Search results for: corridor densification option model
13863 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car
Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga
Abstract:
Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption
Procedia PDF Downloads 27513862 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 20613861 Studies on Dye Removal by Aspergillus niger Strain
Authors: M. S. Mahmoud, Samah A. Mohamed, Neama A. Sobhy
Abstract:
For color removal from wastewater containing organic contaminants, biological treatment systems have been widely used such as physical and chemical methods of flocculation, coagulation. Fungal decolorization of dye containing wastewater is one of important goal in industrial wastewater treatment. This work was aimed to characterize Aspergillus niger strain for dye removal from aqueous solution and from raw textile wastewater. Batch experiments were studied for removal of color using fungal isolate biomass under different conditions. Environmental conditions like pH, contact time, adsorbent dose and initial dye concentration were studied. Influence of the pH on the removal of azo dye by Aspergillus niger was carried out between pH 1.0 and pH 11.0. The optimum pH for red dye decolonization was 9.0. Results showed the decolorization of dye was decreased with the increase of its initial dye concentration. The adsorption data was analyzed based on the models of equilibrium isotherm (Freundlich model and Langmuir model). During the adsorption isotherm studies; dye removal was better fitted to Freundlich model. The isolated fungal biomass was characterized according to its surface area both pre and post the decolorization process by Scanning Electron Microscope (SEM) analysis. Results indicate that the isolated fungal biomass showed higher affinity for dye in decolorization process.Keywords: biomass, biosorption, dye, isotherms
Procedia PDF Downloads 30813860 3D Microbubble Dynamics in a Weakly Viscous Fluid Near a Rigid Boundary Subject to Ultrasound
Authors: K. Manmi, Q. X. Wang
Abstract:
This paper investigates microbubble dynamics subject to ultrasound in a weakly viscous fluid near a rigid boundary. The phenomenon is simulated using a boundary integral method. The weak viscous effects are incorporated into the model through the normal stress balance across the bubble surface. The model agrees well with the Rayleigh-Plesset equation for a spherical bubble for several cycles. The effects of the fluid viscosity in the bubble dynamics are analyzed, including jet development, centroid movement and bubble volume.Keywords: microbubble dynamics, bubble jetting, viscous effect, boundary integral method
Procedia PDF Downloads 48713859 Impact of Health Indicators on Economic Growth: Application of Ardl Model on Pakistan’s Data Set
Authors: Sheraz Ahmad Choudhary
Abstract:
Health plays a vital role in the growth. The study examined the effect of health indicator on the growth of Pakistan. ARDL model is used to check the growth rate which is affected by the health by using the time series date of Pakistan from 1990 to 2017. Health indicator, fertility rate, life expectancy, foreign direct investment, and infant mortality rate are variables Where the unit root is applied to check the stationarity of the model. consequences find a significant relationship between GDP, foreign direct investment, fertility rate, and life expectancy in the short run, whereas mortality rate effected negatively to economic growth but have significant values. In the long run, foreign direct investment (FDI) and fertility rate(FR) have significantly influenced the GDP. The results show thateconomic growth is positively stimulated by most of the health indicators. The study accomplishes that nations can achieve a high level of economic growth by increasing wellbeing human capital.Keywords: economic growth, health expenditures, fertility rate, human capital, life expectancy, foreign direct investment, and infant mortality rate
Procedia PDF Downloads 13413858 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment
Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu
Abstract:
Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.Keywords: circular construction, construction and demolition waste, life cycle assessment, material recycling
Procedia PDF Downloads 8713857 YOLO-Based Object Detection for the Automatic Classification of Intestinal Organoids
Authors: Luana Conte, Giorgio De Nunzio, Giuseppe Raso, Donato Cascio
Abstract:
The intestinal epithelium serves as a pivotal model for studying stem cell biology and diseases such as colorectal cancer. Intestinal epithelial organoids, which replicate many in vivo features of the intestinal epithelium, are increasingly used as research models. However, manual classification of organoids is labor-intensive and prone to subjectivity, limiting scalability. In this study, we developed an automated object-detection algorithm to classify intestinal organoids in transmitted-light microscopy images. Our approach utilizes the YOLOv10 medium model (YOLO10m), a state-of-the-art object-detection algorithm, to predict and classify objects within labeled bounding boxes. The model was fine-tuned on a publicly available dataset containing 840 manually annotated images with 23,066 total annotations, averaging 28.2 annotations per image (median: 21; range: 1–137). It was trained to identify four categories: cysts, early organoids, late organoids, and spheroids, using a 90:10 train-validation split over 150 epochs. Model performance was assessed using mean average precision (mAP), precision, and recall metrics. The mAP, a standard metric ranging from 0 to 1 (with 1 indicating perfect agreement with manual labeling), was calculated at a 50% overlap threshold (mAP=0.5). Optimal performance was achieved at epoch 80, with an mAP of 0.85, precision of 0.78, and recall of 0.80 on the validation dataset. Classspecific mAP values were highest for cysts (0.87), followed by late organoids (0.83), early organoids (0.76), and spheroids (0.68). Additionally, the model demonstrated the ability to measure organoid sizes and classify them with accuracy comparable to expert scientists, while operating significantly faster. This automated pipeline represents a robust tool for large-scale, high-throughput analysis of intestinal organoids, paving the way for more efficient research in organoid biology and related fields.Keywords: intestinal organoids, object detection, YOLOv10, transmitted-light microscopy
Procedia PDF Downloads 1213856 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 34013855 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference
Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade
Abstract:
In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory
Procedia PDF Downloads 9413854 Studying the Impact of Agricultural Producers Support Policy in Export Market
Authors: Yazdani Saeed, Rafiei Hamed, Nekoofar Farahnaz
Abstract:
Governments Policies play a major role in national and international Markets. Pistachio is one of the most important non-oil export commodity of Iran. Therefore, in this study the relation between the producer support policies and the export of Pistachio was examined. An econometric model (VAR) was applied to test the study hypothesis. According to the estimated coefficient in VAR model, lag of producer support index has a significant and negative effect on variation of Pistachio’s export in short term. In other word, in short term, export advantage index is dependent on the amount of producers support in previous period.Keywords: producer support, export advantage, pistachio, Iran
Procedia PDF Downloads 5113853 Theology and Music in the XXI. Century: An Exploratory Study of Current Interrelation
Authors: Andrzej Kesiak
Abstract:
Contemporary theology is often accused of answering questions that nobody is asking, and of employing hermetic language that has lost its communication capacity. There is also a question that theology is asking itself: how theological discourse can still be influential on other disciplines and, how to overcome the separation of theology and belief. Undoubtedly, in the wider spectrum, the theological discourse has been and will be needed. The difficulty is how to find the right model of it, the model that would help theology to enter in dialogue with culture, art, science, and politics. Presumably, there is no only one such model, theology constantly needs to seek such models, and this is probably a never-ending journey; in other words, theology should adopt a profile of ‘a restless being’ if it wants to remain influential. Music, on the other hand, has always been very close to theology; in fact, a huge part of classical music is either sacred or religious. Many composers sought inspiration in religion, liturgy, religious painting and sacred texts. This paper will argue that despite all that it seems that a proper and factual dialogue is still in a starting phase. Such a thing as a reciprocal relationship between theology and music definitely exists, but it has not yet been theoretically developed enough. Correlation between musical and theological disciplines constitutes a very broad and complex discourse. Therefore this study would rather narrow the subject and put it in a specific context: Theology and Music in the XXI. Century. This paper is a text-based study; therefore it will be based on textual-analysis with elements of the text hermeneutics.Keywords: music, theology, reciprocal relationship between theology and music, XXI Century
Procedia PDF Downloads 16513852 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance
Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan
Abstract:
A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection
Procedia PDF Downloads 12913851 The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool
Authors: J. R. Wang, H. T. Lin, Y. S. Tseng, W. Y. Li, H. C. Chen, S. W. Chen, C. Shih
Abstract:
TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m × 7.87 m × 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day.Keywords: TRACE, FRAPTRAN, BWR, spent fuel pool
Procedia PDF Downloads 36313850 Transcranial and Sacral Magnetic Stimulation as a Therapeutic Resource for Urinary Incontinence – A Brief Bibliographic Review
Authors: Ana Lucia Molina
Abstract:
Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique for the investigation and modulation of cortical excitability in humans. The modulation of the processing of different cortical areas can result in several areas for rehabilitation, showing great potential in the treatment of motor disorders. In the human brain, the supplementary motor area (SMA) is involved in the control of the pelvic floor muscles (MAP), where dysfunctions of these muscles can lead to urinary incontinence. Peripheral magnetic stimulation, specifically sacral magnetic stimulation, has been used as a safe and effective treatment option for patients with lower urinary tract dysfunction. A systematic literature review was carried out (Pubmed, Medline and Google academic database) without a time limit using the keywords: "transcranial magnetic stimulation", "sacral neuromodulation", and "urinary incontinence", where 11 articles attended to the inclusion criteria. Results: Thirteen articles were selected. Magnetic stimulation is a non-invasive neuromodulation technique widely used in the evaluation of cortical areas and their respective peripheral areas, as well as in the treatment of lesions of brain origin. With regard to pelvic-perineal disorders, repetitive transcranial stimulation showed significant effects in controlling urinary incontinence, as well as sacral peripheral magnetic stimulation, in addition to exerting the potential to restore bladder sphincter function. Conclusion: Data from the literature suggest that both transcranial stimulation and peripheral stimulation are non-invasive references that can be promising and effective means of treatment in pelvic and perineal disorders. More prospective and randomized studies on a larger scale are needed, adapting the most appropriate and resolving parameters.Keywords: urinary incontinence, non-invasive neuromodulation, sacral neuromodulation, transcranial magnetic stimulation.
Procedia PDF Downloads 10513849 Exploring the Role of Building Information Modeling for Delivering Successful Construction Projects
Authors: Muhammad Abu Bakar Tariq
Abstract:
Construction industry plays a crucial role in the progress of societies and economies. Furthermore, construction projects have social as well as economic implications, thus, their success/failure have wider impacts. However, the industry is lagging behind in terms of efficiency and productivity. Building Information Modeling (BIM) is recognized as a revolutionary development in Architecture, Engineering and Construction (AEC) industry. There are numerous interest groups around the world providing definitions of BIM, proponents describing its advantages and opponents identifying challenges/barriers regarding adoption of BIM. This research is aimed at to determine what actually BIM is, along with its potential role in delivering successful construction projects. The methodology is critical analysis of secondary data sources i.e. information present in public domain, which include peer reviewed journal articles, industry and government reports, conference papers, books, case studies etc. It is discovered that clash detection and visualization are two major advantages of BIM. Clash detection option identifies clashes among structural, architectural and MEP designs before construction actually commences, which subsequently saves time as well as cost and ensures quality during execution phase of a project. Visualization is a powerful tool that facilitates in rapid decision-making in addition to communication and coordination among stakeholders throughout project’s life cycle. By eliminating inconsistencies that consume time besides cost during actual construction, improving collaboration among stakeholders throughout project’s life cycle, BIM can play a positive role to achieve efficiency and productivity that consequently deliver successful construction projects.Keywords: building information modeling, clash detection, construction project success, visualization
Procedia PDF Downloads 26413848 Audio-Visual Recognition Based on Effective Model and Distillation
Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin
Abstract:
Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.Keywords: lipreading, audio-visual, Efficientnet, distillation
Procedia PDF Downloads 13713847 SQL Generator Based on MVC Pattern
Authors: Chanchai Supaartagorn
Abstract:
Structured Query Language (SQL) is the standard de facto language to access and manipulate data in a relational database. Although SQL is a language that is simple and powerful, most novice users will have trouble with SQL syntax. Thus, we are presenting SQL generator tool which is capable of translating actions and displaying SQL commands and data sets simultaneously. The tool was developed based on Model-View-Controller (MVC) pattern. The MVC pattern is a widely used software design pattern that enforces the separation between the input, processing, and output of an application. Developers take full advantage of it to reduce the complexity in architectural design and to increase flexibility and reuse of code. In addition, we use White-Box testing for the code verification in the Model module.Keywords: MVC, relational database, SQL, White-Box testing
Procedia PDF Downloads 42313846 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach
Authors: Alexander S. Andreev, Olga A. Peregudova
Abstract:
In this paper, we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electro-mechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present back-stepping design based on the Euler approximate discrete-time model of a continuous-time plant. Theoretical considerations are verified by numerical simulation. The work was supported by RFFI (15-01-08482).Keywords: actuator dynamics, back stepping, discrete-time controller, Lyapunov function, wheeled mobile robot
Procedia PDF Downloads 41913845 Evaluation of Duncan-Chang Deformation Parameters of Granular Fill Materials Using Non-Invasive Seismic Wave Methods
Authors: Ehsan Pegah, Huabei Liu
Abstract:
Characterizing the deformation properties of fill materials in a wide stress range always has been an important issue in geotechnical engineering. The hyperbolic Duncan-Chang model is a very popular model of stress-strain relationship that captures the nonlinear deformation of granular geomaterials in a very tractable manner. It consists of a particular set of the model parameters, which are generally measured from an extensive series of laboratory triaxial tests. This practice is both time-consuming and costly, especially in large projects. In addition, undesired effects caused by soil disturbance during the sampling procedure also may yield a large degree of uncertainty in the results. Accordingly, non-invasive geophysical seismic approaches may be utilized as the appropriate alternative surveys for measuring the model parameters based on the seismic wave velocities. To this end, the conventional seismic refraction profiles were carried out in the test sites with the granular fill materials to collect the seismic waves information. The acquired shot gathers are processed, from which the P- and S-wave velocities can be derived. The P-wave velocities are extracted from the Seismic Refraction Tomography (SRT) technique while S-wave velocities are obtained by the Multichannel Analysis of Surface Waves (MASW) method. The velocity values were then utilized with the equations resulting from the rigorous theories of elasticity and soil mechanics to evaluate the Duncan-Chang model parameters. The derived parameters were finally compared with those from laboratory tests to validate the reliability of the results. The findings of this study may confidently serve as the useful references for determination of nonlinear deformation parameters of granular fill geomaterials. Those are environmentally friendly and quite economic, which can yield accurate results under the actual in-situ conditions using the surface seismic methods.Keywords: Duncan-Chang deformation parameters, granular fill materials, seismic waves velocity, multichannel analysis of surface waves, seismic refraction tomography
Procedia PDF Downloads 18813844 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed
Authors: Marion G. Ben-Jacob, David Wang
Abstract:
There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.Keywords: emporium model, mathematics, pedagogy, STEM
Procedia PDF Downloads 7813843 Scale Effects on the Wake Airflow of a Heavy Truck
Authors: Aude Pérard Lecomte, Georges Fokoua, Amine Mehel, Anne Tanière
Abstract:
Air quality in urban areas is deteriorated by pollution, mainly due to the constant increase of the traffic of different types of ground vehicles. In particular, particulate matter pollution with important concentrations in urban areas can cause serious health issues. Characterizing and understanding particle dynamics is therefore essential to establish recommendations to improve air quality in urban areas. To analyze the effects of turbulence on particulate pollutants dispersion, the first step is to focus on the single-phase flow structure and turbulence characteristics in the wake of a heavy truck model. To achieve this, Computational Fluid Dynamics (CFD) simulations were conducted with the aim of modeling the wake airflow of a full- and reduced-scale heavy truck. The Reynolds Average Navier-Stokes (RANS) approach with the Reynolds Stress Model (RSM)as the turbulence model closure was used. The simulations highlight the apparition of a large vortex coming from the under trailer. This vortex belongs to the recirculation region, located in the near-wake of the heavy truck. These vortical structures are expected to have a strong influence on particle dynamics that are emitted by the truck.Keywords: CDF, heavy truck, recirculation region, reduced scale
Procedia PDF Downloads 22213842 Artificial Neural Network and Statistical Method
Authors: Tomas Berhanu Bekele
Abstract:
Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression
Procedia PDF Downloads 7413841 Integrated Formulation of Project Scheduling and Material Procurement Considering Different Discount Options
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
On-time availability of materials in the construction sites plays an outstanding role in successful achievement of project’s deliverables. Thus, this paper has investigated formulation of project scheduling and material procurement at the same time, by a mixed-integer programming model, aiming to minimize/maximize penalty/reward to deliver the project and minimize material holding, ordering, and procurement costs, respectively. We have taken both all-units and incremental discount possibilities into consideration to address more flexibility from the procurement side with regard to real world conditions. Finally, the applicability and efficiency of the mathematical model is tested by different numerical examples.Keywords: discount strategies, material purchasing, project planning, project scheduling
Procedia PDF Downloads 26513840 Six Steps of Entrepreneurial Finance and Development, from Idea to Corporation Case of Kuwait
Authors: Andri Ottesen, Sam Toglaw, Mirna Safa
Abstract:
Entrepreneurial companies on their developing path from an idea to a corporation go through a similar six-step process. Each of these six development steps is supported by a distinctive financing path. This paper explores the Kuwait model for Entrepreneurial Finance and Development through in-depth interviews with ten successful Kuwaiti entrepreneurs. This paper offers insight into the development and financing of entrepreneurial companies in this oil-rich, predominantly Islamic country that are in many ways different from the steps. Western entrepreneurial companies go through. This model could be used to understand the commonalities and the difference between entrepreneurial development and financing and could be used to bridge the gap.Keywords: entrepreneurial-financing, entrepreneurial-developing, Kuwait, Vancouver school
Procedia PDF Downloads 22213839 Lateral Sural Artery Perforators: A Cadaveric Dissection Study to Assess Perforator Surface Anatomy Variability and Average Pedicle Length for Flap Reconstruction
Authors: L. Sun, O. Bloom, K. Anderson
Abstract:
The medial and lateral sural artery perforator flaps (MSAP and LSAP, respectively) are two recently described flaps that are less commonly used in lower limb trauma reconstructive surgeries compared to flaps such as the anterolateral thigh (ALT) flap or the gastrocnemius flap. The LSAP flap has several theoretical benefits over the MSAP, including the ability to be sensate and being more easily manoeuvred into position as a local flap for coverage of lateral knee or leg defects. It is less commonly used in part due to a lack of documented studies of the anatomical reliability of the perforator, and an unquantified average length of the pedicle used for microsurgical anastomosis (if used as a free flap) or flap rotation (if used as a pedicled flap). It has been shown to have significantly lower donor site morbidity compared to other flaps such as the ALT, due to the decreased need for intramuscular dissection and resulting in less muscle loss at the donor site. 11 cadaveric lower limbs were dissected, with a mean of 1.6 perforators per leg, with an average pedicle length of 45mm to the sural artery and 70mm to the popliteal artery. While the majority of perforating arteries lay close to the midline (average of 19mm lateral to the midline), there were patients whose artery was significantly lateral and would have been likely injured by the initial incision during an operation. Adding to the literature base of documented LSAP dissections provides a greater understanding of the anatomical basis of these perforator flaps, and the authors hope this will establish them as a more commonly used and discussed option when managing complicated lower limb trauma requiring soft tissue reconstruction.Keywords: cadaveric, dissection, lateral, perforator flap, sural artery, surface anatomy
Procedia PDF Downloads 16013838 The Environmental Effects of the Flood Disaster in Anambra State
Authors: U. V. Okpala
Abstract:
Flood is an overflow of water that submerges or ‘drowns’ land. In developing countries it occurs as a result of blocking of natural and man-made drainages and poor maintenance of water dams/reservoirs which seldom give way after persistent heavy down pours. In coastal lowlands and swamp lands, flooding is aided mainly by blocked channels and indiscriminate sand fling of coastal swamp areas and natural drainage channel for urban development/constructions. In this paper, the causes of flood and possible scientific, technological, political, economic and social impacts of flood disaster on the environment a case study of Anambra State have been studied. Often times flooding is caused by climate change, especially in the developed economy where scientific mitigating options are highly employed. Researchers have identified Green Houses Gases (GHG) as the cause of global climate change. The recent flood disaster in Anambra State which caused physical damage to structures, social dislocation, contamination of clean drinking water, spread of water-borne diseases, shortage of crops and food supplies, death of non-tolerant tree species, disruption in transportation system, serious economic loss and psychological trauma is a function of climate change. There is need to encourage generation of renewable energy sources, use of less carbon intensive fuels and other energy efficient sources. Carbon capture/sequestration, proper management of our drainage systems and good maintenance of our dams are good option towards saving the environment.Keywords: flooding, climate change, carbon capture, energy systems
Procedia PDF Downloads 38213837 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yichao Ma, Chengsiong Chin, Wailok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance
Procedia PDF Downloads 44113836 CFD-DEM Modelling and Analysis of the Continuous Separation of Sized Particles Using Inertial Microfluidics
Authors: Hui Zhu, Yuan Wang, Shibo Kuang, Aibing Yu
Abstract:
The inertial difference induced by the microfluidics inside a curved micro-channel has great potential to provide a fast, inexpensive, and portable solution to the separation of micro- and sub-micro particles in many applications such as aerosol collections, airborne bacteria and virus detections, as well as particle sortation. In this work, the separation behaviors of different sized particles inside a reported curved micro-channel have been studied by a combined approach of computational fluid dynamics for gas and discrete element model for particles (CFD-DEM). The micro-channel is operated by controlling the gas flow rates at all of its branches respectively used to load particles, introduce gas streams, collect particles of various sizes. The validity of the model has been examined by comparing by the calculated separation efficiency of different sized particles against the measurement. On this basis, the separation mechanisms of the inertial microfluidic separator are elucidated in terms of the interactions between particles, between particle and fluid, and between particle and wall. The model is then used to study the effect of feed solids concentration on the separation accuracy and efficiency. The results obtained from the present study demonstrate that the CFD-DEM approach can provide a convenient way to study the particle separation behaviors in micro-channels of various types.Keywords: CFD-DEM, inertial effect, microchannel, separation
Procedia PDF Downloads 29913835 Module Based Review over Current Regenerative Braking Landing Gear
Authors: Madikeri Rohit
Abstract:
As energy efficiency is the key concern in many aircraft manufacturing companies regenerative braking is a technique using which energy lost due to friction while braking can be regained. In the operation of an aircraft, significant energy is lost during deceleration or braking which occurs during its landing phase. This problem can be overcome using Regenerative Breaking System (RBS) in landing gear. The major problem faced is regarding the batteries and the overall efficiency gained in competence with the added weight. As the amount of energy required to store is huge we need batteries with high capacity for storage. Another obstacle by using high capacity batteries is the added weight which undermines the efficiency obtained using RBS. An approach to this problem is to either use the obtained energy immediately without storage or to store in other forms such as mechanical, pneumatic and hydraulic. Problem faced with mechanical systems is the weight of the flywheel needed to obtain required efficiency. Pneumatic and hydraulic systems are a better option at present. Using hydraulic systems for storing energy is efficient as it integrates into the overall hydraulic system present in the aircraft. Another obstacle is faced with the redundancy of this system. Conventional braking must be used along with RBS in order to provide redundancy. Major benefits obtained using RBS is with the help of the energy obtained during landing which can be used of engine less taxing. This reduces fuel consumption as well as noise and air pollution. Another added benefit of using RBS is to provide electrical supply to lighting systems, cabin pressurization system and can be used for emergency power supply in case of electric failure. This paper discusses about using RBS in landing gear, problems, prospects and new techniques being pursued to improve RBS.Keywords: regenerative braking, types of energy conversion, landing gear, energy storage
Procedia PDF Downloads 26513834 Analysis of Ferroresonant Overvoltages in Cable-fed Transformers
Authors: George Eduful, Ebenezer A. Jackson, Kingsford A. Atanga
Abstract:
This paper investigates the impacts of cable length and capacity of transformer on ferroresonant overvoltage in cable-fed transformers. The study was conducted by simulation using the EMTP RV. Results show that ferroresonance can cause dangerous overvoltages ranging from 2 to 5 per unit. These overvoltages impose stress on insulations of transformers and cables and subsequently result in system failures. Undertaking Basic Multiple Regression Analysis (BMR) on the results obtained, a statistical model was obtained in terms of cable length and transformer capacity. The model is useful for ferroresonant prediction and control in cable-fed transformers.Keywords: ferroresonance, cable-fed transformers, EMTP RV, regression analysis
Procedia PDF Downloads 538