Search results for: learning assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12274

Search results for: learning assessment

8374 Evaluation of Nurse Immunisation Short Course Transitioning to Fully Online

Authors: Joanne Joyce-McCoach

Abstract:

Short courses are an integral part of the higher education sector, providing a pathway into tertiary qualifications. Recently, the Australian government has implemented a range of initiatives to support the development of short courses and micro-credentials designed to upskill the labor market and meet the needs of the healthcare workforce. While short courses have been an ongoing component of Australian nursing continuing professional development, there is an immediate need for more education opportunities as a response to the workforce shortages. However, despite the support for short courses, there are identified challenges for learners undertaking these courses online. As a result of restrictions to face-to-face classes and limited access to health services caused by the pandemic, education providers have had to transition to an online delivery requiring the redesign of skills acquisition. This paper will outline the transition of an immunisation short course to a fully online format, including the redesign of classes, content and assessment. Concurrently the enrolments for the immunisation short course substantially increased in direct response to the demand for nurse immunisers. In addition to providing a description of the curriculum changes implemented, an analysis of learners’ feedback on their experience of the new format will be discussed. Furthermore, it will explore the principles identified in the transition process for improving the short course design and learning activities. Finally, it will propose recommendations to integrate into the delivery of online short courses and to meet the learners' needs.

Keywords: nurse, immunisation, short course, micro-credential, continuing professional development, online design

Procedia PDF Downloads 72
8373 Assessment of the Impact of Teaching Methodology on Skill Acquisition in Music Education among Students in Emmanuel Alayande University of Education, Oyo

Authors: Omotayo Abidemi Funmilayo

Abstract:

Skill acquisition in professional fields has been prioritized and considered important to demonstrate the mastery of subject matter and present oneself as an expert in such profession. The ability to acquire skills in different fields, however calls for different method from the instructor or teacher during training. Music is not an exception of such profession, where there exist different area of skills acquisition require practical performance. This paper, however, focused on the impact and effects of different methods on acquisition of practical knowledge in the handling of some musical instruments among the students of Emmanuel Alayande College of Education, Oyo. In this study, 30 students were selected and divided into two groups based on the selected area of learning, further division were made on each of the two major groups to consist of five students each, to be trained using different methodology for two months and three hours per week. Comparison of skill acquired were made using standard research instrument at reliable level of significance, test were carried out on the thirty students considered for the study based on area of skill acquisition. The students that were trained on the keyboard and saxophone using play way method, followed by the students that were trained using demonstration method while the set of students that received teaching instruction through lecture method performed below average. In conclusion, the study reveals that ability to acquire professional skill on handling musical instruments are better enhanced using play way method.

Keywords: music education, skill acquisition, keyboard, saxophone

Procedia PDF Downloads 76
8372 Development of an Innovative Mobile Phone Application for Employment of Persons With Disabilities Toward the Inclusive Society

Authors: Marutani M, Kawajiri H, Usui C, Takai Y, Kawaguchi T

Abstract:

Background: To build the inclusive society, the Japanese government provides “transition support for employment system” for Persons with Disabilities (PWDs). It is, however, difficult to provide appropriate accommodations due to their changeable health conditions. Mobile phone applications (App) are useful to monitor their health conditions and their environments, and effective to improve reasonable accommodations for PWDs. Purpose: This study aimed to develop an App that PWDs input their self-assessment and make their health conditions and environment conditions visible. To attain the goal, we investigated the items of the App for the first step. Methods: Qualitative and descriptive design was used for this study. Study participants were recruited by snowball sampling in July and August 2023. They had to have had minimum of five-years of experience to support PWDs’ employment. Semi-structured interviews were conducted on their assessment regarding PWDs’ conditions of daily activities, their health conditions, and living and working environment. Verbatim transcript was created from each interview content. We extracted the following items in tree groups from each verbatim transcript: daily activities, health conditions, and living and working. Results: Fourteen participants were involved (average years of experience: 10.6 years). Based on the interviews, tree item groups were enriched. The items of daily activities were divided into fifty-five. The example items were as follows: “have meals on one’s style” “feel like slept well” “wake-up time, bedtime, and mealtime are usually fixed.” “commute to the office and work without barriers.” Thirteen items of health conditions were obtained like “feel no anxiety” “relieve stress” “focus on work and training” “have no pain” “have the physical strength to work for one day.” The items of categories of living and working environments were divided into fifteen-two. The example items were as follows: “have no barrier in home” “have supportive family members” “have time to take medication on time while at work” “commute time is just right” “people at the work understand the symptoms” “room temperature and humidity are just right” “get along well with friends in my own way.” The participants also mentioned the styles to input self-assessment like that a face scale would be preferred to number scale. Conclusion: The items were enriched existent paper-based assessment items in terms of living and working environment because those were obtained from the perspective of PWDs. We have to create the app and examine its usefulness with PWDs toward inclusive society.

Keywords: occupational health, innovatiove tool, people with disability, employment

Procedia PDF Downloads 61
8371 Inclusive Early Childhood Education and the Development of Children with Learning Disabilities in Ghana: Cultural-Historical Analysis

Authors: D. K. Kumador, E. A. Muthivhi

Abstract:

Historically, reforms in early childhood education in Ghana have focused narrowly on structural and pedagogical aspects with little attention paid to the broader sociocultural framework within which schooling and child development systems interact. This preliminary study investigates inclusive early childhood education within rapidly changing Ghanaian socio-cultural context, and its consequences for the development of children with learning disabilities. The study addresses an important topic, which is largely under-researched outside of Europe, North America, and Australasia. While inclusive education has been widely accepted globally at the level of policy, its implementation is uneven, as is shown in numerous studies across an array of countries and education systems. Despite this burgeoning area of research internationally, there have been far fewer studies conducted in African settings and fewer still that use cultural-historical activity theory as an investigative approach. More so, specific literature on the subject in the Ghanaian context is non-existent and, as such, coming to a deeper understanding of the sociocultural practices that shape, and possibly impede, inclusive early childhood education in an African country, Ghana, is a worthwhile research endeavour. Using cultural-historical activity theory as a methodological framework, this study employed classroom observations, and in-depth interviews and focus group discussions of preschool teachers in three kindergarten centres in the Greater Accra Region of Ghana to qualitatively explore inclusive early childhood education and the development of children with learning disabilities. The findings showed that literature from Ghana rarely discusses child informed consent as an on-going process that must be articulated throughout the research process from data collection to analysis, reporting and dissemination. Further, the study showed that the introduction and implementation of inclusive education framework – with its concomitant revisions in the curriculum, policies, and school rules, as well as enhanced community and parent involvement – into existing schooling practices, generated contradictions in inclusive teachers’ approaches to teaching and learning, and classroom management. Generally, contradictions in the understanding and acceptability of approaches to teaching and learning occur when a new way of doing things is incorporated into existing practices. These contradictions are thought to be a source of change and development. Thus, they guide teachers to unlearn outmoded practices, relearn or learn new approaches that are beneficial to the development of all children. Nonetheless, the findings of the current study showed that preschool teachers’ belief systems and perceptions of disabilities mediated the outcomes of such contradictions. Also, that was evidenced in the way they engaged children with learning disabilities compared to their typically developing counterparts, showing disregard for what was prescribed by new policies and school rules. The findings have implications for research with young children and the development outcomes of children with learning disabilities in inclusive early childhood education settings.

Keywords: CHAT, classroom management, cultural-historical activity theory, ghana, inclusive early childhood education, schooling practices, young children with learning disabilities

Procedia PDF Downloads 130
8370 Emerging Technologies in Distance Education

Authors: Eunice H. Li

Abstract:

This paper discusses and analyses a small portion of the literature that has been reviewed for research work in Distance Education (DE) pedagogies that I am currently undertaking. It begins by presenting a brief overview of Taylor's (2001) five-generation models of Distance Education. The focus of the discussion will be on the 5th generation, Intelligent Flexible Learning Model. For this generation, educational and other institutions make portal access and interactive multi-media (IMM) an integral part of their operations. The paper then takes a brief look at current trends in technologies – for example smart-watch wearable technology such as Apple Watch. The emergent trends in technologies carry many new features. These are compared to former DE generational features. Also compared is the time span that has elapsed between the generations that are referred to in Taylor's model. This paper is a work in progress. The paper therefore welcome new insights, comparisons and critique of the issues discussed.

Keywords: distance education, e-learning technologies, pedagogy, generational models

Procedia PDF Downloads 465
8369 Impressions of HyFlex in an Engineering Technology Program in an Undergraduate Urban Commuter Institution

Authors: Zory Marantz

Abstract:

Hybrid flexible (HyFlex) is a pedagogical methodology whereby an instructor delivers content in three modalities, i.e. live in-person (LIP), live online synchronous (LOS), and non-live online asynchronous (nLOaS). HyFlex is focused on providing the largest level of flexibility needed to achieve a cohesive environment across all modalities and incorporating four basic principles – learner’s choice, reusability, accessibility, and equivalency. Much literature has focused on the advantages of this methodology in providing students with the flexibility to choose their learning modality as best suits their schedules and learning styles. Initially geared toward graduate-level students, the concept has been applied to undergraduate studies, particularly during our national pedagogical response to the COVID19 pandemic. There is still little literature about the practicality and feasibility of HyFlex for hardware laboratory intensive engineering technology programs, particularly in dense, urban commuter institutions of higher learning. During a semester of engineering, a lab-based course was taught in the HyFlex modality, and students were asked to complete a survey about their experience. The data demonstrated that there is no single mode that is preferred by a majority of students and the usefulness of any modality is limited to how familiar the student and instructor are with the technology being applied. The technology is only as effective as our understanding and comfort with its functionality. For HyFlex to succeed in its implementation in an engineering technology environment within an urban commuter institution, faculty and students must be properly introduced to the technology being used.

Keywords: education, HyFlex, technology, urban, commuter, pedagogy

Procedia PDF Downloads 97
8368 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 103
8367 The Impact of Animal-Assisted Learning on Emotional Wellbeing and Engagement with Reading

Authors: Jill Steel

Abstract:

Introduction: Animal-assisted learning (AAL) interventions are increasing exponentially, yet a paucity of quality research in the field exists. The aim of this study was to evaluate how the promotion of emotional wellbeing, through AAL, in this case, a dog, may support children’s engagement with reading in a Primary 1 classroom. Research indicates that dogs can provide emotional support to children; by forming a trusting attachment with a non-critical ‘friend’ who confers unconditional positive regard on the child, confidence may be boosted and anxiety reduced. By promoting emotional wellbeing through interactions with the dog, it is hoped that children begin to associate reading with feelings of wellbeing, which then results in increased engagement with reading. Methodology: A review of the literature was conducted. The relationship between emotional wellbeing and learning was explored, followed by an examination of the literature relating to Animal-Assisted Therapy and AAL. Scottish educational policy and legislation were analysed to establish the extent to which AAL might be suitable for the Scottish pedagogical context. An empirical study was conducted in a mainstream Primary 1 classroom over a four-week period. An inclusive approach was adopted whereby all children that wanted to interact with the dog were given the opportunity to do so, and all 25 children subsequently chose to participate. Children were not withdrawn from the classroom. Primary methods included interviews, observations, and questionnaires. Three focus children were selected for closer study. Main Results: Results were remarkably close to previous research and literature. Children’s emotional wellbeing was boosted, and engagement in reading improved. Principal Conclusions and Implications for Field: It was concluded that AAL could support emotional wellbeing and, in turn, promote children’s engagement with reading. The main limitation of the study was its short-term nature, and a longer randomised controlled trial with a larger sample, currently being undertaken by the author, would provide a fuller answer to the research question. Barriers to AAL include health and safety concerns and steps to ensure the welfare of the dog.

Keywords: animal-assisted learning, emotional wellbeing, reading, reading to dogs

Procedia PDF Downloads 131
8366 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging

Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason

Abstract:

Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.

Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia

Procedia PDF Downloads 275
8365 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 109
8364 Oral Grammatical Errors of Arabic as Second Language (ASL) Learners: An Applied Linguistic Approach

Authors: Sadeq Al Yaari, Fayza Al Hammadi, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari, Salah Al Yami

Abstract:

Background: When we further take Arabic grammatical issues into account in accordance with applied linguistic investigations on Arabic as Second Language (ASL) learners, a fundamental issue arises at this point as to the production of speech in Arabic: Oral grammatical errors committed by ASL learners. Aims: Using manual rating as well as computational analytic methodology to test a corpus of recorded speech by Second Language (ASL) learners of Arabic, this study aims to find the areas of difficulties in learning Arabic grammar. More specifically, it examines how and why ASL learners make grammatical errors in their oral speech. Methods: Tape recordings of four (4) Arabic as Second Language (ASL) learners who ranged in age from 23 to 30 were naturally collected. All participants have completed an intensive Arabic program (two years) and 20 minute-speech was recorded for each participant. Having the collected corpus, the next procedure was to rate them against Arabic standard grammar. The rating includes four processes: Description, analysis and assessment. Conclusions: Outcomes made from the issues addressed in this paper can be summarized in the fact that ASL learners face many grammatical difficulties when studying Arabic word order, tenses and aspects, function words, subject-verb agreement, verb form, active-passive voice, global and local errors, processes-based errors including addition, omission, substitution or a combination of any of them.

Keywords: grammar, error, oral, Arabic, second language, learner, applied linguistics.

Procedia PDF Downloads 50
8363 Assessment of Non-Timber Forest Products from Community Managed Forest of Thenzawl Forest Division, Mizoram, Northeast India

Authors: K. Lalhmingsangi, U. K. Sahoo

Abstract:

Non-Timber Forest Products represent one of the key sources of income and subsistence to the fringe communities living in rural areas. A study was conducted for the assessment of NTFP within the community forest of five villages under Thenzawl forest division. Participatory Rural Appraisal (PRA), questionnaire, field exercise, discussion and interview with the first hand NTFP exploiter and sellers was adopted for the field study. Fuel wood, medicinal plants, fodder, wild vegetables, fruits, broom grass, thatch grass, bamboo pole and cane species are the main NTFP harvested from the community forest. Among all the NTFPs, the highest percentage of household involvement was found in fuel wood, i.e. 53% of household and least in medicinal plants 5%. They harvest for their own consumption as well as for selling to the market to meet their needs. Edible food and fruits are sold to the market and it was estimated that 300 (Rs/hh/yr) was earned by each household through the selling of this NTFP from the community forest alone. No marketing channels are linked with fuelwood, medicinal plants and fodder since they harvest only for their own consumption.

Keywords: community forest, subsistence, non-timber forest products, Thenzawl Forest Division

Procedia PDF Downloads 156
8362 Managing Configuration Management in Different Types of Organizations

Authors: Dilek Bilgiç

Abstract:

Configuration Management (CM) is a discipline assuring the consistency between product information the reality all along the product lifecycle. Although the extensive benefits of this discipline, such as the direct impact on increasing return on investment, reducing lifecycle costs, are realized by most organizations. It is worth evaluating that CM functions might be successfully implemented in some organized anarchies. This paper investigates how to manage ambiguity in CM processes as an opportunity within an environment that has different types of complexities and choice arenas. It is not explained how to establish a configuration management organization in a company; more specifically, it is analyzed how to apply configuration management processes when different types of streams exist. From planning to audit, all the CM functions may provide different organization learning opportunities when those applied with the right leadership methods.

Keywords: configuration management, leadership, organizational analysis, organized anarchy, cm process, organizational learning, organizational maturity, configuration status accounting, leading innovation, change management

Procedia PDF Downloads 215
8361 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: case based reasoning, classification, expert's knowledge, hybrid model

Procedia PDF Downloads 367
8360 Government of Ghana’s Budget: An Assessment of Its Compliance with Fundamental Budgeting Principles

Authors: Mohammed Sani Abdulai

Abstract:

Public sector budgeting, all over the world, is underpinned by some universally accepted principles of sound budget management such as budget unity, universality, annuality, and a balanced budget. These traditional principles, though fundamental, had, in recent years, been augmented by the more modern principles of budgeting within fiscal objective, alignment with medium-term strategic plans as well as the observance of such related concepts as transparency, openness and accessibility. In this paper, we have endeavored to shed light, from literature and practice, on the meaning and purposes of such fundamental budgeting principles. We have also assessed the extent to which the Government of Ghana’s budget complies with the four traditional principles of budget unity, universality, annuality, and a balanced budget and the three out of the ten modern principles of budgetary governance of Organisation for Economic Co-operation and Development (OECD). We did so by using a qualitative method of review and analysis of existing documents and the performance assessment reports on Ghana’s Public Financial Management (PFM) measured using such frameworks as the Public Expenditure and Financial Accountability (PEFA), the Open Budget Survey (OBS) and its Index (OBI), the reports and action plans of Open Government Partnership (OGP) and the Global Initiative for Fiscal Transparency (GIFT). Other performance assessment reports that were relied on included, but not limited to, the Joint Evaluation Report of PFM in Ghana, 2001-2010, and the Joint Evaluation of Budget Support to Ghana, 2005-2015. We have, through this paper, brought to the fore the lessons that could be learned on how those budgetary principles undergird the Government of Ghana’s budget formulation, execution, accounting, control, and oversight. These lessons include, but are not limited to, the need for both scholars and practitioners in the PFM space to be aware of the impact of those principles on public sector budgeting.

Keywords: annulaity, balanced budget, budget unity, budgetary principles, OECD’s principles on budgetary governance, open budget index, public expenditure and financial accountability, universality

Procedia PDF Downloads 203
8359 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 59
8358 Evaluating the Prominence of Chemical Phenomena in Chemistry Courses

Authors: Vanessa R. Ralph, Leah J. Scharlott, Megan Y. Deshaye, Ryan L. Stowe

Abstract:

Given the traditions of chemistry teaching, one may not question whether chemical phenomena play a prominent role. Yet, the role of chemical phenomena in an introductory chemistry course may define the extent to which the course is introductory, chemistry, and equitable. Picture, for example, the classic Ideal Gas Law problem. If one envisions a prompt wherein students are tasked with calculating a missing variable, then one envisions a prompt that relies on chemical phenomena as a context rather than as a model to understand the natural world. Consider a prompt wherein students are tasked with applying molecular models of gases to explain why the vapor pressure of a gaseous solution of water differs from that of carbon dioxide. Here, the chemical phenomenon is not only the context but also the subject of the prompt. Deliveries of general and organic chemistry were identified as ranging wildly in the integration of chemical phenomena. The more incorporated the phenomena, the more equitable the assessment task was for students of varying access to pre-college math and science preparation. How chemical phenomena are integrated may very well define whether courses are chemistry, are introductory, and are equitable. Educators of chemistry are invited colleagues to discuss the role of chemical phenomena in their courses and consider the long-lasting impacts of replicating tradition for tradition’s sake.

Keywords: equitable educational practices, chemistry curriculum, content organization, assessment design

Procedia PDF Downloads 200
8357 Early Childhood Education: Working with Children, Families, and Communities for Collective Impact

Authors: Sunico Armie Flores

Abstract:

Early childhood education (ECE) is pivotal in shaping the future of individuals and society. This paper explores the collaborative efforts required among educators, families, and communities to create a collective impact on young children’s development. It delves into the importance of these partnerships, effective strategies for engagement, and the challenges and opportunities inherent in fostering such collaboration. By examining current research and practices, the paper aims to highlight the essential role of an integrated approach in achieving significant and sustainable improvements in early childhood outcomes.

Keywords: early childhood education, lifelong learning, cognitive development, socio-emotional development, educators, families, communities, collaborative efforts, collective impact, early learning environments, holistic development, high-quality ECE programs, investment in education

Procedia PDF Downloads 42
8356 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-Learning Environments

Authors: Rachel Baruch

Abstract:

This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.

Keywords: ICT tools, e-learning, pre-service teachers, new model

Procedia PDF Downloads 467
8355 Focusing on the Utilization of Information and Communication Technology for Improving Childrens’ Potentials in Science: Challenges for Sustainable Development in Nigeria

Authors: Osagiede Mercy Afe

Abstract:

After the internet explosion in the 90’s, Technology was immediately integrated into the school system. Technology which symbolizes advancement in human knowledge was seen as a setback by many educators many efforts have been made to help stem this erroneous believes and help educators realize the benefits of technology and ways of implementing it in the classrooms especially in the sciences. This advancement created a constantly expanding gap between the pupil’s perception on the use of technology within the learning atmosphere and the teacher’s perception and limitations hence the focus of this paper is on the need to refocus on the potentials of Science and Technology in enhancing children learning at school especially in science for sustainable development in Nigeria. The paper recommended measures for facilitating the sustenance of science and technology in Nigerian schools so as to enhance the potentials of our children in Science and Technology for a better tomorrow.

Keywords: children, information communication technology (ICT), potentials, sustainable development, science education

Procedia PDF Downloads 492
8354 The Use of Coronary Calcium Scanning for Cholesterol Assessment and Management

Authors: Eva Kirzner

Abstract:

Based on outcome studies published over the past two decades, in 2018, the ACC/AHA published new guidelines for the management of hypercholesterolemia that incorporate the use of coronary artery calcium (CAC) scanning as a decision tool for ascertaining which patients may benefit from statin therapy. This use is based on the recognition that the absence of calcium on CAC scanning (i.e., a CAC score of zero) usually signifies the absence of significant atherosclerotic deposits in the coronary arteries. Specifically, in patients with a high risk for atherosclerotic cardiovascular disease (ASCVD), initiation of statin therapy is generally recommended to decrease ASCVD risk. However, among patients with intermediate ASCVD risk, the need for statin therapy is less certain. However, there is a need for new outcome studies that provide evidence that the management of hypercholesterolemia based on these new ACC/AHA recommendations is safe for patients. Based on a Pub-Med and Google Scholar literature search, four relevant population-based or patient-based cohort studies that studied the relationship between CAC scanning, risk assessment or mortality, and statin therapy that were published between 2017 and 2021 were identified (see references). In each of these studies, patients were assessed for their baseline risk for atherosclerotic cardiovascular disease (ASCVD) using the Pooled Cohorts Equation (PCE), an ACC/AHA calculator for determining patient risk based on assessment of patient age, gender, ethnicity, and coronary artery disease risk factors. The combined findings of these four studies provided concordant evidence that a zero CAC score defines patients who remain at low clinical risk despite the non-use of statin therapy. Thus, these new studies confirm the use of CAC scanning as a safe tool for reducing the potential overuse of statin therapy among patients with zero CAC scores. Incorporating these new data suggest the following best practice: (1) ascertain ASCVD risk according to the PCE in all patients; (2) following an initial attempt trial to lower ASCVD risk with optimal diet among patients with elevated ASCVD risk, initiate statin therapy for patients who have a high ASCVD risk score; (3) if the ASCVD score is intermediate, refer patients for CAC scanning; and (4) and if the CAC score is zero among the intermediate risk ASCVD patients, statin therapy can be safely withheld despite the presence of an elevated serum cholesterol level.

Keywords: cholesterol, cardiovascular disease, statin therapy, coronary calcium

Procedia PDF Downloads 117
8353 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 102
8352 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 278
8351 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 93
8350 An Analysis of the Need of Training for Indian Textile Manufacturing Sector

Authors: Shipra Sharma, Jagat Jerath

Abstract:

Human resource training is an essential element of talent management in the current era of global competitiveness and dynamic trade in the manufacturing industry. Globally, India is behind only China as the largest textile manufacturer. The major challenges faced by the Indian textile manufacturing Industry are low technology levels, growing skill gaps, unorganized structure, lower efficiencies, etc. indicating the need for constant talent up-gradation. Assessment of training needs from a strategic perspective is an essential step for the formulation of effective training. The paper established the significance of training in the Indian textile industry and to determine the training needs on various parameters as presented. 40 HR personnel/s working in the textile and apparel companies based in the industrial region of Punjab, India, were the respondents for the study. The research tool used in this case was a structured questionnaire as per five-point Likert scale. Statistical analysis through descriptive statistics and chi-square test indicated the increased need for training whenever there were technical changes in the organizations. As per the data presented in this study, most of the HR personnel/s agreed that the variables associated with organizational analysis, task analysis, and individual analysis have a statistically significant role to play in determining the need for training in an organization.

Keywords: Indian textile manufacturing industry, significance of training, training needs analysis, parameters for training needs assessment

Procedia PDF Downloads 169
8349 Evaluation and Risk Assessment of Heavy Metals Pollution Using Edible Crabs, Based on Food Intended for Human Consumption

Authors: Nayab Kanwal, Noor Us Saher

Abstract:

The management and utilization of food resources is becoming a big issue due to rapid urbanization, wastage and non-sustainable use of food, especially in developing countries. Therefore, the use of seafood as alternative sources is strongly promoted worldwide. Marine pollution strongly affects marine organisms, which ultimately decreases their export quality. The monitoring of contamination in marine organisms is a good indicator of the environmental quality as well as seafood quality. Monitoring the accumulation of chemical elements within various tissues of organisms has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this perspective, this study was carried out to compare the previous and current levels (Year 2012 and 2014) of heavy metals (Cd, Pb, Cr, Cu and Zn) in crabs marketed in Karachi and to estimate the toxicological risk associated with their intake. The accumulation of metals in marine organisms, both essential (Cu and Zn) and toxic (Pb, Cd and Cr), natural and anthropogenic, is an actual food safety issue. Significant (p>0.05) variations in metal concentrations were found in all crab species between the two years, with most of the metals showing high accumulation in 2012. For toxicological risk assessment, EWI (Estimated weekly intake), Target Hazard quotient (THQ) and cancer risk (CR) were also assessed and high EWI, Non- cancer risk (THQ < 1) showed that there is no serious threat associated with the consumption of shellfish species on Karachi coast. The Cancer risk showed the highest risk from Cd and Pb pollution if consumed in excess. We summarize key environmental health research on health effects associated with exposure to contaminated seafood. It could be concluded that considering the Pakistan coast, these edible species may be sensitive and vulnerable to the adverse effects of environmental contaminants; more attention should be paid to the Pb and Cd metal bioaccumulation and to toxicological risks to seafood and consumers.

Keywords: cancer risk, edible crabs, heavy metals pollution, risk assessment

Procedia PDF Downloads 380
8348 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas

Authors: Anand Malik

Abstract:

The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.

Keywords: debris flow, geospatial data, GIS based modeling, flow-R

Procedia PDF Downloads 276
8347 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms

Authors: Neha Ahirwar

Abstract:

In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.

Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree

Procedia PDF Downloads 70
8346 Experiences of Youth in Learning About Healthy Intimate Relationships: An Institutional Ethnography

Authors: Anum Rafiq

Abstract:

Adolescence is a vulnerable period for youth across the world. It is a period of new learning with opportunities to understand and develop perspectives on health and well-being. With youth beginning to engage in intimate relationships at an earlier age in the 21st century, concentrating on the learning opportunity they have in school is paramount. The nature of what has been deemed important to teach in schools has changed throughout history, and the focus has shifted from home/family skills to teaching youth how to be competitive in the job market. Amidst this emphasis, opportunities for them exist to learn about building healthy intimate relationships, one of the foundational elements of most people’s lives. Using an Institutional Ethnography (IE), the lived experiences of youth in how they understand intimate relationships and how their learning experience is organized through the high school Health and Physical Education (H&PE) course is explored. An empirical inquiry into how the actual work of teachers and youth are socially organized by a biomedical, employment-related, and efficiency-based discourse is provided. Through thirty-two qualitative interviews with teachers and youth, a control of ruling relations such as institutional accountability circuits, performance reports, and timetabling over the experience of teachers and youth is found. One of the facets of the institutional accountability circuit is through the social organization of teaching and learning about healthy intimate relationships being framed through a biomedical discourse. In addition, the role of a hyper-focus on performance and evaluation is found as paramount in situating healthy intimacy discussions as inferior to neoliberally charged productivity measures such as employment skills. Lastly, due to the nature of institutional policies such as regulatory guidelines, teachers are largely influenced to avoid diving into discussions deemed risky or taboo by society, such as healthy intimacy in adolescence. The findings show how texts such as the H&PE curriculum, the Ontario College of Teachers (OCT) guidelines, Ministry of Education Performance Reports, and the timetable organize the day-to-day activities of teachers and students and reproduce different disjunctures for youth. This disjuncture includes some of their experiences being subordinated, difficulty relating to curriculum, and an experience of healthy living discussions being skimmed over across sites. The findings detail that the experience of youth in learning about healthy intimate relationships is not akin to the espoused vision outlined in policy documents such as the H&PE (2015) curriculum policy. These findings have implications for policymakers, activists, and school administration alike, which call for an investigation into who is in power when it comes to youth’s learning needs, as a pivotal period where youth can be equipped with life-changing knowledge is largely underutilized. A restructuring of existing institutional practices that allow for the social and institutional flexibility required to broach the topic of healthy intimacy in a comprehensive manner is required.

Keywords: health policy, intimate relationships, youth, education, ruling relations, sexual education, violence prevention

Procedia PDF Downloads 72
8345 Development of an Optimised, Automated Multidimensional Model for Supply Chains

Authors: Safaa H. Sindi, Michael Roe

Abstract:

This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.

Keywords: Leagile, automation, heuristic learning, supply chain models

Procedia PDF Downloads 393