Search results for: tightly coupled memory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2734

Search results for: tightly coupled memory

2374 Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm

Authors: Mahendran Samykano, Ram Mohan, Shyam Aravamudhan

Abstract:

The objective of this work is to study the effect of two key factors-external magnetic field and applied current density during the template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size, and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process.

Keywords: anodic alumina oxide, electrodeposition, nanowires, nickel

Procedia PDF Downloads 279
2373 The Reenactment of Historic Memory and the Ways to Read past Traces through Contemporary Architecture in European Urban Contexts: The Case Study of the Medieval Walls of Naples

Authors: Francesco Scarpati

Abstract:

Because of their long history, ranging from ancient times to the present day, European cities feature many historical layers, whose single identities are represented by traces surviving in the urban design. However, urban transformations, in particular, the ones that have been produced by the property speculation phenomena of the 20th century, often compromised the readability of these traces, resulting in a loss of the historical identities of the single layers. The purpose of this research is, therefore, a reflection on the theme of the reenactment of the historical memory in the stratified European contexts and on how contemporary architecture can help to reveal past signs of the cities. The research work starts from an analysis of a series of emblematic examples that have already provided an original solution to the described problem, going from the architectural detail scale to the urban and landscape scale. The results of these analyses are then applied to the case study of the city of Naples, as an emblematic example of a stratified city, with an ancient Greek origin; a city where it is possible to read most of the traces of its transformations. Particular consideration is given to the trace of the medieval walls of the city, which a long time ago clearly divided the city itself from the outer fields, and that is no longer readable at the current time. Finally, solutions and methods of intervention are proposed to ensure that the trace of the walls, read as a boundary, can be revealed through the contemporary project.

Keywords: contemporary project, historic memory, historic urban contexts, medieval walls, naples, stratified cities, urban traces

Procedia PDF Downloads 264
2372 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems

Authors: Mohamed Omar

Abstract:

Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing.

Keywords: finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing

Procedia PDF Downloads 325
2371 The Test of Memory Malingering and Offence Severity

Authors: Kenji Gwee

Abstract:

In Singapore, the death penalty remains in active use for murder and drug trafficking of controlled drugs such as heroin. As such, the psychological assessment of defendants can often be of high stakes. The Test of Memory Malingering (TOMM) is employed by government psychologists to determine the degree of effort invested by defendants, which in turn inform on the veracity of overall psychological findings that can invariably determine the life and death of defendants. The purpose of this study was to find out if defendants facing the death penalty were more likely to invest less effort during psychological assessment (to fake bad in hopes of escaping the death sentence) compared to defendants facing lesser penalties. An archival search of all forensic cases assessed in 2012-2013 by Singapore’s designated forensic psychiatric facility yielded 186 defendants’ TOMM scores. Offence severity, coded into 6 rank-ordered categories, was analyzed in a one-way ANOVA with TOMM score as the dependent variable. There was a statistically significant difference (F(5,87) = 2.473, p = 0.038). A Tukey post-hoc test with Bonferroni correction revealed that defendants facing lower charges (Theft, shoplifting, criminal breach of trust) invested less test-taking effort (TOMM = 37.4±12.3, p = 0.033) compared to those facing the death penalty (TOMM = 46.2±8.1). The surprising finding that those facing death penalties actually invested more test taking effort than those facing relatively minor charges could be due to higher levels of cooperation when faced with death. Alternatively, other legal avenues to escape the death sentence may have been preferred over the mitigatory chance of a psychiatric defence.

Keywords: capital sentencing, offence severity, Singapore, Test of Memory Malingering

Procedia PDF Downloads 434
2370 Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders

Authors: Maha Sliti, Walid Abdallah, Noureddine Boudriga

Abstract:

In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports.

Keywords: optical multicast, optical burst switching networks, optical code-words, tunable decoder, virtual optical memory

Procedia PDF Downloads 607
2369 Factors Influencing Resolution of Anaphora with Collective Nominals in Russian

Authors: Anna Moskaleva

Abstract:

A prolific body of research in theoretical and experimental linguistics claims that a preference for conceptual or grammatical information in the process of agreement greatly depends on the type of agreement dependency. According to the agreement hierarchy, an anaphoric agreement is more sensitive to semantic or conceptual rather than grammatical information of an antecedent. Furthermore, a higher linear distance between a pronoun and its antecedent is assumed to trigger semantic agreement, yet the hierarchical distance is hardly examined in the research field, and the contribution of each distance factor is unclear. Apart from that, working memory volume is deemed to play a role in maintaining grammatical information during language comprehension. The aim of this study is to observe distance and working memory effects in resolution of anaphora with collective nominals (e.g., team) and to have a closer look at the interaction of the factors. Collective nominals in many languages can have a holistic or distributive meaning and can be addressed by a singular or a plural pronoun, respectively. We investigated linguistic factors of linear and rhetorical (hierarchical) distance and a more general factor of working memory volume in their ability to facilitate the interpretation of the number feature of a collective noun in Russian. An eye-tracking reading experiment on comprehension has been conducted where university students were presented with composed texts, including collective nouns and personal pronouns alluding to them. Different eye-tracking measures were calculated using statistical methods. The results have shown that a significant increase in reading time in the case of a singular pronoun was demonstrated when both distances were high, and no such effect was observed when just one of the distances was high. A decrease in reading time has been obtained with distance in the case of a plural pronoun. The working memory effect was not revealed in the experiment. The resonance of distance factors indicates that not only the linear distance but also the hierarchical distance is of great importance in interpreting pronouns. The experimental findings also suggest that, apart from the agreement hierarchy, the preference for conceptual or grammatical information correlates with the distance between a pronoun and its antecedent.

Keywords: collective nouns, agreement hierarchy, anaphora resolution, eye-tracking, language comprehension

Procedia PDF Downloads 38
2368 Memory Consolidation: Application of Retrieval Strategies in the Classroom

Authors: Eric Tardif, Nicolas Meylan

Abstract:

Recent studies suggest that the consolidation of episodic memory is better achieved through repeated retrieval than with the use of concept mapping or repeated study. Although such laboratory results highly appeal to educationalists, it remains to be shown whether they can be directly used in a classroom setting. Forty-five college students (42 girls; mean age 16.1 y/o) were asked to remember pairs of biology-related words (e.g. mitochondria-energy) in two configurations. The first configuration consisted of a three-minute study of pairs of words followed by a final one-minute test in which the first word of a pair was shown and the subject asked to write down the second associated word. This procedure was repeated three times. The second configuration consisted of a one-minute study of a list of pairs of words, which was immediately followed by a one-minute test. This procedure was repeated 6 times. Subjects filled out a small questionnaire assessing their general mood, level of fatigue, stress and motivation to do the exercise. One week later, subjects were given a final test using the same words. A total of 8 lists of words were studied and tested during the semester. Results showed that subjects recalled more correct words when using the second configuration, both within the study period and one week later, confirming laboratory findings. However, the general performance (mean items recalled) as well as the motivation to do the exercise gradually decreased during the semester. Motivation was positively correlated with performance (r=0.77, p<0.05). The results suggest that laboratory findings may provide some applications in education but other variables inherent to the classroom setting must also be considered.

Keywords: long-term, episodic memory, consolidation, retrieval, school setting

Procedia PDF Downloads 339
2367 Effect of Perceived Importance of a Task in the Prospective Memory Task

Authors: Kazushige Wada, Mayuko Ueda

Abstract:

In the present study, we reanalyzed lapse errors in the last phase of a job, by re-counting near lapse errors and increasing the number of participants. We also examined the results of this study from the perspective of prospective memory (PM), which concerns future actions. This study was designed to investigate whether perceiving the importance of PM tasks caused lapse errors in the last phase of a job and to determine if such errors could be explained from the perspective of PM processing. Participants (N = 34) conducted a computerized clicking task, in which they clicked on 10 figures that they had learned in advance in 8 blocks of 10 trials. Participants were requested to click the check box in the start display of a block and to click the checking off box in the finishing display. This task was a PM task. As a measure of PM performance, we counted the number of omission errors caused by forgetting to check off in the finishing display, which was defined as a lapse error. The perceived importance was manipulated by different instructions. Half the participants in the highly important task condition were instructed that checking off was very important, because equipment would be overloaded if it were not done. The other half in the not important task condition was instructed only about the location and procedure for checking off. Furthermore, we controlled workload and the emotion of surprise to confirm the effect of demand capacity and attention. To manipulate emotions during the clicking task, we suddenly presented a photo of a traffic accident and the sound of a skidding car followed by an explosion. Workload was manipulated by requesting participants to press the 0 key in response to a beep. Results indicated too few forgetting induced lapse errors to be analyzed. However, there was a weak main effect of the perceived importance of the check task, in which the mouse moved to the “END” button before moving to the check box in the finishing display. Especially, the highly important task group showed more such near lapse errors, than the not important task group. Neither surprise, nor workload affected the occurrence of near lapse errors. These results imply that high perceived importance of PM tasks impair task performance. On the basis of the multiprocess framework of PM theory, we have suggested that PM task performance in this experiment relied not on monitoring PM tasks, but on spontaneous retrieving.

Keywords: prospective memory, perceived importance, lapse errors, multi process framework of prospective memory.

Procedia PDF Downloads 446
2366 Turkish Airlines' 85th Anniversary Commercial: An Analysis of the Institutional Identity of a Brand in Terms of Glocalization

Authors: Samil Ozcan

Abstract:

Airlines companies target different customer segments in consideration of pricing, service quality, flight network, etc. and their brand positioning accords with the marketization strategies developed in the same direction. The object of this study, Turkish Airlines, has many peculiarities regarding its brand positioning as compared to its rivals in the sector. In the first place, it appeals to a global customer group because of its Star Alliance membership and its broad flight network with 315 destination points. The second group in its customer segmentation includes domestic customers. For this group, the company follows a marketing strategy that plays to local culture and accentuates the image of Turkishness as an emotional allurement. The advertisements and publicity projects designed in this regard put little emphasis on the service quality the company offers to its clients; it addresses the emotions of the consumers rather than individual benefits and relies on the historical memory of the nation and shared cultural values. This study examines the publicity work which aims at the second segment customer group focusing on Turkish Airlines’ 85th Anniversary Commercial through a symbolic meaning analysis approach. The commercial presents six stories with undertones of nationalism in its theme. Nationalism is not just the product of collective interests based on reason but a result of patriotism in the sense of loyalty to state and nation and love of ethnic belonging. While nationalism refers to concrete notions such as blood tie, common ancestor, shared history, it is not the actuality of these notions that it draws its real strength but the emotions invested in them. The myths of origin, the idea of common homeland, boundary definitions, and symbolic acculturation have instrumental importance in the development of these commonalities. The commercial offers concrete examples for an analysis of Connor’s definition of nationalism based on emotions. Turning points in the history of the Turkish Republic and the historical mission Turkish Airlines undertook in these moments are narrated in six stories in the commercial with a highly emotional theme. These emotions, in general, depend on collective memory generated by national consciousness. Collective memory is not simply remembering the past. It is constructed through the reconstruction and reinterpretation of the past in the present moment. This study inquires the motivations behind the nationalist emotions generated within the collective memory by engaging with the commercial released for the 85th anniversary of Turkish Airlines as the object of analysis. Symbols and myths can be read as key concepts that reveal the relation between 'identity and memory'. Because myths and symbols do not merely reflect on collective memory, they reconstruct it as well. In this sense, the theme of the commercial defines the image of Turkishness with virtues such as self-sacrifice, helpfulness, humanity, and courage through a process of meaning creation based on symbolic mythologizations like flag and homeland. These virtues go beyond describing the image of Turkishness and become an instrument that defines and gives meaning to Turkish identity.

Keywords: collective memory, emotions, identity, nationalism

Procedia PDF Downloads 153
2365 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 145
2364 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions

Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong

Abstract:

A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.

Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition

Procedia PDF Downloads 153
2363 A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints

Authors: Minho Lee, Donghyun Back, Jaemoon Jung, Woojin Park

Abstract:

The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort.

Keywords: baseball, memory-based, posture prediction, reaching area, 3D digital human models

Procedia PDF Downloads 216
2362 A Comparative Analysis of Hyper-Parameters Using Neural Networks for E-Mail Spam Detection

Authors: Syed Mahbubuz Zaman, A. B. M. Abrar Haque, Mehedi Hassan Nayeem, Misbah Uddin Sagor

Abstract:

Everyday e-mails are being used by millions of people as an effective form of communication over the Internet. Although e-mails allow high-speed communication, there is a constant threat known as spam. Spam e-mail is often called junk e-mails which are unsolicited and sent in bulk. These unsolicited emails cause security concerns among internet users because they are being exposed to inappropriate content. There is no guaranteed way to stop spammers who use static filters as they are bypassed very easily. In this paper, a smart system is proposed that will be using neural networks to approach spam in a different way, and meanwhile, this will also detect the most relevant features that will help to design the spam filter. Also, a comparison of different parameters for different neural network models has been shown to determine which model works best within suitable parameters.

Keywords: long short-term memory, bidirectional long short-term memory, gated recurrent unit, natural language processing, natural language processing

Procedia PDF Downloads 205
2361 Grounding Chinese Language Vocabulary Teaching and Assessment in the Working Memory Research

Authors: Chan Kwong Tung

Abstract:

Since Baddeley and Hitch’s seminal research in 1974 on working memory (WM), this topic has been of great interest to language educators. Although there are some variations in the definitions of WM, recent findings in WM have contributed vastly to our understanding of language learning, especially its effects on second language acquisition (SLA). For example, the phonological component of WM (PWM) and the executive component of WM (EWM) have been found to be positively correlated with language learning. This paper discusses two general, yet highly relevant WM findings that could directly affect the effectiveness of Chinese Language (CL) vocabulary teaching and learning, as well as the quality of its assessment. First, PWM is found to be critical for the long-term learning of phonological forms of new words. Second, EWM is heavily involved in interpreting the semantic characteristics of new words, which consequently affects the quality of learners’ reading comprehension. These two ideas are hardly discussed in the Chinese literature, both conceptual and empirical. While past vocabulary acquisition studies have mainly focused on the cognitive-processing approach, active processing, ‘elaborate processing’ (or lexical elaboration) and other effective learning tasks and strategies, it is high time to balance the spotlight to the WM (particularly PWM and EWM) to ensure an optimum control on the teaching and learning effectiveness of such approaches, as well as the validity of this language assessment. Given the unique phonological, orthographical and morphological properties of the CL, this discussion will shed some light on the vocabulary acquisition of this Sino-Tibetan language family member. Together, these two WM concepts could have crucial implications for the design, development, and planning of vocabularies and ultimately reading comprehension teaching and assessment in language education. Hopefully, this will raise an awareness and trigger a dialogue about the meaning of these findings for future language teaching, learning, and assessment.

Keywords: Chinese Language, working memory, vocabulary assessment, vocabulary teaching

Procedia PDF Downloads 344
2360 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 261
2359 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 64
2358 Draw Me Close: Queering Virtual Reality through (Re)Performances of Memory

Authors: Camille Intson

Abstract:

This paper endeavors to explore the opportunities, challenges, and ethics of reconstructing and re-enacting archives of memory through virtual reality (VR) performance, using Jordan Tannahill’s Draw Me Close as an exemplary case study. Draw Me Close is a 1:1 virtual reality (VR) performance in which the artist’s childhood memories, experiences, and interactions with his mother are reconstructed in the wake of her passing. Solo audience members are positioned as Jordan (the subject and character) and taken through a series of narratives, (virtual) spaces, and interactions with his “mother,” played by a live actor. Piece by piece, audiences are brought into the world of the “shifting” archive, inhabiting Jordan’s reconstructed virtual world from his early explorations of queer sexuality through to his mother’s cancer diagnosis and passing. This paper will explore how the world of Draw Me Close represents a “touching” and/or “queering” of time within its archive, blurring and transgressing the boundaries between the animate and the inanimate, life and death. On a philosophical level, considering foundational queer performance scholarship and archival theory, it will also examine how performance’s ephemerality rewards its artists with the dual advantages of visibility and protection, allowing for an ethical exploration of traumatic memory and loss within a disappearing medium. Finally, this provocation will use Draw Me Close as a point of departure from which to outline future possibilities for performance and emerging technologies’ engagements with archival theory and practice. By positioning virtual reality (VR) as an archive-constructing medium, it aims to move beyond the question of how we can take performances seriously as archives towards how personal archive construction is itself a performative act.

Keywords: intermedial theatre, new media arts, queer performance, virtual reality

Procedia PDF Downloads 88
2357 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions

Authors: Jian Li

Abstract:

The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.

Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase

Procedia PDF Downloads 86
2356 Offloading Knowledge-Keeping to Digital Technology and the Attrition of Socio-Cultural Life

Authors: Sophia Melanson Ricciardone

Abstract:

Common vexations concerning the impact of contemporary media technology on our daily lives tend to conjure mental representations of digital specters that surreptitiously invade the privacy of our most intimate spaces. While legitimacy assuredly sustains these concerns, examining them in isolation from other attributable phenomena to the problems created by our hyper-mediated conditions does not supply a complete account of the deleterious cost of integrating digital affordances into the banal cadence of our shared socio-cultural realities. As we continue to subconsciously delegate facets of our social and cognitive lives to digital technology, the very faculties that have enabled our species to thrive and invent technology in the first place are at risk of attrition – namely our capacity to sustain attention while synthesizing information in working memory to produce creative and inventive constructions for our shared social existence. Though the offloading of knowledge-keeping to fellow social agents belonging to our family and community circles is an enduring intuitive phenomenon across human societies – what social psychologists refer to as transactive memory – in offloading our various socio-cognitive faculties to digital technology, we may plausibly be supplanting the visceral social connections forged by transactive memory. This paper will present related research and literature produced across the disciplines of sociobiology, socio-cultural anthropology, social psychology, cognitive semiotics and communication and media studies that directly and indirectly address the social precarity cultivated by digital technologies. This body of scholarly work will then be situated within common areas of interest belonging to digital anthropology, including the groundbreaking work of Pavel Curtis, Christopher Kelty, Lynn Cherny, Vincent Duclos, Nick Seaver, and Sherry Turkle. It is anticipated that in harmonizing these overlapping areas of intradisciplinary interest, this paper can weave together the disparate connections across spheres of knowledge that help delineate the conditions of our contemporary digital existence.

Keywords: cognition, digital media, knowledge keeping, transactive memory

Procedia PDF Downloads 139
2355 Measurements of Recovery Stress and Recovery Strain of Ni-Based Shape Memory Alloys

Authors: W. J. Kim

Abstract:

The behaviors of the recovery stress and strain of an ultrafine-grained Ni-50.2 at.% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined by a specially designed tensile-testing set up, and the factors that influence the recovery stress and strain were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed based on the experimental data. The recovery strain increased as the yield stress increased. The maximum recovery stress increased with an increase in yield stress. The residual recovery stress was affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.

Keywords: high-ratio differential speed rolling, tensile testing, severe plastic deformation, shape memory alloys

Procedia PDF Downloads 366
2354 Algebraic Coupled Level Set-Volume of Fluid Method with Capillary Pressure Treatment for Surface Tension Dominant Two-Phase Flows

Authors: Majid Haghshenas, James Wilson, Ranganathan Kumar

Abstract:

In this study, an Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method with capillary pressure treatment is proposed for the modeling of two-phase capillary flows. The Volume of Fluid (VOF) method is utilized to incorporate one-way coupling with the Level Set (LS) function in order to further improve the accuracy of the interface curvature calculation and resulting surface tension force. The capillary pressure is determined and treated independently of the hydrodynamic pressure in the momentum balance in order to maintain consistency between cell centered and interpolated values, resulting in a reduction in parasitic currents. In this method, both VOF and LS functions are transported where the new volume fraction determines the interface seed position used to reinitialize the LS field. The Hamilton-Godunov function is used with a second order (in space and time) discretization scheme to produce a signed distance function. The performance of the current methodology has been tested against some common test cases in order to assess the reduction in non-physical velocities and improvements in the interfacial pressure jump. The cases of a static drop, non-linear Rayleigh-Taylor instability and finally a droplets impact on a liquid pool were simulated to compare the performance of the present method to other well-known methods in the area of parasitic current reduction, interface location evolution and overall agreement with experimental results.

Keywords: two-phase flow, capillary flow, surface tension force, coupled LS with VOF

Procedia PDF Downloads 358
2353 Overweight and Neurocognitive Functioning: Unraveling the Antagonistic Relationship in Adolescents

Authors: Swati Bajpai, S. P. K Jena

Abstract:

Background: There is dramatic increase in the prevalence and severity of overweight in adolescents, raising concerns about their psychosocial and cognitive consequences, thereby indicating the immediate need to understand the effects of increased weight on scholastic performance. Although the body of research is currently limited, available results have identified an inverse relationship between obesity and cognition in adolescents. Aim: to examine the association between increased Body Mass Index in adolescents and their neurocognitive functioning. Methods: A case –control study of 28 subjects in the age group of 11-17 years (14 Males and 14 females) was taken on the basis of main inclusion criteria (Body Mass Index). All of them were randomized to (experimental group: overweight) and (control group: normal weighted). A complete neurocognitive assessment was carried out using validated psychological scales namely, Color Progressive Matrices (to assess intelligence); Bender Visual Motor Gestalt Test (Perceptual motor functioning); PGI-Memory Scale for Children (memory functioning) and Malin’s Intelligence Scale Indian Children (verbal and performance ability). Results: statistical analysis of the results depicted that 57% of the experimental group lack in cognitive abilities, especially in general knowledge (99.1±12.0 vs. 102.8±6.7), working memory (91.5±8.4 vs. 93.1±8.7), concrete ability (82.3±11.5 vs. 92.6±1.7) and perceptual motor functioning (1.5±1.0 vs. 0.3±0.9) as compared to control group. Conclusion: Our investigations suggest that weight gain results, at least in part, from a neurological predisposition characterized by reduced executive function, and in turn obesity itself has a compounding negative impact on the brain. Though, larger sample is needed to make more affirmative claims.

Keywords: adolescents, body mass index, neurocognition, obesity

Procedia PDF Downloads 487
2352 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: document analysis, deep learning, multimodal sentiment analysis, natural language processing

Procedia PDF Downloads 164
2351 Finite Element and Split Bregman Methods for Solving a Family of Optimal Control Problem with Partial Differential Equation Constraint

Authors: Mahmoud Lot

Abstract:

In this article, we will discuss the solution of elliptic optimal control problem. First, by using the nite element method, we obtain the discrete form of the problem. The obtained discrete problem is actually a large scale constrained optimization problem. Solving this optimization problem with traditional methods is difficult and requires a lot of CPU time and memory. But split Bergman method converts the constrained problem to an unconstrained, and hence it saves time and memory requirement. Then we use the split Bregman method for solving this problem, and examples show the speed and accuracy of split Bregman methods for solving these types of problems. We also use the SQP method for solving the examples and compare with the split Bregman method.

Keywords: Split Bregman Method, optimal control with elliptic partial differential equation constraint, finite element method

Procedia PDF Downloads 152
2350 An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism.

Keywords: indoor positioning system, wireless sensor networks, measurement delay

Procedia PDF Downloads 482
2349 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load

Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir

Abstract:

Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.

Keywords: airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy

Procedia PDF Downloads 188
2348 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 26
2347 Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction

Authors: Rajendra Kumar

Abstract:

We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect.

Keywords: quantum dots, S-QD-S junction, BCS superconductors, Anderson model

Procedia PDF Downloads 374
2346 The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process

Authors: Djarot B. Darmadi

Abstract:

The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo-Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT.

Keywords: residual stress, ferritic steels, SSPT, coupled-TMM

Procedia PDF Downloads 270
2345 Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA

Authors: Mohamad Khairi Ishak

Abstract:

Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera’s EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system.

Keywords: elliptic curve cryptography, FPGA, key sizes, memory

Procedia PDF Downloads 322