Search results for: train platforming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 608

Search results for: train platforming

248 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite

Abstract:

Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.

Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination

Procedia PDF Downloads 124
247 Solar Powered Front Wheel Drive (FWD) Electric Trike: An Innovation

Authors: Michael C. Barbecho, Romeo B. Morcilla

Abstract:

This study focused on the development of a solar powered front wheel drive electric trike for personal use and short distance travel, utilizing solar power and a variable speed transmission to adapt in places where varying road grades and unavailability of plug-in charging stations are of great problems. The actual performance of the vehicle was measured in terms of duration of charging using solar power, distance travel and battery power duration, top speed developed at full power, and load capacity. This project followed the research and development process which involved planning, designing, construction, and testing. Solar charging tests revealed that the vehicle requires 6 to 8 hours sunlight exposure to fully charge the batteries. At full charge, the vehicle can travel 35 km utilizing battery power down to 42%. Vehicle showed top speed of 25 kph at 0 to 3% road grade carrying a maximum load of 122 kg. The maximum climbing grade was 23% with the vehicle carrying a maximum load of 122 kg. Technically the project was feasible and can be a potential model for possible conversion of traditional Philippine made “pedicabs” and gasoline engine powered tricycle into modern electric vehicles. Moreover, it has several technical features and advantages over a commercialized electric vehicle such as the use solar charging system and variable speed power transmission and front drive power train for adaptability in any road gradient.

Keywords: electric vehicle, solar vehicles, front drive, solar, solar power

Procedia PDF Downloads 571
246 Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case

Authors: Huazhen Lin, Ruihua Xu, Zhibin Jiang

Abstract:

In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints.

Keywords: light rail transit (LRT), non-linear programming, railway timetabling, timetable coordination

Procedia PDF Downloads 87
245 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images

Authors: Masood Varshosaz, Kamyar Hasanpour

Abstract:

In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.

Keywords: human recognition, deep learning, drones, disaster mitigation

Procedia PDF Downloads 93
244 Under the 'Umbrella' Project: A Volunteer-Mentoring Approach for Socially Disadvantaged University Students

Authors: Evridiki Zachopoulou, Vasilis Grammatikopoulos, Michail Vitoulis, Athanasios Gregoriadis

Abstract:

In the last ten years, the recent economic crisis in Greece has decreased the financial ability and strength of several families when it comes to supporting their children’s studies. As a result, the number of students who are significantly delaying or even dropping out of their university studies is constantly increasing. The students who are at greater risk for academic failure are those who are facing various problems and social disadvantages, like health problems, special needs, family poverty or unemployment, single-parent students, immigrant students, etc. The ‘Umbrella’ project is a volunteer-based initiative to tackle this problem at International Hellenic University. The main purpose of the project is to provide support to disadvantaged students at a socio-emotional, academic, and practical level in order to help them complete their undergraduate studies. More specifically, the ‘Umbrella’ project has the following goals: (a) to develop a consulting-supporting network based on volunteering senior students, called ‘i-mentors’. (b) to train the volunteering i-mentors and create a systematic and consistent support procedure for students at-risk, (c), to develop a service that, parallel to the i-mentor network will be ensuring opportunities for at-risk students to find a job, (d) to support students who are coping with accessibility difficulties, (e) to secure the sustainability of the ‘Umbrella’ project after the completion of the funding of the project. The innovation of the Umbrella project is in its holistic-person-centered approach that will be providing individualized support -via the i-mentors network- to any disadvantaged student that will come ‘under the Umbrella.’

Keywords: peer mentoring, student support, socially disadvantaged students, volunteerism in higher education

Procedia PDF Downloads 234
243 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 66
242 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 161
241 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV

Authors: Maria Pavlova

Abstract:

In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.

Keywords: camera, object recognition, OpenCV, Raspberry

Procedia PDF Downloads 218
240 Constructions of Teaching English as a Second Language Teacher Trainees’ Professional Identities

Authors: K. S. Kan

Abstract:

The main purpose of this paper is to deepen the current understanding of how a Teaching English as a Second Language (TESL) teacher trainee self is constructed. The present aim of Malaysian TESL teacher education is to train teacher trainees with established English Language Teaching methodologies of the four main language skills (listening, reading, writing and speaking) apart from building them up holistically. Therefore, it is crucial to learn more of the ways on how these teacher trainees construct their professional selves during their undergraduate years. The participants come from a class of 17 Semester 6 TESL students who had undergone a 3-month’s practicum practice during their fifth semester and going for their final 3 month’s practicum period from July 2018 onwards. Findings from a survey, interviews with the participants and lecturers, documentations such as the participants’ practicum record-books would be consolidated with the supervisory notes and comments. The findings suggest that these teacher trainees negotiate their identities and emotions that react with the socio-cultural factors. Periodical reflections on the teacher trainees’ practicum practices influence transformation.The findings will be further aligned to the courses that these teacher trainees have to take in order to equip them as future second language practitioners. It is hoped that the findings will be able to fill the gap from the teacher trainees’ perspectives on identity construction dealing. This study is much more significant now, in view of the new English Language Curriculum for Primary School (widely known as KSSR, its Malay acronym) which had been introduced and implemented in Malaysian primary schools recently. This research will benefit second language practitioners who is in the language education field, as well as, TESL undergraduates, on the knowledge of how teacher trainees respond to and negotiate their professional teaching identities as future second language educators.

Keywords: construction of selves, professional identities, second language, TEST teacher trainees

Procedia PDF Downloads 228
239 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects

Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh

Abstract:

The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.

Keywords: deep learning, opinion mining, natural language processing, sentiment analysis

Procedia PDF Downloads 171
238 Effectiveness of a Communication Training on Workplace Bullying Using Mobile Phone Application for Nurses

Authors: Jiyeon Kang, Yeon Jin Jeong, Hoon Heo

Abstract:

Purpose: Bullying in nursing workplace has been a serious problem that increases the turnover of nurses. Few studies have examined the effects of communication training on workplace bullying for nurses, and all used a single-group design and a small sample size. Thus, more rigorous research has been needed to evaluate the effects properly. This research was aimed to identify the effects of the mobile type communication training of responses on bullying behaviors among nurses. Methods: A randomized controlled trial was performed. Subjects were 62 critical care nurses working in university hospitals in Busan, South Korea. We developed a mobile phone application to train nurses to deal with bullying situation. This application includes 6 common bullying situations and appropriate empathetic communication (non-violent communication) samples in the form of webtoons. The experimental group used this application for 4 weeks, and we measured interpersonal relationship, workplace bullying, symptom experience, and intention to leave before, post, and 8 weeks after the intervention from both experimental and control groups. The effect of the intervention was analyzed using repeated measures ANOVA. Results: The mobile type communication training developed in this study was effective for decreasing nurses’ intention to leave workplace (F = 5.11, p = .027). However, it had no effect on interpersonal relationship (F = 2.54, p = .116), workplace bullying (F = 2.99, p = .089) or symptom experience (F = 2.81, p = .099). The beneficial effects on intention to leave lasted at least up to 4 weeks after the training. Conclusion: The mobile type communication training can be utilized as an effective personal coping strategy for workplace bullying among nurses. Further studies on the long-term effects of the communication training are necessary.

Keywords: bullying, communication, mobile applications, nurses, training, workplace

Procedia PDF Downloads 329
237 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 68
236 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach

Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.

Keywords: air conditioned coaches, fire propagation, flame contour, soot flow, train fire

Procedia PDF Downloads 284
235 Contactless Electromagnetic Detection of Stress Fluctuations in Steel Elements

Authors: M. A. García, J. Vinolas, A. Hernando

Abstract:

Steel is nowadays one of the most important structural materials because of its outstanding mechanical properties. Therefore, in order to look for a sustainable economic model and to optimize the use of extensive resources, new methods to monitor and prevent failure of steel-based facilities are required. The classical mechanical tests, as for instance building tasting, are invasive and destructive. Moreover, for facilities where the steel element is embedded, (as reinforced concrete) these techniques are directly non applicable. Hence, non-invasive monitoring techniques to prevent failure, without altering the structural properties of the elements are required. Among them, electromagnetic methods are particularly suitable for non-invasive inspection of the mechanical state of steel-based elements. The magnetoelastic coupling effects induce a modification of the electromagnetic properties of an element upon applied stress. Since most steels are ferromagnetic because of their large Fe content, it is possible to inspect their structure and state in a non-invasive way. We present here a distinct electromagnetic method for contactless evaluation of internal stress in steel-based elements. In particular, this method relies on measuring the magnetic induction between two coils with the steel specimen in between them. We found that the alteration of electromagnetic properties of the steel specimen induced by applied stress-induced changes in the induction allowed us to detect stress well below half of the elastic limit of the material. Hence, it represents an outstanding non-invasive method to prevent failure in steel-based facilities. We here describe the theoretical model, present experimental results to validate it and finally we show a practical application for detection of stress and inhomogeneities in train railways.

Keywords: magnetoelastic, magnetic induction, mechanical stress, steel

Procedia PDF Downloads 50
234 Heat Sink Optimization for a High Power Wearable Thermoelectric Module

Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras

Abstract:

As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.

Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat

Procedia PDF Downloads 151
233 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network

Authors: Parisa Mansour

Abstract:

Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.

Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence

Procedia PDF Downloads 65
232 The Perspectives of Preparing Psychology Practitioners in Armenian Universities

Authors: L. Petrosyan

Abstract:

The problem of psychologist training remains a key priority in Armenia. During the Soviet period, the notion of a psychologist was obscure not only in Armenia but also in other Soviet republics. The breakup of the Soviet Union triggered a gradual change in this area activating the cooperation with specialists from other countries. The need for recovery from the psychological trauma caused by the 1988 earthquake pushed forward the development of practical psychology in Armenia. This phenomenon led to positive changes in perception of and interest to a psychologist profession.Armenian universities started designing special programs for psychologists’ preparation. Armenian psychologists combined their efforts in the field of training relevant specialists. During the recent years, the Bologna educational system was introduced in Armenia which led to implementation of education quality improvement programs. Nevertheless, even today the issue of psychologists’ training is not yet settled in Armenian universities. So far graduate psychologists haven’t got a clear idea of personal and professional qualities of a psychologist. Recently, as a result of educational reforms, the psychology curricula underwent changes, but so far they have not led to a desired outcome. Almost all curricula in certain specialties are aimed to form professional competencies and strengthen practical skills. A survey conducted in Armenia aimed to identify what are the ideas of young psychology specialists on the image of a psychologist. The survey respondents were 45 specialists holding bachelor’s degree as well as 30 master degree graduates, who have not been working yet. The research reveals that we need to change the approach of preparing psychology practitioners in the universities of Armenia. Such an approach to psychologist training will make it possible to train qualified specialists for enhancement of modern psychology theory and practice.

Keywords: practitioners, psychology degree, study, professional competencies

Procedia PDF Downloads 452
231 The Effect of Shredded Polyurethane Foams on Shear Modulus and Damping Ratio of Sand

Authors: Javad Saeidaskari, Nader Khalafian

Abstract:

The undesirable impact of vibrations induced by road and railway traffic is an important concern in modern world. These vibrations are transmitted through soil and cause disturbances to the residence area and high-tech production facilities alongside the train/traffic lines. In this paper for the first time a new method of soil improvement with vibration absorber material, is used to increase the damping factor, in other word, to reduce the ability of wave transitions in sand. In this study standard Firoozkooh No. 161 sand is used as the host sand. The semi rigid polyurethane (PU) foam which used in this research is one of the common materials for vibration absorbing purposes. Series of cyclic triaxial tests were conducted on remolded samples with identical relative density of 70% of maximum dry density for different volume percentage of shredded PU foam. The frequency of tests was 0.1 Htz with shear strain of 0.37% and 0.75% and also the effective confining pressures during the tests were 100 kPa and 350 kPa. In order to find out the best soil-PU foam mixture, different volume percent of PU foam varying from 10% to 30% were examined. The results show that adding PU foam up to 20%, as its optimum content, causes notable enhancement in damping ratio for both shear strains of 0.37% (52.19% and 69% increase for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (59.56% and 59.11% increase for effective confining pressures of 100 kPa and 350 kPa, respectively). The results related to shear modulus present significant reduction for both shear strains of 0.37% (82.22% and 56.03% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (89.32% and 39.9% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively). In conclusion, shredded PU foams effectively affect the dynamic properties of sand and act as vibration absorber in soil.

Keywords: polyurethane foam, sand, damping ratio, shear modulus

Procedia PDF Downloads 449
230 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement

Authors: Haibin Zhou, Pingping Yao, Kunyang Fan

Abstract:

Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.

Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism

Procedia PDF Downloads 278
229 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation

Procedia PDF Downloads 206
228 The Impact of High Labour Turnover on Sustainable Housing Delivery in South Africa

Authors: Azola Agrienette Mayeza, Madifedile Thasi

Abstract:

Due to the contractual nature of jobs and employment opportunities in the construction industry and the seeming surplus of potential employees in South Africa, there is a little interest on the part of employers to put in place policies to retain experienced workers. Ironically these are the workers that the companies have expended significant resources on, in terms of training and capabilities development. The construction industry has been experiencing high materials wastages and health and safety issues to score very low on the sustainability agenda as regards resources management and safety. This study carried out an assessment of the poor retention of experienced workers in the construction industry on the capacity to deliver sustainable housing in South Africa. It highlights the economic, safety and resources conservation and other benefits accruable from a high retention of key employees to the South African construction industry towards the delivery of sustainable housing. It presents data that strongly support the hypothesis that high turnover of skilled employees as a result of the industry belief of zero incentive to retain employees beyond the contractual period, is responsible for the high wastages of resources in the industry and the safety issues. A high turnover of experienced employees in the construction industry was found to impact on the industry performance in terms of timely, cost effective and quality delivery of construction projects, particularly when measured against the government sustainable housing agenda. It also results in unplanned expenses required to train replacing employees during project executions as well as company goodwill which ultimately has a huge impact on sustainable housing delivery in South Africa.

Keywords: labour turnover, construction industry, sustainable housing, materials wastage, housing delivery, South Africa

Procedia PDF Downloads 370
227 Evaluation of Current Methods in Modelling and Analysis of Track with Jointed Rails

Authors: Hossein Askarinejad, Manicka Dhanasekar

Abstract:

In railway tracks, two adjacent rails are either welded or connected using bolted jointbars. In recent years the number of bolted rail joints is reduced by introduction of longer rail sections and by welding the rails at location of some joints. However, significant number of bolted rail joints remains in railways around the world as they are required to allow for rail thermal expansion or to provide electrical insulation in some sections of track. Regardless of the quality and integrity of the jointbar and bolt connections, the bending stiffness of jointbars is much lower than the rail generating large deflections under the train wheels. In addition, the gap or surface discontinuity on the rail running surface leads to generation of high wheel-rail impact force at the joint gap. These fundamental weaknesses have caused high rate of failure in track components at location of rail joints resulting in significant economic and safety issues in railways. The mechanical behavior of railway track at location of joints has not been fully understood due to various structural and material complexities. Although there have been some improvements in the methods for analysis of track at jointed rails in recent years, there are still uncertainties concerning the accuracy and reliability of the current methods. In this paper the current methods in analysis of track with a rail joint are critically evaluated and the new advances and recent research outcomes in this area are discussed. This research is part of a large granted project on rail joints which was defined by Cooperative Research Centre (CRC) for Rail Innovation with supports from Australian Rail Track Corporation (ARTC) and Queensland Rail (QR).

Keywords: jointed rails, railway mechanics, track dynamics, wheel-rail interaction

Procedia PDF Downloads 349
226 Influence of Infinite Elements in Vibration Analysis of High-Speed Railway Track

Authors: Janaki Rama Raju Patchamatla, Emani Pavan Kumar

Abstract:

The idea of increasing the existing train speeds and introduction of the high-speed trains in India as a part of Vision-2020 is really challenging from both economic viability and technical feasibility. More than economic viability, technical feasibility has to be thoroughly checked for safe operation and execution. Trains moving at high speeds need a well-established firm and safe track thoroughly tested against vibration effects. With increased speeds of trains, the track structure and layered soil-structure interaction have to be critically assessed for vibration and displacements. Physical establishment of track, testing and experimentation is a costly and time taking process. Software-based modelling and simulation give relatively reliable, cost-effective means of testing effects of critical parameters like sleeper design and density, properties of track and sub-grade, etc. The present paper reports the applicability of infinite elements in reducing the unrealistic stress-wave reflections from so-called soil-structure interface. The influence of the infinite elements is quantified in terms of the displacement time histories of adjoining soil and the deformation pattern in general. In addition, the railhead response histories at various locations show that the numerical model is realistic without any aberrations at the boundaries. The numerical model is quite promising in its ability to simulate the critical parameters of track design.

Keywords: high speed railway track, finite element method, Infinite elements, vibration analysis, soil-structure interface

Procedia PDF Downloads 272
225 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 17
224 Virtual Team Management in Companies and Organizations

Authors: Asghar Zamani, Mostafa Falahmorad

Abstract:

Virtualization is established to combine and use the unique capabilities of employees to increase productivity and agility to provide services regardless of location. Adapting to fast and continuous change and getting maximum access to human resources are reasons why virtualization is happening. The distance problem is solved by information. Flexibility is the most important feature of virtualization, and information will be the main focus of virtualized companies. In this research, we used the Covid-19 opportunity window to assess the productivity of the companies that had been going through more virtualized management before the Covid-19 in comparison with those that just started planning on developing infrastructures on virtual management after the crises of pandemic occurred. The research process includes financial (profitability and customer satisfaction) and behavioral (organizational culture and reluctance to change) metrics assessment. In addition to financial and CRM KPIs, a questionnaire is devised to assess how manager and employees’ attitude has been changing towards the migration to virtualization. The sample companies and questions are selected by asking from experts in the IT industry of Iran. In this article, the conclusion is that companies open to virtualization based on accurate strategic planning or willing to pay to train their employees for virtualization before the pandemic are more agile in adapting to change and moving forward in recession. The prospective companies in this research, not only could compensate for the short period loss from the first shock of the Covid-19, but they could also foresee new needs of their customer sooner than other competitors, resulting in the need to employ new staff for executing the emerging demands. Findings were aligned with the literature review. Results can be a wake-up call for business owners especially in developing countries to be more resilient toward modern management styles instead of continuing with traditional ones.

Keywords: virtual management, virtual organization, competitive advantage, KPI, profit

Procedia PDF Downloads 83
223 Factors Affecting At-Grade Railway Level Crossing Accidents in Bangladesh

Authors: Armana Huq

Abstract:

Railway networks have a significant role in the economy of any country. Similar to other transportation modes, many lives suffer from fatalities or injuries caused by accidents related to the railway. Railway accidents are not as common as roadway accidents yet they are more devastating and damaging than other roadway accidents. Despite that, issues related to railway accidents are not taken into consideration with significant attention as a major threat because of their less frequency compared to other accident categories perhaps. However, the Federal Railroad Administration reported nearly twelve thousand train accidents related to the railroad in the year 2014, resulting in more than eight hundred fatalities and thousands of injuries in the United States alone of which nearly one third fatalities resulted from railway crossing accidents. From an analysis of railway accident data of six years (2005-2010), it has been revealed that 344 numbers of the collision were occurred resulting 200 people dead and 443 people injured in Bangladesh. This paper includes a comprehensive overview of the railway safety situation in Bangladesh from 1998 to 2015. Each year on average, eight fatalities are reported in at-grade level crossings due to railway accidents in Bangladesh. In this paper, the number of railway accidents that occurred in Bangladesh has been presented and a fatality rate of 58.62% has been estimated as the percentage of total at-grade railway level crossing accidents. For this study, analysis of railway accidents in Bangladesh for the period 1998 to 2015 was obtained from the police reported accident database using MAAP (Microcomputer Accident Analysis Package). Investigation of the major contributing factors to the railway accidents has been performed using the Multinomial Logit model. Furthermore, hotspot analysis has been conducted using ArcGIS. Eventually, some suggestions have been provided to mitigate those accidents.

Keywords: safety, human factors, multinomial logit model, railway

Procedia PDF Downloads 148
222 Raman Scattering Broadband Spectrum Generation in Compact Yb-Doped Fiber Laser

Authors: Yanrong Song, Zikai Dong, Runqin Xu, Jinrong Tian, Kexuan Li

Abstract:

Nonlinear polarization rotation (NPR) technique has become one of the main techniques to achieve mode-locked fiber lasers for its compactness, implementation, and low cost. In this paper, we demonstrate a compact mode-locked Yb-doped fiber laser based on NPR technique in the all normal dispersion (ANDi) regime. In the laser cavity, there are no physical filter and polarization controller in laser cavity. Mode-locked pulse train is achieved in ANDi regime based on NPR technique. The fiber birefringence induced filtering effect is the mainly reason for mode-locking. After that, an extra 20 m long single-mode fiber is inserted in two different positions, dissipative soliton operation and noise like pulse operations are achieved correspondingly. The nonlinear effect is obviously enhanced in the noise like pulse regime and broadband spectrum generated owing to enhanced stimulated Raman scattering effect. When the pump power is 210 mW, the central wavelength is 1030 nm, and the corresponding 1st order Raman scattering stokes wave generates and locates at 1075 nm. When the pump power is 370 mW, the 1st and 2nd order Raman scattering stokes wave generate and locate at 1080 nm, 1126 nm respectively. When the pump power is 600 mW, the Raman continuum is generated with cascaded multi-order stokes waves, and the spectrum extends to 1188 nm. The total flat spectrum is from 1000nm to 1200nm. The maximum output average power and pulse energy are 18.0W and 14.75nJ, respectively.

Keywords: fiber laser, mode-locking, nonlinear polarization rotation, Raman scattering

Procedia PDF Downloads 221
221 Productivity Effect of Urea Deep Placement Technology: An Empirical Analysis from Irrigation Rice Farmers in the Northern Region of Ghana

Authors: Shaibu Baanni Azumah, Ignatius Tindjina, Stella Obanyi, Tara N. Wood

Abstract:

This study examined the effect of Urea Deep Placement (UDP) technology on the output of irrigated rice farmers in the northern region of Ghana. Multi-stage sampling technique was used to select 142 rice farmers from the Golinga and Bontanga irrigation schemes, around Tamale. A treatment effect model was estimated at two stages; firstly, to determine the factors that influenced farmers’ decision to adopt the UDP technology and secondly, to determine the effect of the adoption of the UDP technology on the output of rice farmers. The significant variables that influenced rice farmers’ adoption of the UPD technology were sex of the farmer, land ownership, off-farm activity, extension service, farmer group participation and training. The results also revealed that farm size and the adoption of UDP technology significantly influenced the output of rice farmers in the northern region of Ghana. In addition to the potential of the technology to improve yields, it also presents an employment opportunity for women and youth, who are engaged in the deep placement of Urea Super Granules (USG), as well as in the transplantation of rice. It is recommended that the government of Ghana work closely with the IFDC to embed the UDP technology in the national agricultural programmes and policies. The study also recommends an effective collaboration between the government, through the Ministry of Food and Agriculture (MoFA) and the International Fertilizer Development Center (IFDC) to train agricultural extension agents on UDP technology in the rice producing areas of the country.

Keywords: Northern Ghana, output , irrigation rice farmers, treatment effect model, urea deep placement

Procedia PDF Downloads 436
220 Smart Kids Coacher: Model for Childhood Obesity in Thailand

Authors: Pornwipa Daoduong, Jairak Loysongkroa, Napaphan Viriyautsahakul, Wachira Pengjuntr

Abstract:

Obesity is on of serious health problem in many countries including Thailand where the prevalence of childhood obesity has increased from 8.8 % in 2014 to 9.5 % in 2015 and 12.9 % in 2016. The Ministry of Public Health’s objective is to reduce prevalence of childhood Obesity to 10% or lower in 2017, by implementing the measure in relation to nutrition, physical activity (PA) and environment in 6,405 targeted school with proportion of school children with obesity is higher than 10 %. Smart Kids Coacher (SKC)” is a new innovative intervention created by Department of Health and consists of 252 regional and provincial officers. The SKC aims to train the super trainers about food and nutrition.PA and emotional control through implementing three learning activities including 1) Food for Fun is about Nutrition flag, Nutrition label, food portion and Nutrition surveillance; 2) Fun for Fit includes intermediated- and advanced level workouts within 60 minutes such as kangaroo dance, Chair stretching; and 3) Control emotional is about to prevent probability of access to unhealthy food, to ensure for having meal in appropriate time, and to recruit peers and family member to increase awareness among target groups. Apart from providing SKC lesson for 3,828 officers at district level, a number of students (2,176) as role model are selected through implementing “Smart Kids Leader: (SKL)”.Consequently. The SKC lowers proportion of childhood obesity from 17% in 2012 to 12.9% in 2016. Further, the SKC coverage should be expanded to other setting. Policy maker should be aware of the important of reduction of the prevalence of childhood obesity, and it’s related risk. Network and Collaboration between stakeholders are essential as well as an improvement of holistic intervention and knowledge “NuPETHS” for kids in the future.

Keywords: childhood obesity, model, obesity, smart kids coacher

Procedia PDF Downloads 244
219 Proactive Competence Management for Employees: A Bottom-up Process Model for Developing Target Competence Profiles Based on the Employee's Tasks

Authors: Maximilian Cedzich, Ingo Dietz Von Bayer, Roland Jochem

Abstract:

In order for industrial companies to continue to succeed in dynamic, globalized markets, they must be able to train their employees in an agile manner and at short notice in line with the exogenous conditions that arise. For this purpose, it is indispensable to operate a proactive competence management system for employees that recognizes qualification needs timely in order to be able to address them promptly through qualification measures. However, there are hardly any approaches to be found in the literature that includes systematic, proactive competence management. In order to help close this gap, this publication presents a process model that systematically develops bottom-up, future-oriented target competence profiles based on the tasks of the employees. Concretely, in the first step, the tasks of the individual employees are examined for assumed future conditions. In other words, qualitative scenarios are considered for the individual tasks to determine how they are likely to change. In a second step, these scenario-based future tasks are translated into individual future-related target competencies of the employee using a matrix of generic task properties. The final step pursues the goal of validating the target competence profiles formed in this way within the framework of a management workshop. This process model provides industrial companies with a tool that they can use to determine the competencies required by their own employees in the future and compare them with the actual prevailing competencies. If gaps are identified between the target and the actual, these qualification requirements can be closed in the short term by means of qualification measures.

Keywords: dynamic globalized markets, employee competence management, industrial companies, knowledge management

Procedia PDF Downloads 189