Search results for: statistical literacy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4529

Search results for: statistical literacy

4169 Statistical Shape Analysis of the Human Upper Airway

Authors: Ramkumar Gunasekaran, John Cater, Vinod Suresh, Haribalan Kumar

Abstract:

The main objective of this project is to develop a statistical shape model using principal component analysis that could be used for analyzing the shape of the human airway. The ultimate goal of this project is to identify geometric risk factors for diagnosis and management of Obstructive Sleep Apnoea (OSA). Anonymous CBCT scans of 25 individuals were obtained from the Otago Radiology Group. The airways were segmented between the hard-palate and the aryepiglottic fold using snake active contour segmentation. The point data cloud of the segmented images was then fitted with a bi-cubic mesh, and pseudo landmarks were placed to perform PCA on the segmented airway to analyze the shape of the airway and to find the relationship between the shape and OSA risk factors. From the PCA results, the first four modes of variation were found to be significant. Mode 1 was interpreted to be the overall length of the airway, Mode 2 was related to the anterior-posterior width of the retroglossal region, Mode 3 was related to the lateral dimension of the oropharyngeal region and Mode 4 was related to the anterior-posterior width of the oropharyngeal region. All these regions are subjected to the risk factors of OSA.

Keywords: medical imaging, image processing, FEM/BEM, statistical modelling

Procedia PDF Downloads 514
4168 An Exploratory Study: Mobile Learning as a Means of Promoting Sustainable Learning in the Saudi General Educational Schools via an Activity Theory Lens

Authors: Aiydh Aljeddani

Abstract:

Sustainable learning is an emerging concept that aims at enhancing sustainability literacy and competency in educational contexts. Mobile learning is one of the means increasingly used in sustainable development education nowadays. Studies which have explored this issue in the Saudi educational context so far are rare. Therefore, the current study attempted to explore the current situation of the usage of mobile learning in the Saudi elementary and secondary schools as a means of promoting sustainable learning. It also focused on how mobile learning has been implemented in those schools to promote sustainable learning and what factors have contributed to the success/failure of the implementation of mobile learning and possible ways to improve the current practice. An interpretive approach was followed in this study to gain a thorough understanding of the explored issue in the Saudi educational context using the activity theory as a lens to do so. A qualitative case study methodology in which semi-structured interviews, documents analysis and nominal group were used to gather the data for this study. Two hundred and twenty-nine participants representing several main stakeholders in the educational system took part in this study. Those included six general education schools, head teachers, teachers, students’ parents, educational supervisors, one curriculum designer and academic curriculum specialists. Through the lens of activity theory, the results of the study showed that there were contradictions in the current practice between the elements of the activity system and within each of its elements. Furthermore, several sociocultural factors have influenced both the division of labour and the community's members. These have acted as obstacles which have impeded the usage of mobile learning to promote sustainable learning in this context. It was found that shifting from the current practice to sustainable learning via the usage of mobile learning requires appropriate interrelationship between the different elements of the activity system. The study finally offers a number of recommendations to improve on the current practices and suggests areas for further studies.

Keywords: activity theory, mobile learning, sustainability competency, sustainability literacy, sustainable learning

Procedia PDF Downloads 241
4167 The Efficacy of Video Education to Improve Treatment or Illness-Related Knowledge in Patients with a Long-Term Physical Health Condition: A Systematic Review

Authors: Megan Glyde, Louise Dye, David Keane, Ed Sutherland

Abstract:

Background: Typically patient education is provided either verbally, in the form of written material, or with a multimedia-based tool such as videos, CD-ROMs, DVDs, or via the internet. By providing patients with effective educational tools, this can help to meet their information needs and subsequently empower these patients and allow them to participate within medical-decision making. Video education may have some distinct advantages compared to other modalities. For instance, whilst eHealth is emerging as a promising modality of patient education, an individual’s ability to access, read, and navigate through websites or online modules varies dramatically in relation to health literacy levels. Literacy levels may also limit patients’ ability to understand written education, whereas video education can be watched passively by patients and does not require high literacy skills. Other benefits of video education include that the same information is provided consistently to each patient, it can be a cost-effective method after the initial cost of producing the video, patients can choose to watch the videos by themselves or in the presence of others, and they can pause and re-watch videos to suit their needs. Health information videos are not only viewed by patients in formal educational sessions, but are increasingly being viewed on websites such as YouTube. Whilst there is a lot of anecdotal and sometimes misleading information on YouTube, videos from government organisations and professional associations contain trustworthy and high-quality information and could enable YouTube to become a powerful information dissemination platform for patients and carers. This systematic review will examine the efficacy of video education to improve treatment or illness-related knowledge in patients with various long-term conditions, in comparison to other modalities of education. Methods: Only studies which match the following criteria will be included: participants will have a long-term physical health condition, video education will aim to improve treatment or illness related knowledge and will be tested in isolation, and the study must be a randomised controlled trial. Knowledge will be the primary outcome measure, with modality preference, anxiety, and behaviour change as secondary measures. The searches have been conducted in the following databases: OVID Medline, OVID PsycInfo, OVID Embase, CENTRAL and ProQuest, and hand searching for relevant published and unpublished studies has also been carried out. Screening and data extraction will be conducted independently by 2 researchers. Included studies will be assessed for their risk of bias in accordance with Cochrane guidelines, and heterogeneity will also be assessed before deciding whether a meta-analysis is appropriate or not. Results and Conclusions: Appropriate synthesis of the studies in relation to each outcome measure will be reported, along with the conclusions and implications.

Keywords: long-term condition, patient education, systematic review, video

Procedia PDF Downloads 115
4166 Issues and Problems of Leadership Competencies among Head of Science Panels in Sarawak

Authors: Adawati Suhaili, Kamisah Osman, Mohd Effendi, Ewan Mohd Matore

Abstract:

The global education reform has prompted Malaysia to transform the education system in Malaysia through the Malaysian Education Blueprint (MEB) 2013-2025. This transformation is aimed to achieve the top one-third rank in international assessment. The low achievement of student scientific literacy in TIMMS (Trends in International Mathematics and Science Study ) and PISA (Programme for International Student Assessment) has caused concern to the Ministry Of Education (MOE) despite various reform efforts. Therefore, an alternative action by enhancing the role of the Head of Science Panels (HoSPs) as a key change agent in catalyzing the improvement of student performance should be considered. Highlights of previous studies have shown that subject leadership is able to enhance teacher teaching quality in order to increase student learning. To lead the Science department and guide Science teachers more effectively, HoSPs need to strengthen their leadership skills. However, the issue of weaknesses in the leadership competencies of HoSPs in Malaysia has caused them to lack confidence and ability in leading the Science Department. The main objective of this study is to explore the factors that contribute to the problems faced by HoSPs at Sarawak in their leadership roles. This study used a qualitative design framework and using a semi-structured interview method for data collection. There were six informants involved in the interview consisting of lecturers, Senior Administrative Assistant Teacher and HoSPs. The findings of the study had been identified four main factors that contribute to problems in the leadership competencies of HoSPs in Sarawak, namely leadership practices, leadership structure, academic subjects and school change. The results are significant to the MOE in strengthening the leadership competencies of HoSPs in a more focus for improving the achievement of scientific literacy of students in Malaysia. This study can help improve the Hosps' leadership competencies in Malaysia.

Keywords: issues, problems, Malaysia education blueprint, leadership competencies, head of science panels

Procedia PDF Downloads 199
4165 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
4164 The Effect of Nanoscience and Nanotechnology Education on Preservice Science Teachers' Awareness of Nanoscience and Nanotechnology

Authors: Tuba Senel Zor, Oktay Aslan

Abstract:

With current trends in nanoscience and nanotechnology (NST), scientists have paid much attention to education and nanoliteracy in parallel with the developments on these fields. To understand the advances in NST research requires a population with a high degree of science literacy. All citizens should soon need nanoliteracy in order to navigate some of the important science-based issues faced to their everyday lives. While the fields of NST are advancing rapidly and raising their societal significance, general public’s awareness of these fields has remained at a low level. Moreover, students enrolled different education levels and teachers don’t have awareness at expected level. This problem may be stemmed from inadequate education and training. To remove the inadequacy, teachers have greatest duties and responsibilities. Especially science teachers at all levels need to be made aware of these developments and adequately prepared so that they are able to teach about these advances in a developmentally appropriate manner. If the teachers develop understanding and awareness of NST, they can also discuss the topic with their students. Therefore, the awareness and conceptual understandings of both the teachers who will teach science to students and the students who will be introduced about NST should be increased, and the necessary training should be provided. The aim of this study was to examine the effect of NST education on preservice science teachers’ awareness of NST. The study was designed in one group pre-test post-test quasi-experimental pattern. The study was conducted with 32 preservice science teachers attending the Elementary Science Education Program at a large Turkish university in central Anatolia. NST education was given during five weeks as two hours per week. Nanoscience and Nanotechnology Awareness Questionnaire was used as data collected tool and was implemented for pre-test and post-test. The collected data were analyzed using Statistical package for the Social Science (SPSS). The results of data analysis showed that there was a significant difference (z=6.25, p< .05) on NST awareness of preservice science teachers after implemented NST education. The results of the study indicate that NST education has an important effect for improving awareness of preservice science teachers on NST.

Keywords: awareness level, nanoliteracy, nanoscience and nanotechnology education, preservice science teachers

Procedia PDF Downloads 450
4163 A Brief Study about Nonparametric Adherence Tests

Authors: Vinicius R. Domingues, Luan C. S. M. Ozelim

Abstract:

The statistical study has become indispensable for various fields of knowledge. Not any different, in Geotechnics the study of probabilistic and statistical methods has gained power considering its use in characterizing the uncertainties inherent in soil properties. One of the situations where engineers are constantly faced is the definition of a probability distribution that represents significantly the sampled data. To be able to discard bad distributions, goodness-of-fit tests are necessary. In this paper, three non-parametric goodness-of-fit tests are applied to a data set computationally generated to test the goodness-of-fit of them to a series of known distributions. It is shown that the use of normal distribution does not always provide satisfactory results regarding physical and behavioral representation of the modeled parameters.

Keywords: Kolmogorov-Smirnov test, Anderson-Darling test, Cramer-Von-Mises test, nonparametric adherence tests

Procedia PDF Downloads 445
4162 Exploring the Determinants of Personal Finance Difficulties by Machine Learning: Focus on Socio-Economic and Behavioural Changes Brought by COVID-19

Authors: Brian Tung, Yam Wing Siu, Tsun Se Cheong

Abstract:

Purpose: This research aims to explore how personal and environmental factors, especially the socio-economic changes and behavioral changes fostered by the COVID-19 outbreak pandemic, affect the financial vulnerability of a specific segment of people in financial distress. Innovative research methodology of machine learning will be applied to data collected from over 300 local individuals in Hong Kong seeking counseling or similar services in recent years. Results: First, machine learning has found that too much exposure to digital services and information on digitized services may lead to adverse effects on respondents’ financial vulnerability. Second, the improvement in financial literacy level provides benefits to the financially vulnerable group, especially those respondents who have started with a lower level. Third, serious addiction to digital technology can lead to worsened debt servicing ability. Machine learning also has found a strong correlation between debt servicing situations and income-seeking behavior as well as spending behavior. In addition, if the vulnerable groups are able to make appropriate investments, they can reduce the probability of incurring financial distress. Finally, being too active in borrowing and repayment can result in a higher likelihood of over-indebtedness. Conclusion: Findings can be employed in formulating a better counseling strategy for professionals. Debt counseling services can be more preventive in nature. For example, according to the findings, with a low level of financial literacy, the respondents are prone to overspending and unable to react properly to the e-marketing promotion messages pop-up from digital services or even falling into financial/investment scams. In addition, people with low levels of financial knowledge will benefit from financial education. Therefore, financial education programs could include tech-savvy matters as special features.

Keywords: personal finance, digitization of the economy, COVID-19 pandemic, addiction to digital technology, financial vulnerability

Procedia PDF Downloads 58
4161 The Role and Challenges of Media in the Transformation of Contemporary Nigeria Democracies

Authors: Henry Okechukwu Onyeiwu

Abstract:

The role of media in the transformation of contemporary Nigeria's democracies is multifaceted and profoundly impactful. As Nigeria navigates its complex socio-political landscape, media serves as both a catalyst for democratic engagement and a platform for public discourse. This paper explores the various dimensions through which media influences democracy in Nigeria, including its role in informing citizens, shaping public opinion, and providing a forum for diverse voices. The increasing penetration of social media has revolutionized the political sphere, empowering citizens to participate in governance and hold leaders accountable. However, challenges such as misinformation, censorship, and media bias continue to pose significant threats to democratic integrity. This study critically analyzes the interplay between traditional and new media, highlighting their contributions to electoral processes, civic education, and advocacy for human rights. Ultimately, the findings illustrate that while media is a crucial agent for democratic transformation, its potential can only be realized through a commitment to journalistic integrity and the promotion of media literacy among the Nigerian populace. The media plays a critical role in shaping public democracies in Nigeria, yet it faces a myriad of challenges that hinder its effectiveness. This paper examines the various obstacles confronting media broadcasting in Nigeria, which range from political interference and censorship to issues of professionalism and the proliferation of fake news. Political interference is particularly pronounced, as government entities and political actors often attempt to control narratives, compromising the independence of media outlets. This control often manifests in the form of censorship, where journalists face threats and harassment for reporting on sensitive topics related to governance, corruption, and human rights abuses. Moreover, the rapid rise of social media has introduced a dual challenge; while it offers a platform for citizen engagement and diverse viewpoints, it also facilitates the spread of misinformation and propaganda. The lack of media literacy among the populace exacerbates this issue, as citizens often struggle to discern credible information from false narratives. Additionally, economic constraints deeply affect the sustainability and independence of many broadcasting organizations. Advertisers may unduly influence content, leading to sensationalism over substantive reporting. This paper argues that for media to effectively contribute to Nigerian public democracies, there needs to be a concerted effort to address these challenges. Strengthening journalistic ethics, enhancing regulatory frameworks, and promoting media literacy among citizens are essential steps in fostering a more vibrant and accountable media landscape. Ultimately, this research underscores the necessity of a resilient media ecosystem that can truly support democratic processes, empower citizens, and hold power to account in contemporary Nigeria.

Keywords: media, democracy, socio-political, governance

Procedia PDF Downloads 21
4160 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea

Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das

Abstract:

This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.

Keywords: arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea

Procedia PDF Downloads 134
4159 Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters

Authors: Badreddine Chemali, Boualem Tiliouine

Abstract:

This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated.

Keywords: correlated random damping, linear statistical model, Monte Carlo simulation, uncertainty of dynamic response

Procedia PDF Downloads 280
4158 Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District

Authors: Panpan Xu, Qiying Zhang, Hui Qian

Abstract:

Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, and CO32-), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl-, Na+, Mg2+, and SO42-, and the HCO3- content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality.

Keywords: irrigation water quality, multivariate statistical analysis, groundwater, hydrogeochemical process

Procedia PDF Downloads 141
4157 An Exploration of the Integration of Guided Play With Explicit Instruction in Early Childhood Mathematics

Authors: Anne Tan, Kok-Sing Tang, Audrey Cooke

Abstract:

Play has always been a prominent pedagogy in early childhood. However, there is growing evidence of success in students’ learning using explicit instruction, especially in literacy in the early years. There is also limited research using explicit instruction in early childhood mathematics, and play is usually prominently mentioned. This proposed research aims to investigate the possibilities and benefits of integrating guided play with explicit instruction in early childhood mathematics education. While play has traditionally been a prominent pedagogy in early childhood, there is growing evidence of success in student learning through explicit instruction, particularly in literacy. However, limited research exists on the integration of explicit instruction in early childhood mathematics, where play remains prominently mentioned. This study utilises a multiple case study methodology to gather data and provide immediate opportunities for curriculum improvement. The research will commence with semi-structured interviews to gain insights into educators' background knowledge. Highly structured observations will be conducted to record the frequency and manner in which guided play is integrated with specific elements of explicit instruction during mathematics teaching in early childhood. To enhance the observations, video recordings will be made using cameras with video settings and Microsoft Teams meeting recordings. In addition to interviews and observations, educators will maintain journals and use the Microsoft Teams platform for self-reflection on the integration of guided play and explicit instruction in their classroom practices and experiences. The study participants will include educators with early childhood degrees and students in years one and two. The primary goal of this research is to inform the benefits of integrating two high-impact pedagogies, guided play, and explicit instruction, for enhancing student learning outcomes in mathematics education. By exploring the integration of these pedagogical approaches, this study aims to contribute to the development of effective instructional strategies in early childhood mathematics education.

Keywords: early childhood, early childhood mathematics, early childhood numbers, guided play, play-based learning, explicit instruction

Procedia PDF Downloads 64
4156 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: bootstrap, edgeworth approximation, IID, quantile

Procedia PDF Downloads 159
4155 Introduction of Robust Multivariate Process Capability Indices

Authors: Behrooz Khalilloo, Hamid Shahriari, Emad Roghanian

Abstract:

Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices.

Keywords: multivariate process capability indices, robust M-estimator, outlier, multivariate quality control, statistical quality control

Procedia PDF Downloads 283
4154 Strategic Investment in Infrastructure Development to Facilitate Economic Growth in the United States

Authors: Arkaprabha Bhattacharyya, Makarand Hastak

Abstract:

The COVID-19 pandemic is unprecedented in terms of its global reach and economic impacts. Historically, investment in infrastructure development projects has been touted to boost the economic growth of a nation. The State and Local governments responsible for delivering infrastructure assets work under tight budgets. Therefore, it is important to understand which infrastructure projects have the highest potential of boosting economic growth in the post-pandemic era. This paper presents relationships between infrastructure projects and economic growth. Statistical relationships between investment in different types of infrastructure projects (transit, water and wastewater, highways, power, manufacturing etc.) and indicators of economic growth are presented using historic data between 2002 and 2020 from the U.S. Census Bureau and U.S. Bureau of Economic Analysis (BEA). The outcome of the paper is the comparison of statistical correlations between investment in different types of infrastructure projects and indicators of economic growth. The comparison of the statistical correlations is useful in ranking the types of infrastructure projects based on their ability to influence economic prosperity. Therefore, investment in the infrastructures with the higher rank will have a better chance of boosting the economic growth. Once, the ranks are derived, they can be used by the decision-makers in infrastructure investment related decision-making process.

Keywords: economic growth, infrastructure development, infrastructure projects, strategic investment

Procedia PDF Downloads 171
4153 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 338
4152 R Statistical Software Applied in Reliability Analysis: Case Study of Diesel Generator Fans

Authors: Jelena Vucicevic

Abstract:

Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. This paper will try to introduce another way of calculating reliability by using R statistical software. R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. The R programming environment is a widely used open source system for statistical analysis and statistical programming. It includes thousands of functions for the implementation of both standard and new statistical methods. R does not limit user only to operation related only to these functions. This program has many benefits over other similar programs: it is free and, as an open source, constantly updated; it has built-in help system; the R language is easy to extend with user-written functions. The significance of the work is calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. Seventy generators were studied. For each one, the number of hours of running time from its first being put into service until fan failure or until the end of the study (whichever came first) was recorded. Dataset consists of two variables: hours and status. Hours show the time of each fan working and status shows the event: 1- failed, 0- censored data. Censored data represent cases when we cannot track the specific case, so it could fail or success. Gaining the result by using R was easy and quick. The program will take into consideration censored data and include this into the results. This is not so easy in hand calculation. For the purpose of the paper results from R program have been compared to hand calculations in two different cases: censored data taken as a failure and censored data taken as a success. In all three cases, results are significantly different. If user decides to use the R for further calculations, it will give more precise results with work on censored data than the hand calculation.

Keywords: censored data, R statistical software, reliability analysis, time to failure

Procedia PDF Downloads 401
4151 Pattern Identification in Statistical Process Control Using Artificial Neural Networks

Authors: M. Pramila Devi, N. V. N. Indra Kiran

Abstract:

Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.

Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping

Procedia PDF Downloads 372
4150 The Relationship between 21st Century Digital Skills and the Intention to Start a Digit Entrepreneurship

Authors: Kathrin F. Schneider, Luis Xavier Unda Galarza

Abstract:

In our modern world, few are the areas that are not permeated by digitalization: we use digital tools for work, study, entertainment, and daily life. Since technology changes rapidly, skills must adapt to the new reality, which gives a dynamic dimension to the set of skills necessary for people's academic, professional, and personal success. The concept of 21st-century digital skills, which includes skills such as collaboration, communication, digital literacy, citizenship, problem-solving, critical thinking, interpersonal skills, creativity, and productivity, have been widely discussed in the literature. Digital transformation has opened many economic opportunities for entrepreneurs for the development of their products, financing possibilities, and product distribution. One of the biggest advantages is the reduction in cost for the entrepreneur, which has opened doors not only for the entrepreneur or the entrepreneurial team but also for corporations through intrapreneurship. The development of students' general literacy level and their digital competencies is crucial for improving the effectiveness and efficiency of the learning process, as well as for students' adaptation to the constantly changing labor market. The digital economy allows a free substantial increase in the supply share of conditional and also innovative products; this is mainly achieved through 5 ways to reduce costs according to the conventional digital economy: search costs, replication, transport, tracking, and verification. Digital entrepreneurship worldwide benefits from such achievements. There is an expansion and democratization of entrepreneurship thanks to the use of digital technologies. The digital transformation that has been taking place in recent years is more challenging for developing countries, as they have fewer resources available to carry out this transformation while offering all the necessary support in terms of cybersecurity and educating their people. The degree of digitization (use of digital technology) in a country and the levels of digital literacy of its people often depend on the economic level and situation of the country. Telefónica's Digital Life Index (TIDL) scores are strongly correlated with country wealth, reflecting the greater resources that richer countries can contribute to promoting "Digital Life". According to the Digitization Index, Ecuador is in the group of "emerging countries", while Chile, Colombia, Brazil, Argentina, and Uruguay are in the group of "countries in transition". According to Herrera Espinoza et al. (2022), there are startups or digital ventures in Ecuador, especially in certain niches, but many of the ventures do not exceed six months of creation because they arise out of necessity and not out of the opportunity. However, there is a lack of relevant research, especially empirical research, to have a clearer vision. Through a self-report questionnaire, the digital skills of students will be measured in an Ecuadorian private university, according to the skills identified as the six 21st-century skills. The results will be put to the test against the variable of the intention to start a digital venture measured using the theory of planned behavior (TPB). The main hypothesis is that high digital competence is positively correlated with the intention to start digital entrepreneurship.

Keywords: new literacies, digital transformation, 21st century skills, theory of planned behavior, digital entrepreneurship

Procedia PDF Downloads 105
4149 Chemical Variability in the Essential Oils from the Leaves and Buds of Syzygium Species

Authors: Rabia Waseem, Low Kah Hin, Najihah Mohamed Hashim

Abstract:

The variability in the chemical components of the Syzygium species essential oils has been evaluated. The leaves of Syzygium species have been collected from Perak, Malaysia. The essential oils extracted by using the conventional Hydro-distillation extraction procedure and analyzed by using Gas chromatography System attached with Mass Spectrometry (GCMS). Twenty-seven constituents were found in Syzygium species in which the major constituents include: α-Pinene (3.94%), α-Thujene (2.16%), α-Terpineol (2.95%), g-Elemene (2.89%) and D-Limonene (14.59%). The aim of this study was the comparison between the evaluated data and existing literature to fortify the major variability through statistical analysis.

Keywords: chemotaxonomy, cluster analysis, essential oil, medicinal plants, statistical analysis

Procedia PDF Downloads 312
4148 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures

Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat

Abstract:

In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.

Keywords: association rules, clustering, similarity measure, statistical approaches

Procedia PDF Downloads 320
4147 Underrepresentation of Right Middle Cerebral Infarct: A Statistical Parametric Mapping

Authors: Wi-Sun Ryu, Eun-Kee Bae

Abstract:

Prior studies have shown that patients with right hemispheric stroke are likely to seek medical service compared with those with left hemispheric stroke. However, the underlying mechanism for this phenomenon is unknown. In the present study, we generated lesion probability maps in a patient with right and left middle cerebral artery infarct and statistically compared. We found that precentral gyrus-Brodmann area 44, a language area in the left hemisphere - involvement was significantly higher in patients with left hemispheric stroke. This finding suggests that a language dysfunction was more noticeable, thereby taking more patients to hospitals.

Keywords: cerebral infarct, brain MRI, statistical parametric mapping, middle cerebral infarct

Procedia PDF Downloads 338
4146 MEAL Project–Modifying Eating Attitudes and Actions through Learning

Authors: E. Oliver, A. Cebolla, A. Dominguez, A. Gonzalez-Segura, E. de la Cruz, S. Albertini, L. Ferrini, K. Kronika, T. Nilsen, R. Baños

Abstract:

The main objective of MEAL is to develop a pedagogical tool aimed to help teachers and nutritionists (students and professionals) to acquire, train, promote and deliver to children basic nutritional education and healthy eating behaviours competencies. MEAL is focused on eating behaviours and not only in nutritional literacy, and will use new technologies like Information and Communication Technologies (ICTs) and serious games (SG) platforms to consolidate the nutritional competences and habits.

Keywords: nutritional education, pedagogical ICT platform, serious games, training course

Procedia PDF Downloads 526
4145 Assessing Sexual and Reproductive Health Literacy and Engagement Among Refugee and Immigrant Women in Massachusetts: A Qualitative Community-Based Study

Authors: Leen Al Kassab, Sarah Johns, Helen Noble, Nawal Nour, Elizabeth Janiak, Sarrah Shahawy

Abstract:

Introduction: Immigrant and refugee women experience disparities in sexual and reproductive health (SRH) outcomes, partially as a result of barriers to SRH literacy and to regular healthcare access and engagement. Despite the existing data highlighting growing needs for culturally relevant and structurally competent care, interventions are scarce and not well-documented. Methods: In this IRB-approved study, we used a community-based participatory research approach, with the assistance of a community advisory board, to conduct a qualitative needs assessment of SRH knowledge and service engagement with immigrant and refugee women from Africa or the Middle East and currently residing in Boston. We conducted a total of nine focus group discussions (FGDs) in partnership with medical, community, and religious centers, in six languages: Arabic, English, French, Somali, Pashtu, and Dari. A total of 44 individuals participated. We explored migrant and refugee women’s current and evolving SRH care needs and gaps, specifically related to the development of interventions and clinical best practices targeting SRH literacy, healthcare engagement, and informed decision-making. Recordings of the FGDs were transcribed verbatim and translated by interpreter services. We used open coding with multiple coders who resolved discrepancies through consensus and iteratively refined our codebook while coding data in batches using Dedoose software. Results: Participants reported immigrant adaptation experiences, discrimination, and feelings of trust, autonomy, privacy, and connectedness to family, community, and the healthcare system as factors surrounding SRH knowledge and needs. The context of previously learned SRH knowledge was commonly noted to be in schools, at menstruation, before marriage, from family members, partners, friends, and online search engines. Common themes included empowering strength drawn from religious and cultural communities, difficulties bridging educational gaps with their US- born daughters, and a desire for more SRH education from multiple sources, including family, health care providers, and religious experts & communities. Regarding further SRH education, participants’ preferences varied regarding ideal platform (virtual vs. in-person), location (in religious and community centers or not), smaller group sizes, and the involvement of men. Conclusions: Based on these results, empowering SRH initiatives should include both community and religious center-based, as well as clinic-based, interventions. Interventions should be composed of frequent educational workshops in small groups involving age-grouped women, daughters, and (sometimes) men, tailored SRH messaging, and the promotion of culturally, religiously, and linguistically competent care.

Keywords: community, immigrant, religion, sexual & reproductive health, women's health

Procedia PDF Downloads 127
4144 Supporting Women's Economic Development in Rural Papua New Guinea

Authors: Katja Mikhailovich, Barbara Pamphilon

Abstract:

Farmer training in Papua New Guinea has focused mainly on technology transfer approaches. This has primarily benefited men and often excluded women whose literacy, low education and role in subsistence crops has precluded participation in formal training. The paper discusses an approach that uses both a brokerage model of agricultural extension to link smallholders with private sector agencies and an innovative family team’s approach that aims to support the economic empowerment of women in families and encourages sustainable and gender equitable farming and business practices.

Keywords: women, economic development, agriculture, training

Procedia PDF Downloads 391
4143 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods

Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim

Abstract:

Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.

Keywords: economical analysis, probability of failure, retaining walls, statistical analysis

Procedia PDF Downloads 406
4142 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 345
4141 Lessons Learned in Implementing Programs to Delay Diabetic Nephropathy Management in Primary Health Care: Case Study in Sakon Nakhon Province

Authors: Sasiwan Tassana-iem, Sumattana Glangkarn

Abstract:

Diabetic nephropathy is a major complication in diabetic patients whom as the glomerular filtration rate falls. The affects their quality of life and results in loss of money for kidney replacement therapy costs. There is an existing intervention, but the prevalence remains high, thus this research aims to study lessons learned in implementing programs to delay diabetic nephropathy management in primary health care. Method: The target settings are, 24 sub-district health promoting hospital in Sakon Nakhon province. Participants included the health care professionals, head of the sub-district health promoting hospital and the person responsible for managing diabetic nephropathy in each hospital (n= 50). There are 400 patients with diabetes mellitus in an area. Data were collected using questionnaires, patient records data, interviews and focus groups and analyzed by statistics and content analysis. Result: Reflection of participants that the interventions to delay diabetic nephropathy management in each area, the Ministry of Public Health has a policy to screen and manage this disease. The implementing programs aimed to provide health education, innovative teaching media used in communication to educate. Patients and caregivers had misunderstanding about the actual causes and prevention of this disease and how to apply knowledge suitable for daily life. Conclusion: The obstacles to the success of the implementing programs to delay diabetic nephropathy management in primary health care were most importantly, the patient needs self-care and should be evaluated for health literacy. This is crucial to promote health literacy; to access and understand health information as well to decide their health-related choices based on health information which will promote and maintain a good health. This preliminary research confirms that situation of diabetic nephropathy still exists. The results of this study will lead to the development of delay in diabetic nephropathy implementation among patients in the province studied.

Keywords: diabetic nephropathy, chronic kidney disease, primary health care, implementation

Procedia PDF Downloads 200
4140 Confidence Intervals for Process Capability Indices for Autocorrelated Data

Authors: Jane A. Luke

Abstract:

Persistent pressure passed on to manufacturers from escalating consumer expectations and the ever growing global competitiveness have produced a rapidly increasing interest in the development of various manufacturing strategy models. Academic and industrial circles are taking keen interest in the field of manufacturing strategy. Many manufacturing strategies are currently centered on the traditional concepts of focused manufacturing capabilities such as quality, cost, dependability and innovation. Process capability indices was conducted assuming that the process under study is in statistical control and independent observations are generated over time. However, in practice, it is very common to come across processes which, due to their inherent natures, generate autocorrelated observations. The degree of autocorrelation affects the behavior of patterns on control charts. Even, small levels of autocorrelation between successive observations can have considerable effects on the statistical properties of conventional control charts. When observations are autocorrelated the classical control charts exhibit nonrandom patterns and lack of control. Many authors have considered the effect of autocorrelation on the performance of statistical process control charts. In this paper, the effect of autocorrelation on confidence intervals for different PCIs was included. Stationary Gaussian processes is explained. Effect of autocorrelation on PCIs is described in detail. Confidence intervals for Cp and Cpk are constructed for PCIs when data are both independent and autocorrelated. Confidence intervals for Cp and Cpk are computed. Approximate lower confidence limits for various Cpk are computed assuming AR(1) model for the data. Simulation studies and industrial examples are considered to demonstrate the results.

Keywords: autocorrelation, AR(1) model, Bissell’s approximation, confidence intervals, statistical process control, specification limits, stationary Gaussian processes

Procedia PDF Downloads 388