Search results for: protective coatings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1233

Search results for: protective coatings

873 The Balancing of the Parental Responsibilities and Right and the Best Interest of the Child within the Parent-Child Relationship

Authors: R. Prinsloo

Abstract:

Amniotic fluid stem cells (AFSC) have been shown to contribute towards the amelioration of Acute Renal Failure (ARF), but the mechanisms underlying the renoprotective effect are largely unknown. Therefore, the main goal of the current study was to evaluate the therapeutic efficacy of AFSC in a cisplatin-induced rat model of ARF and to investigate the underlying mechanisms responsible for its renoprotective effect. To study the therapeutic efficacy of AFSC, ARF was induced in Wistar rats by an intra-peritoneal injection of cisplatin, and five days after administration, the rats were randomized into two groups and injected with either AFSC or normal saline intravenously. On day 8 and 12 after cisplatin injection, i.e., day 3 and day7 post-therapy respectively, the blood biochemical parameters, histopathological changes, apoptosis, and expression of pro-apoptotic, anti-apoptotic and autophagy-related proteins in renal tissues were studied in both groups of rats. Administration of AFSC in ARF rats resulted in improvement of renal function and attenuation of renal damage as reflected by significant decrease in blood urea nitrogen, serum creatinine levels, tubular cell apoptosis as assessed by Bax/Bcl2 ratio, and expression of the pro-apoptotic proteins viz. PUMA, Bax, cleaved caspase-3 and cleaved caspase-9 as compared to saline-treated group. Furthermore, in the AFSC-treated group as compared to saline-treated group, there was a significant increase in the activation of autophagy as evident by increased expression of LC3-II, ATG5, ATG7, Beclin1 and phospho-AMPK levels with a concomitant decrease in phospho-p70S6K and p62 expression levels. To further confirm whether the protective effects of AFSC on cisplatin-induced apoptosis were dependent on autophagy, chloroquine, an autophagy inhibitor was administered by the intra-peritoneal route. Chloroquine administration led to significant reduction in the anti-apoptotic effects of the AFSC therapy and further deterioration in the renal structure and function caused by cisplatin. Collectively, our results put forth that AFSC ameliorates cisplatin-induced ARF through induction of autophagy and inhibition of apoptosis. Furthermore, the protective effects of AFSC were blunted by chloroquine, highlighting that activation of autophagy is an important mechanism of action for the protective role of AFSC in cisplatin-induced renal injury.

Keywords: best interest of the child, children's rights, parent and child relationship, parental responsibilities and rights

Procedia PDF Downloads 81
872 Simulation the Effect of Temperature on the Residual Stress in Shot Peening Process Using FEM Method

Authors: M. Jalali Azizpour, H. Mohammadi Majd, A.R. Aboudi Asl, D. Sajedipour, V. Tawaf

Abstract:

Sandblasting is a generally used surface treatment technique to improve the residual stress and adhesion of coatings to substrate. The goal of this work is to study the effect of temperature on the residual stress in sandblasting AISI1045 substrate. For this purpose a two dimensional axisymmetric model of shot impacting on an AISI 1045 disc was generated using ABAQUS version 6.10. The result shows for sandblasting temperature there is an optimum condition. In addition there are other effective factors that influence the fatigue life of parts.

Keywords: modeling, shot peen, residual stress, temperature

Procedia PDF Downloads 564
871 Eugenol Effects on Metabolic Syndrome Induced Liver Damages

Authors: Fatemeh Kourkinejad Gharaei, Tahereh Safari, Zahra Saebinasab

Abstract:

Metabolic syndrome (MetS) is a set of risk factors associated with cardiovascular diseases, atherosclerosis, and type 2 diabetes. Nonalcoholic fatty liver disease (NAFLD) is the most important liver disorder in metabolic syndrome. High fructose consumption increases the risk of NAFLD. Eugenol shows anti-thrombotic, insulin-sensitive, fat-reducing effects. This study was designed to investigate the protective role of eugenol in NAFLD caused by metabolic syndrome. Methods: Thirty male Wistar rats were randomly divided into five groups; group 1, drinking water intake animals; group 2, fructose, group 3, fructose+eugenol solvent; group 4, fructose+ eugenol 50mg/kg and group 5, fructose+ eugenol 100mg/kg. At the end of the experiment, after 12 hours of fasting and under anesthesia, blood samples were taken for measurement of fast blood glucose (FBS), SGOT, AGPT, LDL, HDL, cholesterol, triglyceride. Results: FBG significantly increased in group 2 compared to group 1 (p < 0.001); however, it significantly decreased in groups 4 and 5 compared to group 2 (p < 0.05). SGOT and SGPT levels significantly increased in group 2 compared to drinking water alone (p < 0.001). However, SGOT and SGPT levels significantly decreased in groups 4 and 5. MDA and LTDS significantly increased in group 2 compared with drinking water alone (p < 0.01), while MDA and LTDS decreased in 4 and 5 groups compared to group 2 (p < 0.05), which confirms the pathology results related to the liver damage. Conclusion: Eugenol has protective effects on the liver and fat accumulation in liver cells.

Keywords: eugenol, fructose, metabolic syndrome, nonalcoholic fatty liver disease

Procedia PDF Downloads 100
870 Filtration Efficacy of Reusable Full-Face Snorkel Masks for Personal Protective Equipment

Authors: Adrian Kong, William Chang, Rolando Valdes, Alec Rodriguez, Roberto Miki

Abstract:

The Pneumask consists of a custom snorkel-specific adapter that attaches a snorkel-port of the mask to a 3D-printed filter. This full-face snorkel mask was designed for use as personal protective equipment (PPE) during the COVID-19 pandemic when there was a widespread shortage of PPE for medical personnel. Various clinical validation tests have been conducted, including the sealing capability of the mask, filter performance, CO2 buildup, and clinical usability. However, data regarding the filter efficiencies of Pneumask and multiple filter types have not been determined. Using an experimental system, we evaluated the filtration efficiency across various masks and filters during inhalation. Eighteen combinations of respirator models (5 P100 FFRs, 4 Dolfino Masks) and filters (2091, 7093, 7093CN, BB50T) were evaluated for their exposure to airborne particles sized 0.3 - 10.0 microns using an electronic airborne particle counter. All respirator model combinations provided similar performance levels for 1.0-micron, 3.0-micron, 5.0-micron, 10.0-microns, with the greatest differences in the 0.3-micron and 0.5-micron range. All models provided expected performances against all particle sizes, with Class P100 respirators providing the highest performance levels across all particle size ranges. In conclusion, the modified snorkel mask has the potential to protect providers who care for patients with COVID-19 from increased airborne particle exposure.

Keywords: COVID-19, PPE, mask, filtration, efficiency

Procedia PDF Downloads 144
869 Protective Potential of Hyperhalophilic Diatoms Extract Against Lead Induced Oxidative Stress in Rats and Human HepG2 and HEK293 Cells Line

Authors: Wassim Guermazi, Saoussan Boukhris, Neila Annabi Trabelsi, Tarek Rebai, Alya Sellami-Kamoun, Habib Ayadi

Abstract:

This work investigates the protective effects of the microalga Halamphora sp. extract (H. Ext) as a natural product on lead-intoxicated liver and kidney human cells in vitro and in vivo on rats wistar. HepG2 cells line derived from human hepatocellular carcinoma and HEK293 cells line derived from human embryonic kidney were used for the in vitro study. The analysis of the fatty acids methyl esters of the extract was performed by a GC/MS. Four groups of rats, each of which was composed of six animals, were used for the in vivo experiment. The pretreatment of HepG2 and HEK293 cells line with the extract (100 µg mL-1) significantly (p < 0.05) protected against cytotoxicity induced by lead exposure. In vivo, the biochemical parameters in serum, namely malondialdehyde level (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities, were measured in supernatants of organ homogenates. H. Ext was found to be rich in fatty acids, essentially palmitic and palmitoleic accounting respectively 29.46% and 42.07% of total fatty acids. Both in vitro and in vivo, the co-treatment with H. Ext allowed the protection of the liver and kidney cells structure, as well as the significant preservation of normal antioxidant and biochemical parameters in rats. Halamphora extract rich in fatty acids has been proven to be effective in protection against Pb-induced toxicity.

Keywords: microalga extract, human cells line, fatty acid, lead exposure, oxidative stress, rats

Procedia PDF Downloads 62
868 Cardiopulmonary Resuscitation Performance Efficacy While Wearing a Powered Air-Purifying Respirator

Authors: Jun Young Chong, Seung Whan Kim

Abstract:

Introduction: The use of personal protective equipment for respiratory infection control in cardiopulmonary resuscitation (CPR) is a physical burden to healthcare providers. It matters how long CPR quality according to recommended guidelines can be maintained under these circumstances. It was investigated whether chest compression time was appropriate for a 2-minute shift and how long it was maintained in accordance with the guidelines under such conditions. Methods: This prospective crossover simulation study was performed at a single center from September 2020 to October 2020. Five indicators of CPR quality were measured during the first and second sessions of the study period. All participants wore a Level D powered air-purifying respirator (PAPR), and the experiment was conducted using a Resusci Anne manikin, which can measure the quality of chest compressions. Each participant conducted two sessions. In session one, 2-minutes of chest compressions followed by a 2-minute rest was repeated twice; in session two, 1-minute of chest compressions followed by a 1-minute rest was repeated four times. Results: All 34 participants completed the study. The deep and sufficient compression rate was 65.9 ± 13.1 mm in the 1-minute shift group and 61.5 ± 30.5 mm in the 2-minute shift group. The mean depth was 52.8 ±4.3 mm in the 1-minute shift group and 51.0 ± 6.1 mm in the 2-minute shift group. In these two values, there was a statistically significant difference between the two sessions. There was no statistically significant difference in the other CPR quality values. Conclusions: It was suggested that the different standard of current 2-minute to 1-minute cycles due to a significant reduction in the quality of chest compression in cases of CPR with PAPR.

Keywords: cardiopulmonary resuscitation, chest compression, personal protective equipment, powered air-purifying respirator

Procedia PDF Downloads 96
867 Factors That Contribute to Noise Induced Hearing Loss Amongst Employees at the Platinum Mine in Limpopo Province, South Africa

Authors: Livhuwani Muthelo, R. N. Malema, T. M. Mothiba

Abstract:

Long term exposure to excessive noise in the mining industry increases the risk of noise induced hearing loss, with consequences for employee’s health, productivity and the overall quality of life. Objective: The objective of this study was to investigate the factors that contribute to Noise Induced Hearing Loss amongst employees at the Platinum mine in the Limpopo Province, South Africa. Study method: A qualitative, phenomenological, exploratory, descriptive, contextual design was applied in order to explore and describe the contributory factors. Purposive non-probability sampling was used to select 10 male employees who were diagnosed with NIHL in the year 2014 in four mine shafts, and 10 managers who were involved in a Hearing Conservation Programme. The data were collected using semi-structured one-on-one interviews. A qualitative data analysis of Tesch’s approach was followed. Results: The following themes emerged: Experiences and challenges faced by employees in the work environment, hearing protective device factors and management and leadership factors. Hearing loss was caused by partial application of guidelines, policies, and procedures from the Department of Minerals and Energy. Conclusion: The study results indicate that although there are guidelines, policies, and procedures available, failure in the implementation of one element will affect the development and maintenance of employees hearing mechanism. It is recommended that the mine management should apply the guidelines, policies, and procedures and promptly repair the broken hearing protective devices.

Keywords: employees, factors, noise induced hearing loss, noise exposure

Procedia PDF Downloads 99
866 The Lived Experience of Risk and Protective Contexts of Blind Successful University Students in Sidist Kilo Campus

Authors: Zelalem Markos Borko

Abstract:

The quality of life of people with blindness is significantly influenced by the level of resilience they possess. A qualitative approach of the descriptive phenomenological design was employed to address basic study objectives. The researcher purposely selected three blind graduate students from Sidist Kilo Campus and conducted a semi-structured interview to gather data. Data were analyzed by using thematic coding techniques. The present study found that personal characteristics such as commitment, living hope, motivation, positive self-esteem, self-confidence, and communication have shaped resiliency for successful university students with visual disabilities. The finding showed that the school environment is the place in which blind students had developed/experienced social, psychological, and economical competency and hope for their academic and entire life success. Furthermore, the finding showed that blind students had experienced individual, family, school, and community-related risks in the success track. Therefore, governmental and non-governmental organizations should provide training for students with visual impairments that focus on the individual traits that shape resilience for academic success, such as commitment, living hope, motivation, positive self-esteem, self-confidence, and communication and also community-oriented training should be to break the social stigma and discriminations for the individuals with the visual impairment.

Keywords: blind students, risk and protective factors, lived experience, success

Procedia PDF Downloads 46
865 Protective Effects of Urtica dioica Seed Extract in Aflatoxicosis: Histopathological and Biochemical Findings

Authors: Ahmet Uyar, Zabit Yener, Abdulahad Dogan

Abstract:

(1). The ameliorative potential and antioxidant capacity of an extract of Urtica dioica seeds (UDS) were investigated using histopathological changes in liver and kidney of broiler, measuring serum marker enzymes, antioxidant defence systems and lipid peroxidation (malondialdehyde (MDA)) content in various tissues of broilers exposed to aflatoxin (AF). (2). A total of 32 broilers were divided randomly into 4 groups: control, UDS extract-treated, AF-treated and AF+UDS extract-treated. Broilers in control and UDS extract-treated groups were fed on a diet without AF. The AF-treated group and AF+UDS extract-treated groups were treated with an estimated 1 mg total AF/kg feed. The AF+UDS extract groups received in addition 30 ml UDS extract/kg diet for 21 days. (3). The AF-treated group had significantly decreased body weight gain when compared to the other groups. (4). Biochemical analysis showed a small increase in the concentrations of serum aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase and lactate dehydrogenase in the AF-treated group compared to that of the control group, whereas concentrations of these enzymes were decreased in the AF+UDS group compared to that of the AF-treated group. (5). Administration of supplementary UDS extract helped restore the AF-induced increase in MDA and reduced the antioxidant system towards normality, particularly in the liver, brain, kidney and heart. Hepatorenal protection by UDS extracts was further supported by the almost normal histology in AF +UDS extract-treated group as compared to the degenerative changes in the AF-treated broilers. (6). It was concluded that UDS extract has a protective hepatorenal effect in broilers affected by aflatoxicosis, probably acting by promoting the antioxidative defence systems.

Keywords: aflatoxicosis, biochemistry, broiler, histopathology, Urtica dioica seed extract

Procedia PDF Downloads 313
864 DNA Prime/MVTT Boost Enhances Broadly Protective Immune Response against Mosaic HIV-1 Gag

Authors: Wan Liu, Haibo Wang, Cathy Huang, Zhiwu Tan, Zhiwei Chen

Abstract:

The tremendous diversity of HIV-1 has been a major challenge for an effective AIDS vaccine development. Mosaic approach presents the potential for vaccine design aiming for global protection. The mosaic antigen of HIV-1 Gag allows antigenic breadth for vaccine-elicited immune response against a wider spectrum of viral strains. However, the enhancement of immune response using vaccines is dependent on the strategy used. Heterologous prime/boost regimen has been shown to elicit high levels of immune responses. Here, we investigated whether priming using plasmid DNA with electroporation followed by boosting with the live replication-competent modified vaccinia virus vector TianTan (MVTT) combined with the mosaic antigenic sequence could elicit a greater and broader antigen-specific response against HIV-1 Gag in mice. When compared to DNA or MVTT alone, or MVTT/MVTT group, DNA/MVTT group resulted in coincidentally high frequencies of broadly reactive, Gag-specific, polyfunctional, long-lived, and cytotoxic CD8+ T cells and increased anti-Gag antibody titer. Meanwhile, the vaccination could upregulate PD-1+, and Tim-3+ CD8+ T cell, myeloid-derived suppressive cells and Treg cells to balance the stronger immune response induced. Importantly, the prime/boost vaccination could help control the EcoHIV and mesothelioma AB1-gag challenge. The stronger protective Gag-specific immunity induced by a Mosaic DNA/MVTT vaccine corroborate the promise of the mosaic approach, and the potential of two acceptably safe vectors to enhance anti-HIV immunity and cancer prevention.

Keywords: DNA/MVTT vaccine, EcoHIV, mosaic antigen, mesothelioma AB1-gag

Procedia PDF Downloads 221
863 Histopathological and Biochemical Investigations of Protective Role of Honey in Rats with Experimental Aflatoxicosis

Authors: Turan Yaman, Zabit Yener, Ismail Celik

Abstract:

The aim of this study was to investigate the antioxidant properties and protective role of honey, considered a part of traditional medicine, against carcinogen chemical aflatoxin (AF) exposure in rats, which were evaluated by histopathological changes in liver and kidney, measuring level of serum marker enzymes [aspartate aminotransferase (AST), alanin aminotransferase (ALT), gamma glutamil transpeptidase (GGT)], antioxidant defense systems [Reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)], and lipid peroxidation content in liver, erythrocyte, brain, kidney, heart and lungs. For this purpose, a total of eighteen healthy Sprague-Dawley rats were randomly allocated into three experimental groups: A (Control), B (AF-treated) and C (AF+honey-treated). While rats in group A were fed with a diet without AF, B, and C groups received 25 µg of AF/rat/day, where C group additionally received 1 mL/kg of honey by gavage for 90 days. At the end of the 90-day experimental period, we found that the honey supplementation decreased the lipid peroxidation and the levels of enzyme associated with liver damage, increased enzymatic and non-enzymatic antioxidants in the AF+honey-treated rats. Hepatoprotective and nephroprotective effects of honey is further substantiated by showing almost normal histological architecture in AF+honey-treated group, compared to degenerative changes in the liver and kidney of AF-treated rats. Additionally, honey supplementation ameliorated antioxidant defense systems and lipid peroxidation content in other tissues of AF+honey-treated rats. In conclusion, the present study indicates that honey has a hepatoprotective and nephroprotective effect in rats with experimental aflatoxicosis due to its antioxidant activity.

Keywords: aflatoxicosis, honey, histopathology, malondialdehyde, antioxidant, rat

Procedia PDF Downloads 308
862 Effects of Surface Textures and Chemistries on Wettability

Authors: Dipti Raj, Himanshu Mishra

Abstract:

Wetting of a solid surface by a liquid is an extremely common yet subtle phenomenon in natural and applied sciences. A clear understanding of both short and long-term wetting behaviors of surfaces is essential for creating robust anti-biofouling coatings, non-wetting textiles, non-fogging mirrors, and preventive linings against dirt and icing. In this study, silica beads (diameter, D ≈ 100 μm) functionalized using different silane reagents were employed to modify the wetting characteristics of smooth polydimethylsiloxane (PDMS) surfaces. Resulting composite surfaces were found to be super-hydrophobic, i.e. contact angle of water,

Keywords: contact angle, Cassie-Baxter, PDMS, silica, texture, wetting

Procedia PDF Downloads 226
861 Application of Electrochemical Impedance Spectroscopy to Monitor the Steel/Soil Interface During Cathodic Protection of Steel in Simulated Soil Solution

Authors: Mandlenkosi George Robert Mahlobo, Tumelo Seadira, Major Melusi Mabuza, Peter Apata Olubambi

Abstract:

Cathodic protection (CP) has been widely considered a suitable technique for mitigating corrosion of buried metal structures. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. The aim of this study was to investigate the evolution of the electrochemical processes at the steel/soil interface during the application of CP on steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for 4 days before applying CP for a further 11 days. A previously modified non-destructive voltammetry technique was applied before and after the application of CP to measure the corrosion rate. Electrochemical impedance spectroscopy (EIS), in combination with mathematical modeling through equivalent electric circuits, was applied to determine the electrochemical behavior at the steel/soil interface. The measured corrosion rate was found to have decreased from 410 µm/yr to 8 µm/yr between days 5 and 14 because of the applied CP. Equivalent electrical circuits were successfully constructed and used to adequately model the EIS results. The modeling of the obtained EIS results revealed the formation of corrosion products via a mixed activation-diffusion mechanism during the first 4 days, while the activation mechanism prevailed in the presence of CP, resulting in a protective film. The x-ray diffraction analysis confirmed the presence of corrosion products and the predominant protective film corresponding to the calcareous deposit.

Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, EIS

Procedia PDF Downloads 30
860 Protective Effect of Levetiracetam on Aggravation of Memory Impairment in Temporal Lobe Epilepsy by Phenytoin

Authors: Asher John Mohan, Krishna K. L.

Abstract:

Objectives: (1) To assess the extent of memory impairment induced by Phenytoin (PHT) at normal and reduced dose on temporal lobe epileptic mice. (2) To evaluate the protective effect of Levetiracetam (LEV) on aggravation of memory impairment in temporal lobe epileptic mice by PHT. Materials and Methods: Albino mice of either sex (n=36) were used for the study for a period of 64 days. Convulsions were induced by intraperitoneal administration of pilocarpine 280 mg/kg on every 6th day. Radial arm maze (RAM) was employed to evaluate the memory impairment activity on every 7th day. The anticonvulsant and memory impairment activity were assessed in PHT normal and reduced doses both alone and in combination with LEV. RAM error scores and convulsive scores were the parameters considered for this study. Brain acetylcholine esterase and glutamate were determined along with histopathological studies of frontal cortex. Results: Administration of PHT for 64 days on mice has shown aggravation of memory impairment activity on temporal lobe epileptic mice. Although the reduction in PHT dose was found to decrease the degree of memory impairment the same decreased the anticonvulsant potency. The combination with LEV not only brought about the correction of impaired memory but also replaced the loss of potency due to the reduction of the dose of the antiepileptic drug employed. These findings were confirmed with enzyme and neurotransmitter levels in addition to histopathological studies. Conclusion: This study thus builds a foundation in combining a nootropic anticonvulsant with an antiepileptic drug to curb the adverse effect of memory impairment associated with temporal lobe epilepsy. However further extensive research is a must for the practical incorporation of this approach into disease therapy.

Keywords: anti-epileptic drug, Phenytoin, memory impairment, Pilocarpine

Procedia PDF Downloads 292
859 Geophysical and Laboratory Evaluation of Aquifer Position, Aquifer Protective Capacity and Groundwater Quality in Selected Dumpsites in Calabar Municipal Local Government Area, South Eastern Nigeria

Authors: Egor Atan Obeten, Abong Augustine Agwul, Bissong A. Samson

Abstract:

The position of the aquifer, its protective capability, and the quality of the groundwater beneath the dumpsite were all investigated. The techniques employed were laboratory, tritium tagging, electrical resistivity tomography (ERT), and vertical electrical sounding (VES). With a maximum electrode spacing of 500 meters, fifteen VES stations were used, and IPI2win software was used to analyze the data collected. The resistivity map of the dumpsite was determined by deploying six ERT stations for the 2 D survey. To ascertain the degree of soil infiltration beneath the dumpsite, the tritium tagging method was used. Using a conventional laboratory procedure, groundwater samples were taken from neighboring boreholes and examined. The findings showed that there were three to five geoelectric layers, with the aquifer position being inferred to be between 24.2 and 75.1 meters deep in the third, fourth, and fifth levels. Siemens with values in the range of 0.0235 to 0.1908 for the load protection capacity were deemed to be, at most, weakly and badly protected. The obtained porosity values ranged from 44.45 to 89.75. Strong calculated values for transmissivity and porosity indicate a permeable aquifer system with considerable storativity. The area has an infiltration value between 8 and 22 percent, according to the results of the tritium tagging technique, which was used to evaluate the level of infiltration from the dumpsite. Groundwater samples that have been analyzed reveal levels of NO2, DO, Pb2+, magnesium, and cadmium that are higher than what the NSDWQ has approved. Overall analysis of the results from the above-described methodologies shows that the study area's aquifer system is porous and that contaminants will circulate through it quickly if they are contaminated.

Keywords: aquifer, transmissivity, dumpsite, groundwater

Procedia PDF Downloads 21
858 Amniotic Fluid Stem Cells Ameliorate Cisplatin-Induced Acute Renal Failure through Autophagy Induction and Inhibition of Apoptosis

Authors: Soniya Nityanand, Ekta Minocha, Manali Jain, Rohit Anthony Sinha, Chandra Prakash Chaturvedi

Abstract:

Amniotic fluid stem cells (AFSC) have been shown to contribute towards the amelioration of Acute Renal Failure (ARF), but the mechanisms underlying the renoprotective effect are largely unknown. Therefore, the main goal of the current study was to evaluate the therapeutic efficacy of AFSC in a cisplatin-induced rat model of ARF and to investigate the underlying mechanisms responsible for its renoprotective effect. To study the therapeutic efficacy of AFSC, ARF was induced in Wistar rats by an intra-peritoneal injection of cisplatin, and five days after administration, the rats were randomized into two groups and injected with either AFSC or normal saline intravenously. On day 8 and 12 after cisplatin injection, i.e., day 3 and day7 post-therapy respectively, the blood biochemical parameters, histopathological changes, apoptosis and expression of pro-apoptotic, anti-apoptotic and autophagy-related proteins in renal tissues were studied in both groups of rats. Administration of AFSC in ARF rats resulted in improvement of renal function and attenuation of renal damage as reflected by significant decrease in blood urea nitrogen, serum creatinine levels, tubular cell apoptosis as assessed by Bax/Bcl2 ratio, and expression of the pro-apoptotic proteins viz. PUMA, Bax, cleaved caspase-3 and cleaved caspase-9 as compared to saline-treated group. Furthermore, in the AFSC-treated group as compared to saline-treated group, there was a significant increase in the activation of autophagy as evident by increased expression of LC3-II, ATG5, ATG7, Beclin1 and phospho-AMPK levels with a concomitant decrease in phospho-p70S6K and p62 expression levels. To further confirm whether the protective effects of AFSC on cisplatin-induced apoptosis were dependent on autophagy, chloroquine, an autophagy inhibitor was administered by the intra-peritoneal route. Chloroquine administration led to significant reduction in the anti-apoptotic effects of the AFSC therapy and further deterioration in the renal structure and function caused by cisplatin. Collectively, our results put forth that AFSC ameliorates cisplatin-induced ARF through induction of autophagy and inhibition of apoptosis. Furthermore, the protective effects of AFSC were blunted by chloroquine, highlighting that activation of autophagy is an important mechanism of action for the protective role of AFSC in cisplatin-induced renal injury.

Keywords: amniotic fluid stem cells, acute renal failure, autophagy, cisplatin

Procedia PDF Downloads 81
857 Protective Effect of Nigella sativa Oil and Its Neutral Lipid Fraction on Ethanol-Induced Hepatotoxicity in Rat Model

Authors: Asma Mosbah, Hanane Khither, Kamelia Mosbah, Noreddine Kacem Chaouche, Mustapha Benboubetra

Abstract:

In the present investigation, total oil (TO) and its neutral lipid fraction (NLF) extracted from the seed of the well know studied medicinal plant Nigella sativa were tested for their therapeutically effect on alcohol-induced liver injury in rat model. Male Albino rats were divided into five groups of eight animals each and fed a Lieber–DeCarli liquid diet containing 5% ethanol for experimental groups and dextran for control group, for a period of six weeks. Afterwards, rats received, orally, treatments with Nigella sativa extracts (TO, NLF) and N- acetylcysteine (NAC) as a positive control for four weeks. Activities of antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), as well as malondialdehyde (MDA) and reduced glutathione (GSH). Biochemical parameters for kidney and liver functions, in treated and non treated rats, were evaluated throughout the time course of an experiment. Liver histological changes were taken into account. Enzymatic activities of both SOD and CAT increased significantly in rats treated with NLF and TO. While MDA level decreased in TO and NLF treated rats, GSH level increased significantly in TO and NLF treated rats. We noted equally a decrease in liver enzymes AST, ALT, and ALP. Microscopic observation of slides from the liver of ethanol treated rats showed a severe hepatotoxicity with lesions. Treatment with fractions leads to an improvement in liver lesions and a marked reduction in necrosis and infiltration. As a conclusion, both extracts of Nigella sativa seeds, TO and NLF, possess an important therapeutic protective potential against ethanol-induced hepatotoxicity in rats.

Keywords: alcohol-induced hepatotoxicity, antioxidant enzymes, Nigella sativa seeds, oil fractions

Procedia PDF Downloads 140
856 The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods

Authors: Zbigniew Szklarz, Aldona Garbacz-Klempka, Magdalena Bisztyga-Szklarz

Abstract:

Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives.

Keywords: high entropy alloys, electrodeposition, corrosion behavior, microstructure

Procedia PDF Downloads 56
855 Wettability of Superhydrophobic Polymer Layers Filled with Hydrophobized Silica on Glass

Authors: Diana Rymuszka, Konrad Terpiłowski, Lucyna Hołysz, Elena Goncharuk, Iryna Sulym

Abstract:

Superhydrophobic surfaces exhibit extremely high water repellency. The commonly accepted basic criterion for such surfaces is a water contact angle larger than 150°, low contact angle hysteresis and low sliding angle. These surfaces are of special interest, because properties such as anti-sticking, anti-contamination and self-cleaning are expected. These properties are attractive for many applications such as anti-sticking of snow for antennas and windows, anti-biofouling paints for boats, waterproof clothing, self-cleaning windshields for automobiles, dust-free coatings or metal refining. The various methods for the preparation of superhydrophobic surfaces since last two decades have been reported, such as phase separation, electrochemical deposition, template method, plasma method, chemical vapor deposition, wet chemical reaction, sol-gel processing, lithography and so on. The aim of the study was to investigate the influence of modified colloidal silica, used as a filler, on the hydrophobicity of the polymer film deposited on the glass support activated with plasma. On prepared surfaces water advancing (ӨA) and receding (ӨR) contact angles were measured and then their total apparent surface free energy was determined using the contact angle hysteresis approach (CAH). The structures of deposited films were observed with the help of an optical microscope. Topographies of selected films were also determined using an optical profilometer. It was found that plasma treatment influence glass surface wetting and energetic properties that is observed in higher adhesion between polymer/filler film and glass support. Using the colloidal silica particles as a filler for the polymer thin film deposited on the glass support, it is possible to produce strongly adhering layers of superhydrophobic properties. The best superhydrophobic properties were obtained for surfaces of the film glass/polimer + modified silica covered in 89 and 100%. The advancing contact angle measured on these surfaces amounts above 150° that leads to under 2 mJ/m2 value of the apparent surface free energy. Such films may have many practical applications, among others, as dust-free coatings or anticorrosion protection.

Keywords: contact angle, plasma, superhydrophobic, surface free energy

Procedia PDF Downloads 451
854 Anticorrosive Properties of Poly(O-Phenylendiamine)/ZnO Nanocomposites Coated Stainless Steel

Authors: Aisha Ganash

Abstract:

Poly(o-phenylendiamine) and poly(ophenylendiamine)/ZnO(PoPd/ZnO) nanocomposites coating were prepared on type-304 austenitic stainless steel (SS) using H2SO4 acid as electrolyte by potentiostatic methods. Fourier transforms infrared spectroscopy and scanning electron microscopy techniques were used to characterize the composition and structure of PoPd/ZnO nanocomposites. The corrosion protection of polymer coatings ability was studied by Eocp-time measurement, anodic and cathodic potentiodynamic polarization and Impedance techniques in 3.5% NaCl as a corrosive solution. It was found that ZnO nanoparticles improve the barrier and electrochemical anticorrosive properties of poly(o-phenylendiamine).

Keywords: anticorrosion, conducting polymers, electrochemistry, nanocomposites

Procedia PDF Downloads 270
853 The Protective Role of Decoy Receptor 3 Analogue on Rat Steatotic Liver against Ischemia-Reperfusion Injury by Blocking M1/Th1 Polarization and Multiple Upstream Pathogenic Cascades

Authors: Tzu-Hao Li, Shie-Liang Hsieh, Han-Chieh Lin, Ying-Ying Yang

Abstract:

TNF superfamily-stimulated pathogenic cascades and macrophage (M1)/kupffer cells (KC) polarization are important in the pathogenesis of ischemia-reperfusion (IR) liver injury in animals with hepatic steatosis (HS). Decoy receptor 3 (DcR3) is a common upstream inhibitor of the above-mentioned pathogenic cascades. The study evaluated whether modulation of these DcR3-related cascades was able to protect steatotic liver from IR injury. Serum and hepatic DcR3 levels were lower in patients and animals with HS. Accordingly, the effects of pharmacologic and genetic DcR3 replacement on the IR-related pathogenic changes were measured. Significantly, DcR3 replacement protected IR-Zucker(HS) rats and IR-DcR3-Tg(HS) mice from IR liver injury. The beneficial effects of DcR3 replacement were accompanied by decreased serum/hepatic TNF, soluble TNF-like cytokine 1A (TL1A), Fas ligand (Fas-L) and LIGHT, T-helper-cell-1 cytokine (INF) levels, neutrophil infiltration, M1 polarization, neutrophil-macrophage/KC-T-cell interaction, hepatocyte apoptosis and improved hepatic microcirculatory failure among animals with IR-injured steatotic livers. Additionally, TL1A, Fas-L, LIGHT and TLR4/NFB signals were found to mediate the DcR3-related protective effects of steatotic livers from IR injury. Using multimodal in vivo and in vitro approaches, we found that DcR3 was a potential agent to protect steatotic livers from IR injury by simultaneous blocking the multiple IR injury-related pathogenic changes.

Keywords: Decoy 3 receptor, ischemia-reperfusion injury, M1 polarization, TNF superfamily

Procedia PDF Downloads 182
852 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 203
851 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Abaqus, blast loading, finite element modeling, steel honeycomb sandwich panel

Procedia PDF Downloads 327
850 Reduction in Hospital Acquire Infections after Intervention of Hand Hygiene and Personal Protective Equipment at COVID Unit Indus Hospital Karachi

Authors: Aisha Maroof

Abstract:

Introduction: Coronavirus Disease 2019 (COVID-19) is spreading rapidly around the world with devastating consequences on patients, health care workers and health systems. Severe 2019 novel coronavirus infectious disease (COVID-19) with pneumonia is associated with high rates of admission to the intensive care unit (ICU) and they are at high risk to obtain the hospital acquire bloodstream infection (HAIs) such as central line associated bloodstream infection (CLABSI), catheter associated urinary tract infections (CAUTI) and laboratory confirm bloodstream infection (LCBSI). The chances of infection transmission increase when healthcare worker’s (HCWs) practice is inappropriate. Risk related to hand hygiene (HH) and personal protective equipment (PPE) as regards multidrug-resistant organism transmission: use of multiple gloving instead of HH and incorrect use of PPE can lead to a significant increase of device-related infections. As it reaches low- and middle-income countries, its effects could be even more, because it will be difficult for them to react aggressively to the pandemic. HAIs are one of the biggest medical concerns, resulting in increased mortality rates. Objective: To assess the effect of intervention on compliance of hand hygiene and PPE among HCWs reduce the rate of HAI in COVID-19 patients. Method: An interventional study was done between July to December, 2020. CLABSI, CAUTI and LCBSI data were collected from the medical record and direct observation. There were total of 50 Nurses, 18 doctors and all patients with laboratory-confirmed severe COVID-19 admitted to the hospital were included in this research study. Respiratory tract specimens were obtained after the first 48 h of ICU admission. Practices were observed after and before intervention. Education was provided based on WHO guidelines. Results: During the six months of study July to December, the rate of CLABSI, CAUTI and LCBSI pre and post intervention was reported. CLABSI rate decreasedd from 22.7 to 0, CAUTI rate was decreased from 1.6 to 0, LCBSI declined from 3.3 to 0 after implementation of intervention. Conclusion: HAIs are an important cause of morbidity and mortality. Most of the device related infections occurs due to lack of correct use of PPE and hand hygiene compliance. Hand hygiene and PPE is the most important measure to protect patients, through education it can be improved the correct use of PPE and hand hygiene compliance and can reduce the bacterial infection in COVID-19 patients.

Keywords: hospital acquire infection, healthcare workers, hand hygiene, personal protective equipment

Procedia PDF Downloads 110
849 The Role and Impact of Cold Spray Technology on Surface Engineering

Authors: Ionel Botef

Abstract:

Studies show that, for viable product realisation and maintenance, a spectrum of novel processing technologies and materials to improve performance and reduce costs and environmental impact must constantly be addressed. One of these technologies, namely the cold spray process, has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace, electronics, or medical applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore the role and impact of cold spraying on surface engineering.

Keywords: surface engineering, cold spray, ageing aircrafts, corrosion, microchannels, maintenance

Procedia PDF Downloads 585
848 Contribution of NLRP3 Inflammasome to the Protective Effect of 5,14-HEDGE, A 20-HETE Mimetic, against LPS-Induced Septic Shock in Rats

Authors: Bahar Tunctan, Sefika Pinar Kucukkavruk, Meryem Temiz-Resitoglu, Demet Sinem Guden, Ayse Nihal Sari, Seyhan Sahan-Firat, Mahesh P. Paudyal, John R. Falck, Kafait U. Malik

Abstract:

We hypothesized that 20-hydroxyeicosatetraenoic acid (20-HETE) mimetics such as N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE) may be beneficial for preventing mortality due to inflammation induced by lipopolysaccharide (LPS). This study aims to assess the effect of 5,14-HEDGE on the LPS-induced changes in nucleotide binding domain and leucine-rich repeat protein 3 (NLRP3)/apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC)/pro-caspase-1 inflammasome. Rats were injected with saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. 5,14-HEDGE (30 mg/kg) was administered to rats 1 h after injection of saline or LPS. The rats were sacrificed 4 h after saline or LPS injection and kidney, heart, thoracic aorta, and superior mesenteric artery were isolated for measurement of caspase-1/11 p20, NLRP3, ASC, and β-actin proteins as well as interleukin-1β (IL-1β) levels. Blood pressure decreased by 33 mmHg and heart rate increased by 63 bpm in the LPS-treated rats. In the LPS-treated rats, tissue protein expression of caspase-1/11 p20, NLRP3, and ASC in addition to IL-1β levels were increased. 5,14-HEDGE prevented the LPS-induced changes. Our findings suggest that inhibition of renal, cardiac, and vascular formation/activity of NLRP3/ASC/pro-caspase-1 inflammasome involved in the protective effect of 5,14-HEDGE on LPS-induced septic shock in rats. This work was financially supported by the Mersin University (2015-AP3-1343) and USPHS NIH (PO1 HL034300).

Keywords: 5, 14-HEDGE, lipopolysaccharide, NLRP3, inflammasome, septic shock

Procedia PDF Downloads 272
847 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars

Authors: Ankit Khurana

Abstract:

The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.

Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum

Procedia PDF Downloads 386
846 Protective Effect of Rosemary Extract against Toxicity Induced by Egyptian Naja haje Venom

Authors: Walaa H. Salama, Azza M. Abdel-Aty, Afaf S. Fahmy

Abstract:

Background: Egyptian Cobra; Naja haje (Elapidae) is one of most common snakes, widely distributed in Egypt and its envenomation causes multi-organ failure leading to rapid death. Thus, Different medicinal plants showed a protective effect against venom toxicity and may complement the conventional antivenom therapy. Aim: The present study was designed to assess both the antioxidant capacity of methanolic extract of rosemary leaves and evaluate the neutralizing ability of the extract against hepatotoxicity induced by Naja haje venom. Methods: The total phenolic and flavonoid contents and the antioxidant capacity of the methanolic rosemary extract were estimated by DPPH and ABTS Scavenging methods. In addition, the rosemary extract were assessed for anti-venom properties under in vitro and in vivo standard assays. Results: The rosemary extract had high total phenolic and flavonoid content as 12 ± 2 g of gallic acid equivalent per 100 gram of dry weight (g GAE/100g dw) and 5.5 ± 0.8 g of catechin equivalent per 100 grams of dry weight (g CE/100g dw), respectively. In addition, the rosemary extract showed high antioxidant capacity. Furthermore, The rosemary extract were inhibited in vitro the enzymatic activities of phospholipase A₂, L-amino acid oxidase, and hyaluronidase of the venom in a dose-dependent manner. Moreover, indirect hemolytic activity, hepatotoxicity induced by venom were completely neutralized as shown by histological studies. Conclusion: The phenolic compounds of rosemary extract with potential antioxidant activity may be considered as a promising candidate for future therapeutics in snakebite therapy.

Keywords: antioxidant activity, neutralization, phospholipase A₂ enzyme, snake venom

Procedia PDF Downloads 151
845 Transient Performance Evaluation and Control Measures for Oum Azza Pumping Station Case Study

Authors: Itissam Abuiziah

Abstract:

This work presents a case study of water-hammer analysis and control for the Oum Azza pumping station project in the coastal area of Rabat to Casablanca from the dam Sidi Mohamed Ben Abdellah (SMBA). This is a typical pumping system with a long penstock and is currently at design and executions stages. Since there is no ideal location for construction of protection devices, the protection devices were provisionally designed to protect the whole conveying pipeline. The simulation results for the transient conditions caused by a sudden pumping stopping without including any protection devices, show that there is a negative beyond 1300m to the station 5725m near the arrival of the reservoir, therefore; there is a need for the protection devices to protect the conveying pipeline. To achieve the goal behind the transient flow analysis which is to protect the conveying pipeline system, four scenarios had been investigated in this case study with two types of protecting devices (pressure relief valve and desurging tank with automatic air control). The four scenarios are conceders as with pressure relief valve, with pressure relief valve and a desurging tank with automatic air control, with pressure relief valve and tow desurging tanks with automatic air control and with pressure relief valve and three desurging tanks with automatic air control. The simulation result for the first scenario shows that overpressure corresponding to an instant pumping stopping is reduced from 263m to 240m, and the minimum hydraulic grad line for the length approximately from station 1300m to station 5725m is still below the pipeline profile which means that the pipe must be equipped with another a protective devices for smoothing depressions. The simulation results for the second scenario show that the minimum and maximum pressures envelopes are decreases especially in the depression phase but not effectively protects the conduct in this case study. The minimum pressure increased from -77.7m for the previous scenario to -65.9m for the current scenario. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station2575.84m. The simulation results for the third scenario show that the minimum and maximum pressures envelopes are decreases but not effectively protects the conduct in this case study since the depression is still exist and varies from -0.6m to– 12m. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station 5670.32 m. Examination of the envelope curves of the minimum pressuresresults for the fourth scenario, we noticed that the piezometric pressure along the pipe remains positive over the entire length of the pipe. We can, therefore, conclude that such scenario can provide effective protection for the pipeline.

Keywords: analysis methods, protection devices, transient flow, water hammer

Procedia PDF Downloads 160
844 Involvement of BCRP/ABCG2 in Protective Mechanisms of Resveratrol against Methotrexate-Induced Renal Damage in Rats

Authors: Mohamed A. Morsy, Azza A. El-Sheikh, Abdulla Y. Al-Taher

Abstract:

Resveratrol (RES) is a well-known polyphenol antioxidant. We have previously shown that testicular protective effect of RES against the anticancer drug methotrexate (MTX)-induced toxicity involves transporter-mediated mechanisms. Here, we investigated the effect of RES on MTX-induced nephrotoxicity. Rats were administered RES (10 mg/kg/day) for 8 days, with or without a single MTX dose (20 mg/kg i.p.) at day 4 of the experiment. MTX induced nephrotoxicity evident by significantly increase in serum blood urea nitrogen and creatinine compared to control, as well as distortion of kidney microscopic structure. MTX also significantly increased renal nitric oxide level, with induction of inducible nitric oxide synthase expression. MTX also significantly up-regulated fas ligand and caspase 3. Administering RES prior to MTX significantly improved kidney function and microscopic picture, as well as significantly decreased nitrosative and apoptotic markers compared to MTX alone. RES, but not MTX, caused significant increase in expression of breast cancer resistance protein (BCRP), an apical efflux renal transporter that participates in urinary elimination of both MTX and RES. Interestingly, concomitant MTX and RES caused further up-regulation of renal Bcrp compared to RES alone. Using Human BCRP ATPase assay, both RES and MTX exhibited dose-dependent increase in ATPase activity, with Km values of 0.52 ± 0.03 and 30.9 ± 4.2 µM, respectively. Furthermore, combined RES and MTX caused ATPase activity which was significantly less than maximum ATPase activity attained by the positive control; sulfasalazine (12.5 µM). In conclusion, RES exerted nephro-protection against MTX-induced toxicity through anti-nitrosative and anti-apoptotic effects, as well as via up-regulation of renal Bcrp.

Keywords: methotrexate, resveratrol, nephrotoxicity, breast cancer resistance protein

Procedia PDF Downloads 265