place. A questionnaire and focus group discussions were used to collect data from participants that helped to evaluate the programme and its implementation. One of the findings of this study was that academics joining university really need an academic induction programme that inducts them into the discourse of teaching and learning. The study also revealed that existing academics can be placed on formal study programmes in which they acquire educational qualifications with a view to equip them with useful classroom discourses. The study, therefore, concludes that new and existing academics in universities should be supported through induction programmes and placement on formal studies in teaching and learning so that they are capacitated as facilitators of learning.Keywords: academic staff, pedagogy, programme, staff development
Procedia PDF Downloads 13710124 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks
Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf
Abstract:
Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks
Procedia PDF Downloads 17710123 'Systems' and Its Impact on Virtual Teams and Electronic Learning
Authors: Shavindrie Cooray
Abstract:
It is vital that students are supported in having balanced conversations about topics that might be controversial. This process is crucial to the development of critical thinking skills. This can be difficult to attain in e-learning environments, with some research finding students report a perceived loss in the quality of knowledge exchange and performance. This research investigated if Systems Theory could be applied to structure the discussion, improve information sharing, and reduce conflicts when students are working in online environments. This research involved 160 participants across four categories of student groups at a college in the Northeastern US. Each group was provided with a shared problem, and each group was expected to make a proposal for a solution. Two groups worked face-to-face; the first face to face group engaged with the problem and each other with no intervention from a facilitator; a second face to face group worked on the problem using Systems tools to facilitate problem structuring, group discussion, and decision-making. There were two types of virtual teams. The first virtual group also used Systems tools to facilitate problem structuring and group discussion. However, all interactions were conducted in a synchronous virtual environment. The second type of virtual team also met in real time but worked with no intervention. Findings from the study demonstrated that the teams (both virtual and face-to-face) using Systems tools shared more information with each other than the other teams; additionally, these teams reported an increased level of disagreement amongst their members, but also expressed more confidence and satisfaction with the experience and resulting decision compared to the other groups.Keywords: e-learning, virtual teams, systems approach, conflicts
Procedia PDF Downloads 14210122 The Combined Methodology To Detect Onboard Driver Fatigue
Authors: K. Senthil Nathan, P. Rajasekaran
Abstract:
Fatigue is a feeling of extreme physical or mental tiredness. Almost everyone becomes fatigued at some time, but driver’s fatigue is a serious problem that leads to thousands of automobile crashes each year. Fatigue process is often a change from the alertness and vigor state to the tiredness and weakness state. It is not only accompanied by drowsiness but also has a negative impact on mood. There have been studies to detect and quantify fatigue from the measurement of physiology variables such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG). This project involves a multimodal sensing of driver’s drowsiness. The first method is to count the eye blinking rate. In the second level, we authenticate the results of eye blink module with a grip sensor. The Flexiforce sensor is placed over the steering wheel. In the third level, the activities are sensed, the time elapsed from the driver’s last activity is counted here. The activities in the sense: Changing gear, applying brake, pressing sound horns, and turning the steering wheel. Absence of these activities is also an indicator of fatigue.Keywords: eye blink sensor, Flexiforce sensor, EEG, EOG, EMG
Procedia PDF Downloads 48610121 Active Learning through a Game Format: Implementation of a Nutrition Board Game in Diabetes Training for Healthcare Professionals
Authors: Li Jiuen Ong, Magdalin Cheong, Sri Rahayu, Lek Alexander, Pei Ting Tan
Abstract:
Background: Previous programme evaluations from the diabetes training programme conducted in Changi General Hospital revealed that healthcare professionals (HCPs) are keen to receive advance diabetes training and education, specifically in medical, nutritional therapy. HCPs also expressed a preference for interactive activities over didactic teaching methods to enhance their learning. Since the War on Diabetes was initiated by MOH in 2016, HCPs are challenged to be actively involved in continuous education to be better equipped to reduce the growing burden of diabetes. Hence, streamlining training to incorporate an element of fun is of utmost importance. Aim: The nutrition programme incorporates game play using an interactive board game that aims to provide a more conducive and less stressful environment for learning. The board game could be adapted for training of community HCPs, health ambassadors or caregivers to cope with the increasing demand of diabetes care in the hospital and community setting. Methodology: Stages for game’s conception (Jaffe, 2001) were adopted in the development of the interactive board game ‘Sweet Score™ ’ Nutrition concepts and topics in diabetes self-management are embedded into the game elements of varying levels of difficulty (‘Easy,’ ‘Medium,’ ‘Hard’) including activities such as a) Drawing/ sculpting (Pictionary-like) b)Facts/ Knowledge (MCQs/ True or False) Word definition) c) Performing/ Charades To study the effects of game play on knowledge acquisition and perceived experiences, participants were randomised into two groups, i.e., lecture group (control) and game group (intervention), to test the difference. Results: Participants in both groups (control group, n= 14; intervention group, n= 13) attempted a pre and post workshop quiz to assess the effectiveness of knowledge acquisition. The scores were analysed using paired T-test. There was an improvement of quiz scores after attending the game play (mean difference: 4.3, SD: 2.0, P<0.001) and the lecture (mean difference: 3.4, SD: 2.1, P<0.001). However, there was no significance difference in the improvement of quiz scores between gameplay and lecture (mean difference: 0.9, 95%CI: -0.8 to 2.5, P=0.280). This suggests that gameplay may be as effective as a lecture in terms of knowledge transfer. All the13 HCPs who participated in the game rated 4 out of 5 on the likert scale for the favourable learning experience and relevance of learning to their job, whereas only 8 out of 14 HCPs in the lecture reported a high rating in both aspects. 16. Conclusion: There is no known board game currently designed for diabetes training for HCPs.Evaluative data from future training can provide insights and direction to improve the game format and cover other aspects of diabetes management such as self-care, exercise, medications and insulin management. Further testing of the board game to ensure learning objectives are met is important and can assist in the development of awell-designed digital game as an alternative training approach during the COVID-19 pandemic. Learning through gameplay increases opportunities for HCPs to bond, interact and learn through games in a relaxed social setting and potentially brings more joy to the workplace.Keywords: active learning, game, diabetes, nutrition
Procedia PDF Downloads 17710120 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 7610119 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 52810118 A Comparative Analysis of Clustering Approaches for Understanding Patterns in Health Insurance Uptake: Evidence from Sociodemographic Kenyan Data
Authors: Nelson Kimeli Kemboi Yego, Juma Kasozi, Joseph Nkruzinza, Francis Kipkogei
Abstract:
The study investigated the low uptake of health insurance in Kenya despite efforts to achieve universal health coverage through various health insurance schemes. Unsupervised machine learning techniques were employed to identify patterns in health insurance uptake based on sociodemographic factors among Kenyan households. The aim was to identify key demographic groups that are underinsured and to provide insights for the development of effective policies and outreach programs. Using the 2021 FinAccess Survey, the study clustered Kenyan households based on their health insurance uptake and sociodemographic features to reveal patterns in health insurance uptake across the country. The effectiveness of k-prototypes clustering, hierarchical clustering, and agglomerative hierarchical clustering in clustering based on sociodemographic factors was compared. The k-prototypes approach was found to be the most effective at uncovering distinct and well-separated clusters in the Kenyan sociodemographic data related to health insurance uptake based on silhouette, Calinski-Harabasz, Davies-Bouldin, and Rand indices. Hence, it was utilized in uncovering the patterns in uptake. The results of the analysis indicate that inclusivity in health insurance is greatly related to affordability. The findings suggest that targeted policy interventions and outreach programs are necessary to increase health insurance uptake in Kenya, with the ultimate goal of achieving universal health coverage. The study provides important insights for policymakers and stakeholders in the health insurance sector to address the low uptake of health insurance and to ensure that healthcare services are accessible and affordable to all Kenyans, regardless of their socio-demographic status. The study highlights the potential of unsupervised machine learning techniques to provide insights into complex health policy issues and improve decision-making in the health sector.Keywords: health insurance, unsupervised learning, clustering algorithms, machine learning
Procedia PDF Downloads 14810117 Reflection on Using Bar Model Method in Learning and Teaching Primary Mathematics: A Hong Kong Case Study
Authors: Chui Ka Shing
Abstract:
This case study research attempts to examine the use of the Bar Model Method approach in learning and teaching mathematics in a primary school in Hong Kong. The objectives of the study are to find out to what extent (a) the Bar Model Method approach enhances the construction of students’ mathematics concepts, and (b) the school-based mathematics curriculum development with adopting the Bar Model Method approach. This case study illuminates the effectiveness of using the Bar Model Method to solve mathematics problems from Primary 1 to Primary 6. Some effective pedagogies and assessments were developed to strengthen the use of the Bar Model Method across year levels. Suggestions including school-based curriculum development for using Bar Model Method and further study were discussed.Keywords: bar model method, curriculum development, mathematics education, problem solving
Procedia PDF Downloads 22510116 The Pen Is Mightier than the Sword: Kurdish Language Policy in Turkey
Authors: Irene Yi
Abstract:
This paper analyzes the development of Kurdish language endangerment in Turkey and Kurdish language education over time. It examines the historical context of the Turkish state, as well as reasons for the Turkish language hegemony. From a linguistic standpoint, the Kurdish language is in danger of extinction despite a large number of speakers, lest Kurdish language education is more widely promoted. The paper argues that Kurdish is no longer in a stable diglossic state; if the current trends continue, the language will lose its vitality. This paper recognizes the importance of education in preserving the language while discussing the changing political and institutional regard for Kurdish education. Lastly, the paper outlines solutions to the issue by looking at a variety of proposals, from creating a Kurdistan to merely changing the linguistic landscape in Turkey. After analysis of possible solutions in terms of realistic ability and effectiveness, the paper concludes that changing linguistic landscape and increasing Kurdish language education are the most ideal first steps in a long fight for Kurdish linguistic equality.Keywords: endangered, Kurdish, oppression, policy
Procedia PDF Downloads 15310115 A Parallel Poromechanics Finite Element Method (FEM) Model for Reservoir Analyses
Authors: Henrique C. C. Andrade, Ana Beatriz C. G. Silva, Fernando Luiz B. Ribeiro, Samir Maghous, Jose Claudio F. Telles, Eduardo M. R. Fairbairn
Abstract:
The present paper aims at developing a parallel computational model for numerical simulation of poromechanics analyses of heterogeneous reservoirs. In the context of macroscopic poroelastoplasticity, the hydromechanical coupling between the skeleton deformation and the fluid pressure is addressed by means of two constitutive equations. The first state equation relates the stress to skeleton strain and pore pressure, while the second state equation relates the Lagrangian porosity change to skeleton volume strain and pore pressure. A specific algorithm for local plastic integration using a tangent operator is devised. A modified Cam-clay type yield surface with associated plastic flow rule is adopted to account for both contractive and dilative behavior.Keywords: finite element method, poromechanics, poroplasticity, reservoir analysis
Procedia PDF Downloads 39510114 Enhancing EFL Learners' Motivation and Classroom Interaction through Self-Disclosure in Moroccan Higher Education
Authors: Mohsine Jebbour
Abstract:
Motivation and classroom interaction are of prime significance for second/foreign language learning to take place effectively. Thus, a considerable amount of motivation and classroom interaction helps ensure students’ success in and continuation of learning the TL. One way to enhance students’ motivation and classroom interaction in the Moroccan EFL classroom then is through the use of self-disclosure. For the purposes of this study, self-disclosure has been defined as the verbal communication of positive personal information including opinions, feelings, experiences, family and friendship stories to classmates and teachers. This paper is meant to demonstrate that positive self-disclosure can serve as an effective tool for helping students develop favorable attitudes toward the EFL classroom (i.e., English courses, teacher of English, and classroom activities) and promoting their intrinsic motivation (IM to know and IM toward stimulation). A further objective is that since self-disclosure is reciprocal, when teachers of English reveal their personal information, students will uncover their personal matters in return. This will help ensure effective classroom participation, foster teacher-student communication, and encourage students to practice and hence improve their oral proficiency (i.e., the speaking skill). A questionnaire was used to collect data in this study. 164 undergraduate students (99 females and 65 males) from the department of English at the faculty of letters and humanities, Dher el Mehraz, Sidi Mohammed Ben Abd Allah University completed a questionnaire that assessed self-disclosure in relation to motivation (i.e., attitudes toward the learning situation and intrinsic motivation) and classroom interaction (i.e., teacher-student interaction, participation, and out-of-class communication) on a 1 to 5 scale with (1) Strongly Disagree and (5) Strongly Agree. The level of agreement on the positive dimension of self-disclosure was ranked first by the respondents. The hypothesis set at the very beginning of the study, which posited that positive self-disclosure is essential to enhancing motivation and classroom interaction in the EFL context, was confirmed. In this regard, the findings suggest that implementing self-disclosure in the Moroccan EFL classroom may serve as an effective tool to have positive affect of teacher, class and classroom activities. This in turn will encourage the learners to attend classes, enjoy the language learning activity, complete classroom assignments, participate in class discussions, and interact with their teachers and classmates. It is hoped that teachers benefit from the results of this study and hence encourage the use of positive self-disclosure to develop English language learning in the Moroccan context where opportunities of using English outside the classroom are limited.Keywords: EFL classroom, classroom interaction, motivation, self-disclosure
Procedia PDF Downloads 31810113 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions
Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju
Abstract:
Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism
Procedia PDF Downloads 17010112 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach
Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic
Abstract:
The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning
Procedia PDF Downloads 18910111 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning
Authors: Janet Holland
Abstract:
Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.Keywords: area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation
Procedia PDF Downloads 13610110 Correlation between Early Government Interventions in the Northeastern United States and COVID-19 Outcomes
Authors: Joel Mintz, Kyle Huntley, Waseem Wahood, Samuel Raine, Farzanna Haffizulla
Abstract:
The effect of different state government interventions on COVID-19 health outcomes is currently unknown. Stay at home (SAH) orders, all non-essential business closures and school closures in the Northeastern US were examined. A linear correlation between the peak number of new daily COVID-19 positive tests, hospitalizations and deaths per capita and the elapsed time between government issued guidance and a fixed number of COVID-19 deaths in each state was performed. Earlier government interventions were correlated with lower peak healthcare burden. Statewide closures of schools and non-essential businesses showed significantly greater (p<.001) correlation to peak COVID-19 disease burden as compared to a statewide SAH. The implications of these findings require further study to determine the effectiveness of these interventions.Keywords: Coronavirus, epidemiology, government intervention, public health, social distancing
Procedia PDF Downloads 19310109 Development and Application of the Proctoring System with Face Recognition for User Registration on the Educational Information Portal
Authors: Meruyert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova, Madina Ermaganbetova
Abstract:
This research paper explores the process of creating a proctoring system by evaluating the implementation of practical face recognition algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As an outcome, a proctoring system will be created, enabling the conduction of tests and ensuring academic integrity checks within the system. Due to the correct operation of the system, test works are carried out. The result of the creation of the proctoring system will be the basis for the automation of the informational, educational portal developed by machine learning.Keywords: artificial intelligence, education portal, face recognition, machine learning, proctoring
Procedia PDF Downloads 13210108 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 21510107 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions
Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov
Abstract:
In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium
Procedia PDF Downloads 32810106 Detection of Hepatitis B by the Use of Artifical Intelegence
Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad
Abstract:
Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.Keywords: detection, hapataties, observation, disesese
Procedia PDF Downloads 16010105 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset
Authors: Assel Jaxylykova, Alexnder Pak
Abstract:
This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics
Procedia PDF Downloads 5410104 Dissecting the Hindu and New York Times Perspective on War on Terror
Authors: Shahid Minhas
Abstract:
This study 'Dissecting the Hindu and New York Times perspective on War on Terror' conducted to determine the comparative perspective and portrayal of war on Terror in Pakistan. The study also aimed to find out how these two selected countries i.e. India and America, press depict and how considerably they cover the war on terror in Pakistan, which also benefits to know the policy of government concerned. This study also analyzes to what extent Indian and American press followed its foreign policy guidelines in the coverage of the war on Terror in Pakistan. This study observes that actually, the New York Times pays little consideration to Pakistan and even the third words countries, and when it pays consideration, it tends to cover negative news. Pakistan is more frequently covers unfavorable than positive likewise encircled more frequently as a fundamentalist than a liberal state by the Hindu, While stance that Pakistan has played the anti-India tag to develop equities cultivate non-state groups as chattels.Keywords: war on terror, terrorism, Pak-India relation, Pak-US relation
Procedia PDF Downloads 13910103 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 29910102 Numerical Study of Natural Convection in a Triangular Enclosure as an Attic for Different Geometries and Boundary Conditions
Authors: H. Golchoobian, S. Saedodin, M. H. Taheri, A. Sarafraz
Abstract:
In this paper, natural convection in an attic is numerically investigated. The geometry of the problem is considered to be a triangular enclosure. ANSYS Fluent software is used for modeling and numerical solution. This study is for steady state. Four right-angled triangles with height to base ratios of 2, 1, 0.5 and 0.25 are considered. The behavior of various parameters related to its performance, including temperature distribution and velocity vectors are evaluated, and graphs for the Nusselt number have been drawn. Also, in this study, the effect of geometric shape of enclosure with different height-to-base ratios has been evaluated for three types of boundary conditions of winter, summer day and one another state. It can be concluded that as the bottom side temperature and ratio of base to height of the enclosure increases, the convective effects become more prominent and circulation happened.Keywords: enclosure, natural convection, numerical solution, Nusselt number, triangular
Procedia PDF Downloads 20110101 Pitfalls and Drawbacks in Visual Modelling of Learning Knowledge by Students
Authors: Tatyana Gavrilova, Vadim Onufriev
Abstract:
Knowledge-based systems’ design requires the developer’s owning the advanced analytical skills. The efficient development of that skills within university courses needs a deep understanding of main pitfalls and drawbacks, which students usually make during their analytical work in form of visual modeling. Thus, it was necessary to hold an analysis of 5-th year students’ learning exercises within courses of 'Intelligent systems' and 'Knowledge engineering' in Saint-Petersburg Polytechnic University. The analysis shows that both lack of system thinking skills and methodological mistakes in course design cause the errors that are discussed in the paper. The conclusion contains an exploration of the issues and topics necessary and sufficient for the implementation of the improved practices in educational design for future curricula of teaching programs.Keywords: knowledge based systems, knowledge engineering, students’ errors, visual modeling
Procedia PDF Downloads 31210100 Prevalence and Intensity of Soil Transmitted Helminth Infections among the School Children in the State of Uttar Pradesh, India
Authors: Prasanta Saini, Junaid Jibran Jawed, Subrata Majumdar
Abstract:
Infections caused by soil-transmitted helminths (STH) are the major problem in all the nations of the world. The major focus of STH research is to study the prevalence of three major helminths, such as Ascaris, Trituris and hookworm. Here we are reporting the prevalence and intensity of the STH in the school children of the state of Uttar Pradesh, India. The aim of the study is to assess the prevalence and risk factors of STH infection among the school children, aged between 5-10 years in 27 districts randomly selected districts with covering nine agro-climatic zones of Uttar Pradesh, India. For this cross-sectional survey, we have selected the populations of government primary school going children in Uttar Pradesh. The sampling was performed in the nine different agro-climatic zones. Every individual of the study populations filled their daily information in the questioner's form and then the sample was collected and processed by kato-katz methods by following the guidelines of WHO. In this method, the sampling was performed in total of 6421 populations. A total of 6,421 children from 130 schools were surveyed. Infection with any soil-transmitted helminths was detected among 4,578 children with an overall prevalence of 75.6% (95% CI: 65.3-83.6). Among the 6421 population, the prevalence of Ascaris is 69.6% (95% CL 57.97-79.11), hookworm is 22.7% (95%CL 19.3-26.3) and Trichuris sp is 4.6% (95% CL 0.8-21.6), so the predicted prevalence map indicates that the STH infection was hyperendemic in this state. The findings of our survey in 130 schools covering 9 agro-climatic with one or more soil transmitted helminths. Majority of STH infections were of light intensity. STH infection was hyper-endemic in entire state, except three zones in western Uttar Pradesh. High prevalence ( > 75%) in all age groups also indicate little impact of existing deworming initiatives, including those among pre-school aged children. WHO recommends annual treatment in areas where STH prevalence is between 20% and 50%, and, a bi-annual treatment in areas with prevalence rates of over 50%. In view of high prevalence of STH infection in Uttar Pradesh, it is strongly recommended to initiate a deworming programme for school children in the state. Although our survey was among primary school children, high prevalence among children aged 4-6 years also indicates the need to strengthen the existing deworming programs for pre-school children. Extending the benefits of deworming to pre-school children through deworming in Anganwadi schools would further reduce to decrease the load of infection in community. As a long-term solution for control STH infection, it is also necessary to improve the sanitation levels in the area, as majority of the houses did not have latrines and most of the children were defecating in open fields, a factor that was found to be significantly associated with STH infection.Keywords: prevalence, school going children, soil transmitted helminthes, Uttar Pradesh-India
Procedia PDF Downloads 28110099 Understanding Psychological Distress and Protection Issues among Children Associated with Armed Groups
Authors: Grace Onubedo
Abstract:
The primary objective of this research study is to contribute to and deepen the understanding of the realities and conditions for which children recruited by violent extremist organisations in Nigeria live, as well as ascertain the state of their mental health following their reunification with either family or protection workers. The research is intended to contribute to a more focused child protection programming agenda for children associated with armed forces and groups in Nigeria and the wider conflict setting. The extent to which violence has affected the psychological well-being and mental health of children abducted and exposed to activities of Violent Extremist groups remains a largely empirical question. This research attempts to answer the following research questions with the aim of providing further evidences for informed programming: I. What are the demographic characteristics of children associated with armed groups? II. What is the state of their mental health? III. What is the relationship between their background and their mental health?Keywords: counterterrorism, psychosocial support, psychological distress, children, armed groups
Procedia PDF Downloads 134