Search results for: machine learning and natural language processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18553

Search results for: machine learning and natural language processing

18193 A Learning Process for Aesthetics of Language in Thai Poetry for High School Teachers

Authors: Jiraporn Adchariyaprasit

Abstract:

The aesthetics of language in Thai poetry are emerged from the combination of sounds and meanings. The appreciation of such beauty can be achieved by means of education, acquisition of knowledge, and training. This research aims to study the learning process of aesthetics of language in Thai poetry for high school teachers in Bangkok and nearby provinces. There are 10 samples selected by purposive sampling for in-depth interviews. According to the research, there are four patterns in the learning process of aesthetics of language in Thai poetry which are 1) the study of characteristics and patterns of poetry, 2) the training of poetic reading, 3) the study of social and cultural contexts of poetry’s creation, and 4) the study of other sciences related to poetry such as linguistics, traditional dance, and so on.

Keywords: aesthetics, poetry, Thai poetry, poetry learning

Procedia PDF Downloads 436
18192 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 399
18191 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 134
18190 Unseen Classes: The Paradigm Shift in Machine Learning

Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan

Abstract:

Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.

Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery

Procedia PDF Downloads 172
18189 The Use of Mobile Applications for Language Learning in 21st-Century Teacher Education for Sustainable Development in Africa

Authors: Carol C. Opara, Olukemi E. Adetuyi-Olu-Francis

Abstract:

The need for ICT in Teacher Education due to the nature of 21st-century learners who are computer citizens is essential. The recent increase in the use of Mobile phones has equally revealed the importance of Mobile Applications for learning purposes. However, teacher-trainees and the trainers need to be well-grounded in basic ICT skills for an appropriate outcome. This study seeks to assess the use of Mobile Applications for language learning in Teacher Education teaching-learning process. A 22-item e-questionnaire was used to elicit information from teacher-trainers and teachers-trainees from Faculties of Education in Nigerian Universities. Major findings of this study include: That teacher-education sector is not adequately prepared for manipulative use of ICT and Mobile Applications for teaching and learning process; etc. It was recommended among others that, teacher-trainers should be trained and re-trained on the manipulative use of Mobile devices and the several applications for teaching-learning purpose, especially language education.

Keywords: information and communications technology, ICT, language learning, mobile application, sustainable development, teacher education

Procedia PDF Downloads 166
18188 Impact of Team-Based Learning Approach in English Language Learning Process: A Case Study of Universidad Federico Santa Maria

Authors: Yessica A. Aguilera

Abstract:

English is currently the only foreign language included in the national educational curriculum in Chile. The English curriculum establishes that once completed secondary education, students are expected to reach B1 level according to the Common European Reference Framework (CEFR) scale. However, the objective has not been achieved, and to the author’s best knowledge, there is still a severe lack of English language skills among students who have completed their secondary education studies. In order to deal with the fact that students do not manage English as expected, team-based learning (TBL) was introduced in English language lessons at the Universidad Federico Santa María (USM). TBL is a collaborative teaching-learning method which enhances active learning by combining individual and team work. This approach seeks to help students achieve course objectives while learning how to function in teams. The purpose of the research was to assess the implementation and effectiveness of TBL in English language classes at USM technical training education. Quantitative and qualitative data were collected from teachers and students about their experience through TBL. Research findings show that both teachers and students are satisfied with the method and that students’ engagement and participation in class is higher. Additionally, students score higher on examinations improving academic outcomes. The findings of the research have the potential to guide how TBL could be included in future English language courses.

Keywords: collaborative learning, college education, English language learning, team-based learning

Procedia PDF Downloads 189
18187 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 72
18186 Learner-Centered E-Learning in English Language Classes in Vietnam: Teachers’ Challenges and Recommendations

Authors: Thi Chang Duyen Can

Abstract:

Althoughthe COVID-19 epidemic is under control, online education technology in Vietnam will still thrive in the learner-centered trend. Most of the Vietnamese students are now ready to familiarize themselves with and access to online learning. Even in some cases, online learning, if combined with new tools, is far more effective and exciting for students than some traditional instruction. However, little research has been conducted to explore Vietnamese teachers’ difficulties in moderating learner-centered E-learning. Therefore, the study employed the mixed method (n=9) to (i) uncover the challenges faced by Vietnamese teachers in English language online classes using learner-centred approach and (ii) propose the recommendations to improve the quality of online training in universities.

Keywords: learner-centered e-learning, english language classes, teachers' challenges, online learning

Procedia PDF Downloads 85
18185 A Machine Learning-based Study on the Estimation of the Threat Posed by Orbital Debris

Authors: Suhani Srivastava

Abstract:

This research delves into the classification of orbital debris through machine learning (ML): it will categorize the intensity of the threat orbital debris poses through multiple ML models to gain an insight into effectively estimating the danger specific orbital debris can pose to future space missions. As the space industry expands, orbital debris becomes a growing concern in Low Earth Orbit (LEO) because it can potentially obfuscate space missions due to the increased orbital debris pollution. Moreover, detecting orbital debris and identifying its characteristics has become a major concern in Space Situational Awareness (SSA), and prior methods of solely utilizing physics can become inconvenient in the face of the growing issue. Thus, this research focuses on approaching orbital debris concerns through machine learning, an efficient and more convenient alternative, in detecting the potential threat certain orbital debris pose. Our findings found that the Logistic regression machine worked the best with a 98% accuracy and this research has provided insight into the accuracies of specific machine learning models when classifying orbital debris. Our work would help provide space shuttle manufacturers with guidelines about mitigating risks, and it would help in providing Aerospace Engineers facilities to identify the kinds of protection that should be incorporated into objects traveling in the LEO through the predictions our models provide.

Keywords: aerospace, orbital debris, machine learning, space, space situational awareness, nasa

Procedia PDF Downloads 20
18184 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 155
18183 Leveraging Sentiment Analysis for Quality Improvement in Digital Healthcare Services

Authors: Naman Jain, Shaun Fernandes

Abstract:

With the increasing prevalence of online healthcare services, selecting the most suitable doctor has become a complex task, requiring careful consideration of both public sentiment and personal preferences. This paper proposes a sentiment analysis-driven method that integrates public reviews with user-specific criteria and correlated attributes to recommend online doctors. By leveraging Natural Language Processing (NLP) techniques, public sentiment is extracted from online reviews, which is then combined with user-defined preferences such as specialty, years of experience, location, and consultation fees. Additionally, correlated attributes like education and certifications are incorporated to enhance the recommendation accuracy. Experimental results demonstrate that the proposed system significantly improves user satisfaction by providing personalized doctor recommendations that align with both public opinion and individual needs.

Keywords: sentiment analysis, online doctors, personal preferences, correlated attributes, recommendation system, healthcare, natural language processing

Procedia PDF Downloads 4
18182 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 77
18181 Prediction of Disability-Adjustment Mental Illness Using Machine Learning

Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad

Abstract:

Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population.

Keywords: ML, DAL, YLD, YLL

Procedia PDF Downloads 36
18180 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: ’Reddit’

Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell

Abstract:

Native language identification is one of the growing subfields in natural language processing (NLP). The task of native language identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features, when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL), and then the trained models are evaluated on different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and logistic regression. Results show that content-based features are more accurate and robust than content independent ones when tested within the corpus and across corpus.

Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML

Procedia PDF Downloads 137
18179 English Learning Strategy and Proficiency Level of the First Year Students, International College, Suan Sunandha Rajabhat University

Authors: Kanokrat Kunasaraphan

Abstract:

The purpose of the study was to identify whether English language learning strategies commonly used by the first year students at International College, Suan Sunandha Rajabhat University include six direct and indirect strategies. The study served to explore whether there was a difference in these students’ use of six direct and indirect English learning strategies between the different levels of their English proficiency. The questionnaire used as a research instrument was comprised of two parts: General information of participants and the Strategy Inventory for Language Learning (SILL). The researcher employed descriptive statistics and one-way ANOVA (F-test) to analyze the data. The results of the analysis revealed that English learning strategies commonly used by the first year students include six direct and indirect strategies, including differences in strategy use of the students with different levels of English proficiency. Recommendations for future research include the study of language learning strategy use with other research methods focusing on other languages, specific language skills, and/or the relationship of language learning strategy use and other factors in other programs and/or institutions.

Keywords: English learning strategies, direct strategies, indirect strategies, proficiency level

Procedia PDF Downloads 303
18178 Chinese Vocabulary Acquisition and Mobile Assisted Language Learning

Authors: Yuqing Sun

Abstract:

Chinese has been regarded as one of the most difficult languages in learning due to its complex spelling structure, difficult pronunciation, as well as its varying forms. Since vocabulary acquisition is the basic process to acquire a language, to express yourself, to compose a sentence, and to conduct a communication, so learning the vocabulary is of great importance. However, the vocabulary contains pronunciation, spelling, recognition and application which may seem as a huge work. This may pose a question for the language teachers (language teachers in China who teach Chinese to the foreign students): How to teach them in an effective way? Traditionally, teachers have no choice but teach it all by themselves, then with the development of technology, they can use computer as a tool to help them (Computer Assisted Language Learning or CALL). Now, they move into the Mobile Assisted Language Learning (MALL) method to guide their teaching, upon which the appraisal is convincing. It diversifies the learning material and the way of output, which can activate learners’ curiosity and accelerate their understanding. This paper will focus on actual case studies occurring in the universities in China of teaching the foreign students to learn Chinese, and the analysis of the utilization of WeChat channel as an example of MALL model to explore the active role of MALL to enhance the effectiveness of Chinese vocabulary acquisition.

Keywords: Chinese, vocabulary acquisition, MALL, case

Procedia PDF Downloads 414
18177 Transforming ESL Teaching and Learning with ICT

Authors: Helena Sit

Abstract:

Developing skills in using ICT in the language classroom has been discussed at all educational levels. Digital tools and learning management systems enable teachers to transform their instructional activities while giving learners the opportunity to engage with virtual communities. In the field of English as a second language (ESL) teaching and learning, the use of technology-enhanced learning and diverse pedagogical practices continues to grow. Whilst technology and multimodal learning is a way of the future for education, second language teachers now face the predicament as to whether implementing these newer ways of learning is, in fact, beneficial or disadvantageous to learners. Research has shown that integrating multimodality and technology can improve students’ engagement and participation in their English language learning. However, students can experience anxiety or misunderstanding when engaging with E-learning or digital-mediated learning. This paper aims to explore how ESL teaching and learning are transformed via the use of educational technology and what impact it has had on student teachers. Case study is employed in this research. The study reviews the growing presence of technology and multimodality in university language classrooms, discusses their impact on teachers’ pedagogical practices, and proposes scaffolding strategies to help design effective English language courses in the Australian education context. The study sheds light on how pedagogical integration today may offer a way forward for language teachers of tomorrow and provides implications to implement an evidence-informed approach that blends knowledge from research, practice and people experiencing the practice in the digital era.

Keywords: educational technology, ICT in higher education, curriculum design and innovation, teacher education, multiliteracies pedagogy

Procedia PDF Downloads 79
18176 Sustainability and Awareness with Natural Dyes in Textile

Authors: Recep Karadag

Abstract:

Natural dyeing had started since pre-historical times for dyeing of textile materials. The natural dyeing had continued to beginning of 20th century. At the end of 19th century some synthetic dyes were synthesized. Although development of dyeing technologies and methods, natural dyeing was not developed in recent years. Despite rapid advances of synthetic dyestuff industries, natural dye processes have not developed. Therefore natural dyeing was not competed against synthetic dyes. At the same time, it was very difficult that large quantities of coloured textile was dyed with natural dyes And it was very difficult to get reproducible results in the natural dyeing using classical and traditional processes. However, natural dyeing has used slightly in the textile handicraft up to now. It is very important view that re-using of natural dyes to create awareness in textiles in recent years. Natural dyes have got many awareness and sustainability properties. Natural dyes are more eco-friendly than synthetic dyes. A lot of natural dyes have got antioxidant, antibacterial, antimicrobial, antifungal and anti –UV properties. It had been known that were obtained limited numbers colours with natural dyes in the past. On the contrary, colour scale is too wide with natural dyes. Except fluorescent colours, numerous colours can be obtained with natural dyes. Fastnesses of dyed textiles with natural dyes are good that there are light, washing, rubbing, etc. The fastness values can be improved depend on dyeing processes. Thanks to these properties mass production can be made with natural dyes in textiles. Therefore fabric dyeing machine was designed. This machine is too suitable for natural dyeing and mass production. Also any dyeing machine can be modified for natural dyeing. Although dye extraction and dyeing are made separately in the traditional natural dyeing processes and these procedures are become by designed this machine. Firstly, colouring compounds are extracted from natural dye resources, then dyeing is made with extracted colouring compounds. The colouring compounds are moderately dissolved in water. Less water is used in the extraction of colouring compounds from dye resources and dyeing with this new technique on the contrary much quantity water needs to use for dissolve of the colouring compounds in the traditional dyeing. This dyeing technique is very useful method for mass productions with natural dyes in traditional natural dyeing that use less energy, less dye materials, less water, etc. than traditional natural dyeing techniques. In this work, cotton, silk, linen and wool fabrics were dyed with some natural dye plants by the technique. According to the analysis very good results were obtained by this new technique. These results are shown sustainability and awareness of natural dyes for textiles.

Keywords: antibacterial, antimicrobial, natural dyes, sustainability

Procedia PDF Downloads 522
18175 Musical Instruments Classification Using Machine Learning Techniques

Authors: Bhalke D. G., Bormane D. S., Kharate G. K.

Abstract:

This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.

Keywords: feature extraction, SVM, KNN, musical instruments

Procedia PDF Downloads 480
18174 The Impact of Motivation on English Language Learning: A Study of HSC Students of Jatir Janak Bangabandhu Sheikh Mujibur Rahman Government College, Dhaka, Bangladesh

Authors: Farina Yasmin

Abstract:

Motivation is an important issue in an EFL setting where very little exposure to English in everyday life is clearly evident. In Bangladesh, English is taught as a foreign language. Language teachers cannot effectively teach a language if they do not understand the relationship between motivation and its effect on foreign language learning. The main purpose of this research is to explore the fact why HSC students are less motivated towards English language learning, what factors are affecting motivation, how to motivate them and the role of motivation in their success. The research questions were (a) what are the reasons of lack of motivation? and (b) what are the impacts of motivation on English language learning? The study was both qualitative and quantitative in nature. The data was collected via pretest - posttest, interviews, and a questionnaire on the five point Likert scale. Triangulation of the data was made for the validity of the research. The population of this research consisted of 50 HSC level students from Jatir Janak Bangabandhu Sheikh Mujibur Rahman Government College, Dhaka, Bangladesh. The data was analyzed with means, comparison and t-test. The results showed that there is a strong relation between motivation and success in foreign language learning. Finally, some pedagogical implications and suggestions were presented to arouse the students’ motivation to learn English.

Keywords: EFL, HSC, motivation, success

Procedia PDF Downloads 378
18173 Effective Strategies for Teaching English Language to Beginners in Primary Schools in Nigeria

Authors: Halima Musa Kamilu

Abstract:

This paper discusses the effective strategies for teaching English language to learners in primary schools in Nigeria. English language development is the systematic use of instructional strategies designed to promote the acquisition of English by pupils in primary schools whose primary language is not English. Learning a second language is through total immersion. These strategies support this learning method, allowing pupils to have the knowledge of English language in a pattern similar to the way they learned their native language through regular interaction with others who already know the language. The focus is on fluency and learning to speak English in a social context with native speakers. The strategies allow for effective acquisition. The paper also looked into the following areas: visuals that reinforce spoken or written words, employ gestures for added emphasis, adjusting of speech, stressing of high-frequency vocabulary words, use of fewer idioms and clarifying the meaning of words or phrases in context, stressing of participatory learning and maintaining a low anxiety level and boosting of enthusiasm. It recommended that the teacher include vocabulary words that will make the content more comprehensible to the learner.

Keywords: effective, strategies, teaching, beginners and primary schools

Procedia PDF Downloads 494
18172 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market

Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago

Abstract:

An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.

Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis

Procedia PDF Downloads 63
18171 Are Some Languages Harder to Learn and Teach Than Others?

Authors: David S. Rosenstein

Abstract:

The author believes that modern spoken languages should be equally difficult (or easy) to learn, since all normal children learning their native languages do so at approximately the same rate and with the same competence, progressing from easy to more complex grammar and syntax in the same way. Why then, do some languages seem more difficult than others? Perhaps people are referring to the written language, where it may be true that mastering Chinese requires more time than French, which in turn requires more time than Spanish. But this may be marginal, since Chinese and French children quickly catch up to their Spanish peers in reading comprehension. Rather, the real differences in difficulty derive from two sources: hardened L1 language habits trying to cope with contrasting L2 habits; and unfamiliarity with unique L2 characteristics causing faulty expectations. It would seem that effective L2 teaching and learning must take these two sources of difficulty into consideration. The author feels that the latter (faulty expectations) causes the greatest difficulty, making effective teaching and learning somewhat different for each given foreign language. Examples from Chinese and other languages are presented.

Keywords: learning different languages, language learning difficulties, faulty language expectations

Procedia PDF Downloads 533
18170 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 172
18169 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 83
18168 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 94
18167 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 75
18166 Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology

Authors: Dulanjali Ranasinghe, Isuru Supasan, Kaushalya Premachandra, Ranjan Dissanayake, Ajith Rajapaksha, Eustace Fernando

Abstract:

Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology.

Keywords: proteomics, machine learning, gel-based proteomics, mass spectrometry

Procedia PDF Downloads 151
18165 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan

Abstract:

Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.

Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic

Procedia PDF Downloads 254
18164 The Development of Directed-Project Based Learning as Language Learning Model to Improve Students' English Achievement

Authors: Tri Pratiwi, Sufyarma Marsidin, Hermawati Syarif, Yahya

Abstract:

The 21st-century skills being highly promoted today are Creativity and Innovation, Critical Thinking and Problem Solving, Communication and Collaboration. Communication Skill is one of the essential skills that should be mastered by the students. To master Communication Skills, students must first master their Language Skills. Language Skills is one of the main supporting factors in improving Communication Skills of a person because by learning Language Skills students are considered capable of communicating well and correctly so that the message or how to deliver the message to the listener can be conveyed clearly and easily understood. However, it cannot be denied that English output or learning outcomes which are less optimal is the problem which is frequently found in the implementation of the learning process. This research aimed to improve students’ language skills by developing learning model in English subject for VIII graders of SMP N 1 Uram Jaya through Directed-Project Based Learning (DPjBL) implementation. This study is designed in Research and Development (R & D) using ADDIE model development. The researcher collected data through observation, questionnaire, interview, test, and documentation which were then analyzed qualitatively and quantitatively. The results showed that DPjBL is effective to use, it is seen from the difference in value between the pretest and posttest of the control class and the experimental class. From the results of a questionnaire filled in general, the students and teachers agreed to DPjBL learning model. This learning model can increase the students' English achievement.

Keywords: language skills, learning model, Directed-Project Based Learning (DPjBL), English achievement

Procedia PDF Downloads 165