Search results for: long memory
6607 A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints
Authors: Minho Lee, Donghyun Back, Jaemoon Jung, Woojin Park
Abstract:
The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort.Keywords: baseball, memory-based, posture prediction, reaching area, 3D digital human models
Procedia PDF Downloads 2156606 Draw Me Close: Queering Virtual Reality through (Re)Performances of Memory
Authors: Camille Intson
Abstract:
This paper endeavors to explore the opportunities, challenges, and ethics of reconstructing and re-enacting archives of memory through virtual reality (VR) performance, using Jordan Tannahill’s Draw Me Close as an exemplary case study. Draw Me Close is a 1:1 virtual reality (VR) performance in which the artist’s childhood memories, experiences, and interactions with his mother are reconstructed in the wake of her passing. Solo audience members are positioned as Jordan (the subject and character) and taken through a series of narratives, (virtual) spaces, and interactions with his “mother,” played by a live actor. Piece by piece, audiences are brought into the world of the “shifting” archive, inhabiting Jordan’s reconstructed virtual world from his early explorations of queer sexuality through to his mother’s cancer diagnosis and passing. This paper will explore how the world of Draw Me Close represents a “touching” and/or “queering” of time within its archive, blurring and transgressing the boundaries between the animate and the inanimate, life and death. On a philosophical level, considering foundational queer performance scholarship and archival theory, it will also examine how performance’s ephemerality rewards its artists with the dual advantages of visibility and protection, allowing for an ethical exploration of traumatic memory and loss within a disappearing medium. Finally, this provocation will use Draw Me Close as a point of departure from which to outline future possibilities for performance and emerging technologies’ engagements with archival theory and practice. By positioning virtual reality (VR) as an archive-constructing medium, it aims to move beyond the question of how we can take performances seriously as archives towards how personal archive construction is itself a performative act.Keywords: intermedial theatre, new media arts, queer performance, virtual reality
Procedia PDF Downloads 866605 Offloading Knowledge-Keeping to Digital Technology and the Attrition of Socio-Cultural Life
Authors: Sophia Melanson Ricciardone
Abstract:
Common vexations concerning the impact of contemporary media technology on our daily lives tend to conjure mental representations of digital specters that surreptitiously invade the privacy of our most intimate spaces. While legitimacy assuredly sustains these concerns, examining them in isolation from other attributable phenomena to the problems created by our hyper-mediated conditions does not supply a complete account of the deleterious cost of integrating digital affordances into the banal cadence of our shared socio-cultural realities. As we continue to subconsciously delegate facets of our social and cognitive lives to digital technology, the very faculties that have enabled our species to thrive and invent technology in the first place are at risk of attrition – namely our capacity to sustain attention while synthesizing information in working memory to produce creative and inventive constructions for our shared social existence. Though the offloading of knowledge-keeping to fellow social agents belonging to our family and community circles is an enduring intuitive phenomenon across human societies – what social psychologists refer to as transactive memory – in offloading our various socio-cognitive faculties to digital technology, we may plausibly be supplanting the visceral social connections forged by transactive memory. This paper will present related research and literature produced across the disciplines of sociobiology, socio-cultural anthropology, social psychology, cognitive semiotics and communication and media studies that directly and indirectly address the social precarity cultivated by digital technologies. This body of scholarly work will then be situated within common areas of interest belonging to digital anthropology, including the groundbreaking work of Pavel Curtis, Christopher Kelty, Lynn Cherny, Vincent Duclos, Nick Seaver, and Sherry Turkle. It is anticipated that in harmonizing these overlapping areas of intradisciplinary interest, this paper can weave together the disparate connections across spheres of knowledge that help delineate the conditions of our contemporary digital existence.Keywords: cognition, digital media, knowledge keeping, transactive memory
Procedia PDF Downloads 1376604 Analysis of Anti-Tuberculosis Immune Response Induced in Lungs by Intranasal Immunization with Mycobacterium indicus pranii
Authors: Ananya Gupta, Sangeeta Bhaskar
Abstract:
Mycobacterium indicus pranii (MIP) is a saprophytic mycobacterium. It is a predecessor of M. avium complex (MAC). Whole genome analysis and growth kinetics studies have placed MIP in between pathogenic and non-pathogenic species. It shares significant antigenic repertoire with M. tuberculosis and have unique immunomodulatory properties. MIP provides better protection than BCG against pulmonary tuberculosis in animal models. Immunization with MIP by aerosol route provides significantly higher protection as compared to immunization by subcutaneous (s.c.) route. However, mechanism behind differential protection has not been studied. In this study, using mice model we have evaluated and compared the M.tb specific immune response in lung compartments (airway lumen / lung interstitium) as well as spleen following MIP immunization via nasal (i.n.) and s.c. route. MIP i.n. vaccination resulted in increased seeding of memory T cells (CD4+ and CD8+ T-cells) in the airway lumen. Frequency of CD4+ T cells expressing Th1 migratory marker (CXCR3) and activation marker (CD69) were also high in airway lumen of MIP i.n. group. Significantly high ex vivo secretion of cytokines- IFN-, IL-12, IL-17 and TNF- from cells of airway luminal spaces provides evidence of antigen-specific lung immune response, besides generating systemic immunity comparable to MIP s.c. group. Analysis of T cell response on per cell basis revealed that antigen specific T-cells of MIP i.n. group were functionally superior as higher percentage of these cells simultaneously secreted IFN-gamma, IL-2 and TNF-alpha cytokines as compared to MIP s.c. group. T-cells secreting more than one of the cytokines simultaneously are believed to have robust effector response and crucial for protection, compared with single cytokine secreting T-cells. Adoptive transfer of airway luminal T-cells from MIP i.n. group into trachea of naive B6 mice revealed that MIP induced CD8 T-cells play crucial role in providing long term protection. Thus the study demonstrates that MIP intranasal vaccination induces M.tb specific memory T-cells in the airway lumen that results in an early and robust recall response against M.tb infection.Keywords: airway lumen, Mycobacterium indicus pranii, Th1 migratory markers, vaccination
Procedia PDF Downloads 1866603 Measurements of Recovery Stress and Recovery Strain of Ni-Based Shape Memory Alloys
Authors: W. J. Kim
Abstract:
The behaviors of the recovery stress and strain of an ultrafine-grained Ni-50.2 at.% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined by a specially designed tensile-testing set up, and the factors that influence the recovery stress and strain were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed based on the experimental data. The recovery strain increased as the yield stress increased. The maximum recovery stress increased with an increase in yield stress. The residual recovery stress was affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.Keywords: high-ratio differential speed rolling, tensile testing, severe plastic deformation, shape memory alloys
Procedia PDF Downloads 3646602 Overweight and Neurocognitive Functioning: Unraveling the Antagonistic Relationship in Adolescents
Authors: Swati Bajpai, S. P. K Jena
Abstract:
Background: There is dramatic increase in the prevalence and severity of overweight in adolescents, raising concerns about their psychosocial and cognitive consequences, thereby indicating the immediate need to understand the effects of increased weight on scholastic performance. Although the body of research is currently limited, available results have identified an inverse relationship between obesity and cognition in adolescents. Aim: to examine the association between increased Body Mass Index in adolescents and their neurocognitive functioning. Methods: A case –control study of 28 subjects in the age group of 11-17 years (14 Males and 14 females) was taken on the basis of main inclusion criteria (Body Mass Index). All of them were randomized to (experimental group: overweight) and (control group: normal weighted). A complete neurocognitive assessment was carried out using validated psychological scales namely, Color Progressive Matrices (to assess intelligence); Bender Visual Motor Gestalt Test (Perceptual motor functioning); PGI-Memory Scale for Children (memory functioning) and Malin’s Intelligence Scale Indian Children (verbal and performance ability). Results: statistical analysis of the results depicted that 57% of the experimental group lack in cognitive abilities, especially in general knowledge (99.1±12.0 vs. 102.8±6.7), working memory (91.5±8.4 vs. 93.1±8.7), concrete ability (82.3±11.5 vs. 92.6±1.7) and perceptual motor functioning (1.5±1.0 vs. 0.3±0.9) as compared to control group. Conclusion: Our investigations suggest that weight gain results, at least in part, from a neurological predisposition characterized by reduced executive function, and in turn obesity itself has a compounding negative impact on the brain. Though, larger sample is needed to make more affirmative claims.Keywords: adolescents, body mass index, neurocognition, obesity
Procedia PDF Downloads 4876601 Responses to Germination and Seedling Emergence Capacity of Durum Wheat Cultivars in Long Term Storage
Authors: S. Ahmet Bagci, Hayati Akman
Abstract:
This study was conducted at the research laboratory and greenhouse conditions to determine the effect on germination and emergency values of long-term stored seed (7 years) and non-stored seed (control) of nine durum wheat varieties. Three replicates of 20 seeds were germinated between double layered rolled germination papers in the Petri plates. Seeds were allowed to germinate at 20±1°C in the dark for 8 days. The seeds were counted on the 8th day as per ISTA rules and calculated in percent to determine germination capacity. Seedling emergency values were determined by testing 20 seeds placed into the sands with three replications of pots. Plants were counted on the 7th day and 12th day to determined seedling emergency rate and capacity, respectively. According to results, there are significant differences among the varieties in terms of germination capacity, seedling emergency rate and capacity of long-term stored and non-stored seeds. Germination capacity values declined from 100% to 93,3% of non-stored seeds whereas they were from 96,7% to 71,7% of long-term stored seeds. Percentage of seedling emergency capacity varied from 65,0% to 93,3% for non-stored seeds, however, the percentage of it was between 11,7 and 86,7% for long-term stored seeds. Results indicate that germination and emergence values responses to long-term stored condition varied significantly among durum wheat cultivars. Research results showed that the long-term-storage resulted in significant decrease with 13.5 % for germination, 36.4 % for emergence on the seventh day and 32.4 % for emergence on the twelfth day. Germination values ranged from 93.3 to 100.0 % for control and 71.7 to 96.7 % for storage. Emergence values in seventh day varied between 51.7 % and 90.0 % for control and 75.0 % and 10.0 % for storage, however values in twelfth day were between 93.3 % and 65.0 % for control and 86.7 % and 11.7 % for storage. According to research results, germination and emergence responses to long-term storage condition varied significantly among durum wheat cultivars.Keywords: germination, emergence, long-term-storage, durum wheat
Procedia PDF Downloads 3566600 Finite Element and Split Bregman Methods for Solving a Family of Optimal Control Problem with Partial Differential Equation Constraint
Authors: Mahmoud Lot
Abstract:
In this article, we will discuss the solution of elliptic optimal control problem. First, by using the nite element method, we obtain the discrete form of the problem. The obtained discrete problem is actually a large scale constrained optimization problem. Solving this optimization problem with traditional methods is difficult and requires a lot of CPU time and memory. But split Bergman method converts the constrained problem to an unconstrained, and hence it saves time and memory requirement. Then we use the split Bregman method for solving this problem, and examples show the speed and accuracy of split Bregman methods for solving these types of problems. We also use the SQP method for solving the examples and compare with the split Bregman method.Keywords: Split Bregman Method, optimal control with elliptic partial differential equation constraint, finite element method
Procedia PDF Downloads 1506599 An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay
Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang
Abstract:
In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism.Keywords: indoor positioning system, wireless sensor networks, measurement delay
Procedia PDF Downloads 4816598 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load
Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir
Abstract:
Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.Keywords: airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy
Procedia PDF Downloads 1886597 Fractional Integration in the West African Economic and Monetary Union
Authors: Hector Carcel Luis Alberiko Gil-Alana
Abstract:
This paper examines the time series behavior of three variables (GDP, Price level of Consumption and Population) in the eight countries that belong to the West African Economic and Monetary Union (WAEMU), which are Benin, Burkina Faso, Côte d’Ivoire, Guinea-Bissau, Mali, Niger, Senegal and Togo. The reason for carrying out this study lies in the considerable heterogeneity that can be perceived in the data from these countries. We conduct a long memory and fractional integration modeling framework and we also identify potential breaks in the data. The aim of the study is to perceive up to which degree the eight West African countries that belong to the same monetary union follow the same economic patterns of stability. Testing for mean reversion, we only found strong evidence of it in the case of Senegal for the Price level of Consumption, and in the cases of Benin, Burkina Faso and Senegal for GDP.Keywords: West Africa, Monetary Union, fractional integration, economic patterns
Procedia PDF Downloads 4306596 Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA
Authors: Mohamad Khairi Ishak
Abstract:
Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera’s EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system.Keywords: elliptic curve cryptography, FPGA, key sizes, memory
Procedia PDF Downloads 3176595 Experimental Evaluation of Succinct Ternary Tree
Authors: Dmitriy Kuptsov
Abstract:
Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation
Procedia PDF Downloads 1596594 Health Outcomes and Economic Growth Nexus: Testing for Long-run Relationships and Causal Links in Nigeria
Authors: Haruna Modibbo Usman, Mustapha Muktar, Nasiru Inuwa
Abstract:
This paper examined the long run relationship between health outcomes and economic growth in Nigeria from 1961 to 2012. Using annual time series data, Augmented Dickey-Fuller (ADF) test is conducted to check the stochastic properties of the variables. Also, the long run relationship among the variables is confirmed based on Johansen Multivariate Cointegration approach whereas the long run and short run dynamics are observed using Vector Error Correction Mechanism (VECM). In addition, VEC Granger causality test is employed to examine the direction of causality among the variables. On the whole, the results obtained revealed the existence of a long run relationship between health outcomes and economic growth in Nigeria and that both life expectancy and crude death rate as measures of health are found to have a long run negative and statistically significant impact on the economic growth over the study period. This is further buttressed by the results of Granger causality test which indicated the existence of unidirectional causality running from life expectancy and crude death rate to economic growth. The study therefore, calls for governments at various levels to create preconditions for health improvements in Nigeria in order to boost the level of health outcomes.Keywords: cointegration, economic growth, Granger causality, health outcomes, VECM
Procedia PDF Downloads 4886593 A Case Report on Cognitive-Communication Intervention in Traumatic Brain Injury
Authors: Nikitha Francis, Anjana Hoode, Vinitha George, Jayashree S. Bhat
Abstract:
The interaction between cognition and language, referred as cognitive-communication, is very intricate, involving several mental processes such as perception, memory, attention, lexical retrieval, decision making, motor planning, self-monitoring and knowledge. Cognitive-communication disorders are difficulties in communicative competencies that result from underlying cognitive impairments of attention, memory, organization, information processing, problem solving, and executive functions. Traumatic brain injury (TBI) is an acquired, non - progressive condition, resulting in distinct deficits of cognitive communication abilities such as naming, word-finding, self-monitoring, auditory recognition, attention, perception and memory. Cognitive-communication intervention in TBI is individualized, in order to enhance the person’s ability to process and interpret information for better functioning in their family and community life. The present case report illustrates the cognitive-communicative behaviors and the intervention outcomes of an adult with TBI, who was brought to the Department of Audiology and Speech Language Pathology, with cognitive and communicative disturbances, consequent to road traffic accident. On a detailed assessment, she showed naming deficits along with perseverations and had severe difficulty in recalling the details of the accident, her house address, places she had visited earlier, names of people known to her, as well as the activities she did each day, leading to severe breakdowns in her communicative abilities. She had difficulty in initiating, maintaining and following a conversation. She also lacked orientation to time and place. On administration of the Manipal Manual of Cognitive Linguistic Abilities (MMCLA), she exhibited poor performance on tasks related to visual and auditory perception, short term memory, working memory and executive functions. She attended 20 sessions of cognitive-communication intervention which followed a domain-general, adaptive training paradigm, with tasks relevant to everyday cognitive-communication skills. Compensatory strategies such as maintaining a dairy with reminders of her daily routine, names of people, date, time and place was also recommended. MMCLA was re-administered and her performance in the tasks showed significant improvements. Occurrence of perseverations and word retrieval difficulties reduced. She developed interests to initiate her day-to-day activities at home independently, as well as involve herself in conversations with her family members. Though she lacked awareness about her deficits, she actively involved herself in all the therapy activities. Rehabilitation of moderate to severe head injury patients can be done effectively through a holistic cognitive retraining with a focus on different cognitive-linguistic domains. Selection of goals and activities should have relevance to the functional needs of each individual with TBI, as highlighted in the present case report.Keywords: cognitive-communication, executive functions, memory, traumatic brain injury
Procedia PDF Downloads 3466592 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory
Authors: Ci Lin, Tet Yeap, Iluju Kiringa
Abstract:
This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule
Procedia PDF Downloads 1176591 Cognitive Dysfunctioning and the Fronto-Limbic Network in Bipolar Disorder Patients: A Fmri Meta-Analysis
Authors: Rahele Mesbah, Nic Van Der Wee, Manja Koenders, Erik Giltay, Albert Van Hemert, Max De Leeuw
Abstract:
Introduction: Patients with bipolar disorder (BD), characterized by depressive and manic episodes, often suffer from cognitive dysfunction. An up-to-date meta-analysis of functional Magnetic Resonance Imaging (fMRI) studies examining cognitive function in BD is lacking. Objective: The aim of the current fMRI meta-analysis is to investigate brain functioning of bipolar patients compared with healthy subjects within three domains of emotion processing, reward processing, and working memory. Method: Differences in brain regions activation were tested within whole-brain analysis using the activation likelihood estimation (ALE) method. Separate analyses were performed for each cognitive domain. Results: A total of 50 fMRI studies were included: 20 studies used an emotion processing (316 BD and 369 HC) task, 9 studies a reward processing task (215 BD and 213 HC), and 21 studies used a working memory task (503 BD and 445 HC). During emotion processing, BD patients hyperactivated parts of the left amygdala and hippocampus as compared to HC’s, but showed hypoactivation in the inferior frontal gyrus (IFG). Regarding reward processing, BD patients showed hyperactivation in part of the orbitofrontal cortex (OFC). During working memory, BD patients showed increased activity in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Conclusions: This meta-analysis revealed evidence for activity disturbances in several brain areas involved in the cognitive functioning of BD patients. Furthermore, most of the found regions are part of the so-called fronto-limbic network which is hypothesized to be affected as a result of BD candidate genes' expression.Keywords: cognitive functioning, fMRI analysis, bipolar disorder, fronto-limbic network
Procedia PDF Downloads 4606590 Osteometry of the Long Bones of Adult Chinkara (Gazella bennettii): A Remarkable Example of Sexual Dimorphism
Authors: Salahud Din, Saima Masood, Hafsa Zaneb, Saima Ashraf, Imad Khan
Abstract:
The objective of this study was 1) to measure osteometric parameters of the long bones of the adult Chinkara to obtain baseline data 2) to study sexual dimorphism in the adult Chinkara through osteometry and 3) to estimate body weight from the measurements of greatest length and shaft of the long bones. For this purpose, after taking body measurements of adult Chinkara after mortality, the carcass of adult Chinkara of known sex and age were buried in the locality of the Manglot Wildlife Park and Ungulate Breeding Centre, Nizampur, Pakistan; after a specific period of time, the bones were unearthed. Various osteometric parameters of the humerus, radius, metacarpus, femur, tibia and metatarsal were measured through the digital calliper. Statistically significant (P < 0.05), differences in some of the osteometrical parameters between male and female adult Chinkara were observed. Sexual dimorphism exit between the long bones of male and female adult Chinkara. In both male and female Chinkara value obtained for the estimated body weight from humeral, metacarpal and metatarsal measurements were near to the actual body weight of the adult Chinkara. In conclusion, the present study estimates preliminary data on long bones osteometrics and suggests that the morphometric details of the male and female adult Chinkara have differed morphometrically from each other.Keywords: body mass measurements, Chinkara, long bones, morphometric, sexual dimorphism
Procedia PDF Downloads 1296589 Another Beautiful Sounds: Building the Memory of Sound of Peddling in Beijing with Digital Technology
Authors: Dan Wang, Qing Ma, Xiaodan Wang, Tianjiao Qi
Abstract:
The sound of peddling in Beijing, also called “yo-heave-ho” or “cry of one's ware”, is a unique folk culture and usually found in Beijing hutong. For the civilians in Beijing, sound of peddling is part of their childhood. And for those who love the traditional culture of Beijing, it is an old song singing the local conditions and customs of the ancient city. For example, because of his great appreciation, the British poet Osbert Stewart once put sound of peddling which he had heard in Beijing as a street orchestra performance in the article named "Beijing's sound and color".This research aims to collect and integrate the voice/photo resources and historical materials of sound concerning peddling in Beijing by digital technology in order to protect the intangible cultural heritage and pass on the city memory. With the goal in mind, the next stage is to collect and record all the materials and resources based on the historical documents study and interviews with civilians or performers. Then set up a metadata scheme (which refers to the domestic and international standards such as "Audio Data Processing Standards in the National Library", DC, VRA, and CDWA, etc.) to describe, process and organize the sound of peddling into a database. In order to fully show the traditional culture of sound of peddling in Beijing, web design and GIS technology are utilized to establish a website and plan holding offline exhibitions and events for people to simulate and learn the sound of peddling by using VR/AR technology. All resources are opened to the public and civilians can share the digital memory through not only the offline experiential activities, but also the online interaction. With all the attempts, a multi-media narrative platform has been established to multi-dimensionally record the sound of peddling in old Beijing with text, images, audio, video and so on.Keywords: sound of peddling, GIS, metadata scheme, VR/AR technology
Procedia PDF Downloads 3046588 Learning from Long COVID: How Healthcare Needs to Change for Contested Illnesses
Authors: David Tennison
Abstract:
In the wake of the Covid-19 pandemic, a new chronic illness emerged onto the global stage: Long Covid. Long Covid presents with several symptoms commonly seen in other poorly-understood illnesses, such as fibromyalgia (FM) and myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS). However, while Long Covid has swiftly become a recognised illness, FM and ME/CFS are still seen as contested, which impacts patient care and healthcare experiences. This study aims to examine what the differences are between Long Covid and FM; and if the Long Covid case can provide guidance for how to address the healthcare challenge of contested illnesses. To address this question, this study performed comprehensive research into the history of FM; our current biomedical understanding of it; and available healthcare interventions (within the context of the UK NHS). Analysis was undertaken of the stigma and stereotypes around FM, and a comparison made between FM and the emerging Long Covid literature, along with the healthcare response to Long Covid. This study finds that healthcare for chronic contested illnesses in the UK is vastly insufficient - in terms of pharmaceutical and holistic interventions, and the provision of secondary care options. Interestingly, for Long Covid, many of the treatment suggestions are pulled directly from those used for contested illnesses. The key difference is in terms of funding and momentum – Long Covid has generated exponentially more interest and research in a short time than there has been in the last few decades of contested illness research. This stands to help people with FM and ME/CFS – for example, research has recently been funded into “brain fog”, a previously elusive and misunderstood symptom. FM is culturally regarded as a “women’s disease” and FM stigma stems from notions of “hysteria”. A key finding is that the idea of FM affecting women disproportionally is not reflected in modern population studies. Emerging data on Long Covid also suggests a slight leaning towards more female patients, however it is less feminised, potentially due to it emerging in the global historical moment of the pandemic. Another key difference is that FM is rated as an extremely low-prestige illness by healthcare professionals, while it was in large part due to the advocacy of affected healthcare professionals that Long Covid was so quickly recognised by science and medicine. In conclusion, Long Covid (and the risk of future pandemics and post-viral illnesses) highlight a crucial need for implementing new, and reinforcing existing, care networks for chronic illnesses. The difference in how contested illnesses like FM, and new ones like Long Covid are treated have a lot to do with the historical moment in which they emerge – but cultural stereotypes, from within and without medicine, need updating. Particularly as they contribute to disease stigma that causes genuine harm to patients. However, widespread understanding and acceptance of Long Covid could help fight contested illness stigma, and the attention, funding and research into Long Covid may actually help raise the profile of contested illnesses and uncover answers about their symptomatology.Keywords: long COVID, fibromyalgia, myalgic encephalomyelitis, chronic fatigue syndrome, NHS, healthcare, contested illnesses, chronic illnesses, COVID-19 pandemic
Procedia PDF Downloads 686587 Spatial Data Mining by Decision Trees
Authors: Sihem Oujdi, Hafida Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining
Procedia PDF Downloads 6116586 Dynamic Variation in Nano-Scale CMOS SRAM Cells Due to LF/RTS Noise and Threshold Voltage
Authors: M. Fadlallah, G. Ghibaudo, C. G. Theodorou
Abstract:
The dynamic variation in memory devices such as the Static Random Access Memory can give errors in read or write operations. In this paper, the effect of low-frequency and random telegraph noise on the dynamic variation of one SRAM cell is detailed. The effect on circuit noise, speed, and length of time of processing is examined, using the Supply Read Retention Voltage and the Read Static Noise Margin. New test run methods are also developed. The obtained results simulation shows the importance of noise caused by dynamic variation, and the impact of Random Telegraph noise on SRAM variability is examined by evaluating the statistical distributions of Random Telegraph noise amplitude in the pull-up, pull-down. The threshold voltage mismatch between neighboring cell transistors due to intrinsic fluctuations typically contributes to larger reductions in static noise margin. Also the contribution of each of the SRAM transistor to total dynamic variation has been identified.Keywords: low-frequency noise, random telegraph noise, dynamic variation, SRRV
Procedia PDF Downloads 1766585 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction
Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga
Abstract:
Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.Keywords: genetic algorithm, neural networks, word prediction, machine learning
Procedia PDF Downloads 1936584 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 636583 FISCEAPP: FIsh Skin Color Evaluation APPlication
Authors: J. Urban, Á. S. Botella, L. E. Robaina, A. Bárta, P. Souček, P. Císař, Š. Papáček, L. M. Domínguez
Abstract:
Skin coloration in fish is of great physiological, behavioral and ecological importance and can be considered as an index of animal welfare in aquaculture as well as an important quality factor in the retail value. Currently, in order to compare color in animals fed on different diets, biochemical analysis, and colorimetry of fished, mildly anesthetized or dead body, are very accurate and meaningful measurements. The noninvasive method using digital images of the fish body was developed as a standalone application. This application deals with the computation burden and memory consumption of large input files, optimizing piece wise processing and analysis with the memory/computation time ratio. For the comparison of color distributions of various experiments and different color spaces (RGB, CIE L*a*b*) the comparable semi-equidistant binning of multi channels representation is introduced. It is derived from the knowledge of quantization levels and Freedman-Diaconis rule. The color calibrations and camera responsivity function were necessary part of the measurement process.Keywords: color distribution, fish skin color, piecewise transformation, object to background segmentation
Procedia PDF Downloads 2596582 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 576581 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models
Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah
Abstract:
In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model
Procedia PDF Downloads 2386580 Shape Memory Alloy Structural Damper Manufactured by Selective Laser Melting
Authors: Tiziana Biasutti, Daniela Rigamonti, Lorenzo Palmiotti, Adelaide Nespoli, Paolo Bettini
Abstract:
Aerospace industry is based on the continuous development of new technologies and solutions that allows constant improvement of the systems. Shape Memory Alloys are smart materials that can be used as dampers due to their pseudoelastic effect. The purpose of the research was to design a passive damper in Nitinol, manufactured by Selective Laser Melting, for space applications to reduce vibration between different structural parts in space structures. The powder is NiTi (50.2 at.% of Ni). The structure manufactured by additive technology allows us to eliminate the presence of joint and moving parts and to have a compact solution with high structural strength. The designed dampers had single or double cell structures with three different internal angles (30°, 45° and 60°). This particular shape has damping properties also without the pseudoelastic effect. For this reason, the geometries were reproduced in different materials, SS316L and Ti6Al4V, to test the geometry loss factor. The mechanical performances of these specimens were compared to the ones of NiTi structures, pointing out good damping properties of the designed structure and the highest performances of the NiTi pseudoelastic effect. The NiTi damper was mechanically characterized by static and dynamic tests and with DSC and microscope observations. The experimental results were verified with numerical models and with some scaled steel specimens in which optical fibers were embedded. The realized structure presented good mechanical and damping properties. It was observed that the loss factor and the dissipated energy increased with the angles of the cells.Keywords: additive manufacturing, damper, nitinol, pseudo elastic effect, selective laser melting, shape memory alloys
Procedia PDF Downloads 1056579 NUX: A Lightweight Block Cipher for Security at Wireless Sensor Node Level
Authors: Gaurav Bansod, Swapnil Sutar, Abhijit Patil, Jagdish Patil
Abstract:
This paper proposes an ultra-lightweight cipher NUX. NUX is a generalized Feistel network. It supports 128/80 bit key length and block length of 64 bit. For 128 bit key length, NUX needs only 1022 GEs which is less as compared to all existing cipher design. NUX design results into less footprint area and minimal memory size. This paper presents security analysis of NUX cipher design which shows cipher’s resistance against basic attacks like Linear and Differential Cryptanalysis. Advanced attacks like Biclique attack is also mounted on NUX cipher design. Two different F function in NUX cipher design results in high diffusion mechanism which generates large number of active S-boxes in minimum number of rounds. NUX cipher has total 31 rounds. NUX design will be best-suited design for critical application like smart grid, IoT, wireless sensor network, where memory size, footprint area and the power dissipation are the major constraints.Keywords: lightweight cryptography, Feistel cipher, block cipher, IoT, encryption, embedded security, ubiquitous computing
Procedia PDF Downloads 3686578 Phonological Processing and Its Role in Pseudo-Word Decoding in Children Learning to Read Kannada Language between 5.6 to 8.6 Years
Authors: Vangmayee. V. Subban, Somashekara H. S, Shwetha Prabhu, Jayashree S. Bhat
Abstract:
Introduction and Need: Phonological processing is critical in learning to read alphabetical and non-alphabetical languages. However, its role in learning to read Kannada an alphasyllabary is equivocal. The literature has focused on the developmental role of phonological awareness on reading. To the best of authors knowledge, the role of phonological memory and phonological naming has not been addressed in alphasyllabary Kannada language. Therefore, there is a need to evaluate the comprehensive role of the phonological processing skills in Kannada on word decoding skills during the early years of schooling. Aim and Objectives: The present study aimed to explore the phonological processing abilities and their role in learning to decode pseudowords in children learning to read the Kannada language during initial years of formal schooling between 5.6 to 8.6 years. Method: In this cross sectional study, 60 typically developing Kannada speaking children, 20 each from Grade I, Grade II, and Grade III between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. Phonological processing abilities were assessed using an assessment tool specifically developed to address the objectives of the present research. The assessment tool was content validated by subject experts and had good inter and intra-subject reliability. Phonological awareness was assessed at syllable level using syllable segmentation, blending, and syllable stripping at initial, medial and final position. Phonological memory was assessed using pseudoword repetition task and phonological naming was assessed using rapid automatized naming of objects. Both phonological awareneness and phonological memory measures were scored for the accuracy of the response, whereas Rapid Automatized Naming (RAN) was scored for total naming speed. Results: The mean scores comparison using one-way ANOVA revealed a significant difference (p ≤ 0.05) between the groups on all the measures of phonological awareness, pseudoword repetition, rapid automatized naming, and pseudoword reading. Subsequent post-hoc grade wise comparison using Bonferroni test revealed significant differences (p ≤ 0.05) between each of the grades for all the tasks except (p ≥ 0.05) for syllable blending, syllable stripping, and pseudoword repetition between Grade II and Grade III. The Pearson correlations revealed a highly significant positive correlation (p=0.000) between all the variables except phonological naming which had significant negative correlations. However, the correlation co-efficient was higher for phonological awareness measures compared to others. Hence, phonological awareness was chosen a first independent variable to enter in the hierarchical regression equation followed by rapid automatized naming and finally, pseudoword repetition. The regression analysis revealed syllable awareness as a single most significant predictor of pseudoword reading by explaining the unique variance of 74% and there was no significant change in R² when RAN and pseudoword repetition were added subsequently to the regression equation. Conclusion: Present study concluded that syllable awareness matures completely by Grade II, whereas the phonological memory and phonological naming continue to develop beyond Grade III. Amongst phonological processing skills, phonological awareness, especially syllable awareness is crucial for word decoding than phonological memory and naming during initial years of schooling.Keywords: phonological awareness, phonological memory, phonological naming, phonological processing, pseudo-word decoding
Procedia PDF Downloads 173