Search results for: fraud prevention and detection
4640 Feasibility of Weakly Interacting Massive Particles as Dark Matter Candidates: Exploratory Study on The Possible Reasons for Lack of WIMP Detection
Authors: Sloka Bhushan
Abstract:
Dark matter constitutes a majority of matter in the universe, yet very little is known about it due to its extreme lack of interaction with regular matter and the fundamental forces. Weakly Interacting Massive Particles, or WIMPs, have been contested to be one of the strongest candidates for dark matter due to their promising theoretical properties. However, various endeavors to detect these elusive particles have failed. This paper explores the various particles which may be WIMPs and the detection techniques being employed to detect WIMPs (such as underground detectors, LHC experiments, and so on). There is a special focus on the reasons for the lack of detection of WIMPs so far, and the possibility of limits in detection being a reason for the lack of physical evidence of the existence of WIMPs. This paper also explores possible inconsistencies within the WIMP particle theory as a reason for the lack of physical detection. There is a brief review on the possible solutions and alternatives to these inconsistencies. Additionally, this paper also reviews the supersymmetry theory and the possibility of the supersymmetric neutralino (A possible WIMP particle) being detectable. Lastly, a review on alternate candidates for dark matter such as axions and MACHOs has been conducted. The explorative study in this paper is conducted through a series of literature reviews.Keywords: dark matter, particle detection, supersymmetry, weakly interacting massive particles
Procedia PDF Downloads 1424639 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection
Authors: Pradthana Sianglam, Wittaya Ngeontae
Abstract:
A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion
Procedia PDF Downloads 3634638 Factors Influencing Infection Prevention and Control Practices in the Emergency Department of Mbarara Regional Referral Hospital in Mbarara District- Uganda
Authors: Baluku Nathan
Abstract:
Infection prevention and control (IPC) is a practical, evidence-based approach that prevents patients and emergency health workers from being harmed by avoidable infections as a result of antimicrobial resistance; all hospital infection control programs put together various practices which, when used appropriately, restrict the spread of infection. A breach in these control practices facilitates the transmission of infections from patients to health workers, other patients and attendants. It is, therefore, important for all EMTs and patients to adhere to them strictly. It is also imperative for administrators to ensure the implementation of the infection control program for their facilities. Purpose: The purpose of this study was to investigate the influencing factors of prevention practices against Infection exposure among emergency medical technicians (EMTs) in the emergency department at Mbarara hospital. Methodology: This was a descriptive cross-sectional study that employed a self-reported questionnaire that was filled out by 32 EMTs in the emergency department from 12th February to 3rd march 2022. The questionnaire consisted of items concerning the defensive environment and other Factors influencing Infection prevention and control practices in the accident and emergency department of Mbarara hospital. Results: From the findings, majority16(50%) always used protective gear when doing clinical work,14 (43.8%) didn’t use protective gear, citing they were only assisting those performing resuscitations, gumboots were the least used protective gear with only3(9.4%) usage. Regarding disposal techniques of specific products like blood and sharps, results showed 10 (31.3%) said blood is disposed of in red buckets, 5(15.6%) in yellow buckets and only5(15.6%) in black buckets and 12(37.5%) didn’t respond. However, 28(87.5%) said sharps were disposed of in a sharps container. The majority, 17(53.1%), were not aware of the infection control guidelines even though they were pinned on walls of the emergency rooms,15(46.9%) said they had never had quality assurance monitoring events,14(43.8%) said monitoring was continuous while15(46.9 %) said it was discrete. Conclusions: The infection control practices at the emergency department were inadequate in view of less than 100% of the EMTs observing the five principles of infection prevention, such as the use of personal protective equipment and proper waste disposal in appropriate color-coded bins. Dysfunctional infection prevention and control committees accompanied by inadequate supervision to ensure infection control remained a big challenge.Keywords: infection prevention, influencing factors, emergency medical technician (EMT), emergency unit
Procedia PDF Downloads 1134637 Factors Influencing Infection Prevention and Control Practices in the Emergency Department of Mbarara Regional Referral Hospital in Mbarara District-Uganda
Authors: Baluku Nathan
Abstract:
Infection prevention and control (IPC) is a practical, evidence-based approach that prevents patients and emergency health workers from being harmed by avoidable infections as a result of antimicrobial resistance; all hospital infection control programs put together various practices which, when used appropriately, restrict the spread of infection. A breach in these control practices facilitates the transmission of infections from patients to health workers, other patients, and attendants. It is, therefore important for all emergency medical technicians (EMTs) and patients to strictly adhere to them. It is also imperative for administrators to ensure the implementation of the infection control programme for their facilities. Purpose: The purpose of this study was to investigate the influencing factors of prevention practices against infection exposure among emergency medical technicians (EMTs) in the emergency department at Mbarara hospital. Methodology: This was a descriptive cross-sectional study that employed a self-reported questionnaire that was filled out by 32 EMTs in the emergency department from 12th February to 3rd march 2022. The questionnaire consisted of items concerning the defensive environment and other factors influencing infection prevention and control practices in the accident and emergency department of Mbarara hospital. Results: From the findings, the majority 16 (50%) always used protective gear when doing clinical work, 14 (43.8%) didn’t use protective gear, citing they were only assisting those performing resuscitations, gumboots were the least used protective gear with only3(9.4%) usage. About disposal techniques of specific products like blood and sharps, results showed 10 (31.3%) said blood is disposed of in red buckets, 5 (15.6%) in yellow buckets, and only 5(15.6%) in black buckets, and 12(37.5%) didn’t respond, however, 28(87.5%) said sharps were disposed of in a sharps container. The majority, 17 (53.1%), were not aware of the infection control guidelines even though they were pinned on walls of the emergency rooms, 15(46.9%) said they have never had quality assurance monitoring events, 14(43.8%) said monitoring was continuous while 15(46.9 %) said it was discrete. Conclusions: The infection control practices at the emergency department were inadequate in view of less than 100% of the EMTs observing the five principles of infection prevention, such as the use of personal protective equipment and proper waste disposal in appropriate color-coded bins. Dysfunctional infection prevention and control committees accompanied by inadequate supervision to ensure infection control remained a big challenge.Keywords: emergency medical technician, infection prevention, influencing factors, infection control
Procedia PDF Downloads 1084636 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy
Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz
Abstract:
Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach
Procedia PDF Downloads 1494635 Regulatory Frameworks and Bank Failure Prevention in South Africa: Assessing Effectiveness and Enhancing Resilience
Authors: Princess Ncube
Abstract:
In the context of South Africa's banking sector, the prevention of bank failures is of paramount importance to ensure financial stability and economic growth. This paper focuses on the role of regulatory frameworks in safeguarding the resilience of South African banks and mitigating the risks of failures. It aims to assess the effectiveness of existing regulatory measures and proposes strategies to enhance the resilience of financial institutions in the country. The paper begins by examining the specific regulatory frameworks in place in South Africa, including capital adequacy requirements, stress testing methodologies, risk management guidelines, and supervisory practices. It delves into the evolution of these measures in response to lessons learned from past financial crises and their relevance in the unique South African banking landscape. Drawing on empirical evidence and case studies specific to South Africa, this paper evaluates the effectiveness of regulatory frameworks in preventing bank failures within the country. It analyses the impact of these frameworks on crucial aspects such as early detection of distress signals, improvements in risk management practices, and advancements in corporate governance within South African financial institutions. Additionally, it explores the interplay between regulatory frameworks and the specific economic environment of South Africa, including the role of macroprudential policies in preventing systemic risks. Based on the assessment, this paper proposes recommendations to strengthen regulatory frameworks and enhance their effectiveness in bank failure prevention in South Africa. It explores avenues for refining existing regulations to align capital requirements with the risk profiles of South African banks, enhancing stress testing methodologies to capture specific vulnerabilities, and fostering better coordination among regulatory authorities within the country. Furthermore, it examines the potential benefits of adopting innovative approaches, such as leveraging technology and data analytics, to improve risk assessment and supervision in the South African banking sector.Keywords: banks, resolution, liquidity, regulation
Procedia PDF Downloads 874634 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders
Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe
Abstract:
The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults
Procedia PDF Downloads 5434633 Verifying the Performance of the Argon-41 Monitoring System from Fluorine-18 Production for Medical Applications
Authors: Nicole Virgili, Romolo Remetti
Abstract:
The aim of this work is to characterize, from radiation protection point of view, the emission into the environment of air contaminated by argon-41. In this research work, 41Ar is produced by a TR19PET cyclotron, operated at 19 MeV, installed at 'A. Gemelli' University Hospital, Rome, Italy, for fluorine-18 production. The production rate of 41Ar has been calculated on the basis of the scheduled operation cycles of the cyclotron and by utilising proper production algorithms. Then extensive Monte Carlo calculations, carried out by MCNP code, have allowed to determine the absolute detection efficiency to 41Ar gamma rays of a Geiger Muller detector placed in the terminal part of the chimney. Results showed unsatisfactory detection efficiency values and the need for integrating the detection system with more efficient detectors.Keywords: Cyclotron, Geiger Muller detector, MCNPX, argon-41, emission of radioactive gas, detection efficiency determination
Procedia PDF Downloads 1514632 Deep Learning Based Road Crack Detection on an Embedded Platform
Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan
Abstract:
It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.Keywords: deep learning, embedded platform, real-time processing, road crack detection
Procedia PDF Downloads 3394631 Waste Prevention and Economic Policy: Policy Tools for Increasing Resource Efficiency and Savings
Authors: Sylvia Graczka
Abstract:
Waste related environmental problems are not only exploding but are also spotlighted for capacity shortages in recycling, as China announced its ban on waste imports. According to the waste hierarchy, prevention is the primary solution for waste, and also the cheapest. Waste related environmental pollution as externality puts an ever-growing burden on communities bearing the social costs. Economic policies often claim to be pro-environment, this often appears only theoretically, or at the level of principles. There are few concrete occurrences of tools in economic policies, such as green taxes, that are truly effective in stimulating the shift towards waste reduction. The paper presents theoretical economic policy tools based on literature review, and case studies on applied economic policy tools by analyzing policy papers, strategies in force, in line with ‘polluter pays’ and ‘extended producer responsibility’ principles. The study also emphasizes the differences between the broader notion of waste reduction and that of waste minimization, parallel to the difference between resource efficiency and resource savings. It also puts the issue in the context of neoclassical environmental economics and ecological economics, to present alternatives in approach. The research concludes in identifying effective economic policy tools that support the reduction of material use, and the prevention of waste. Consumer and producer awareness of waste problems and consciousness related to their choices are inevitable to make economic policy tools work effectively.Keywords: economic policy, producer responsibility, resource efficiency, waste prevention
Procedia PDF Downloads 1494630 The Development of a Miniaturized Raman Instrument Optimized for the Detection of Biosignatures on Europa
Authors: Aria Vitkova, Hanna Sykulska-Lawrence
Abstract:
In recent years, Europa has been one of the major focus points in astrobiology due to its high potential of harbouring life in the vast ocean underneath its icy crust. However, the detection of life on Europa faces many challenges due to the harsh environmental conditions and mission constraints. Raman spectroscopy is a highly capable and versatile in-situ characterisation technique that does not require any sample preparation. It has only been used on Earth to date; however, recent advances in optical and laser technology have also allowed it to be considered for extraterrestrial exploration. So far, most efforts have been focused on the exploration of Mars, the most imminent planetary target. However, as an emerging technology with high miniaturization potential, Raman spectroscopy also represents a promising tool for the exploration of Europa. In this study, the capabilities of Raman technology in terms of life detection on Europa are explored and assessed. Spectra of biosignatures identified as high priority molecular targets for life detection on Europa were acquired at various excitation wavelengths and conditions analogous to Europa. The effects of extremely low temperatures and low concentrations in water ice were explored and evaluated in terms of the effectiveness of various configurations of Raman instruments. Based on the findings, a design of a miniaturized Raman instrument optimized for in-situ detection of life on Europa is proposed.Keywords: astrobiology, biosignatures, Europa, life detection, Raman Spectroscopy
Procedia PDF Downloads 2124629 Human Rights and Fundamental Freedoms in Crisis as Viewed during Bangladesh Parliamentary Election-2018 and Afterwards: A Contestant's Perspective on Social Measures
Authors: Mohammad S. Islam
Abstract:
Elections in Bangladesh are always controversial, and sometimes it becomes a violent affair when state power is combined with politics. Despite the commitment of the ruling party- the polling government to ensure free, fair, and credible elections, the participants of opposition parties and the general voters became very disappointed, terribly frustrated, and severely shocked. It happened when numerous claims of serious irregularities of vote rigging and violence came out in broad daylight during the election. This paper addresses the issues of how the ruling party created frightening and a horror situation to make people silent over electoral fraud and violent incidents, including gang rape. It also seeks to demonstrate that election-2018 was simply the deceptive action of the ruling party to legitimate their power, but not to provide a minimum opportunity for voters to exercise their fundamental right to vote. The fundamental freedom and the rule of law seemed to be ignored completely in this election process and afterwards. With the help of state machinery, the government of the ruling party violated human rights, restricted fundamental freedoms, and humiliated social protection & dignity. The contestant’s views as witnessed and relevant literatures are cited first for conceptual understanding. Then, the paper will examine how a new dimension of circumstantial social measures related to sustained protection can reduce all kinds of violence against humanity towards establishing a peaceful democratic society. Finally, this paper interprets the key findings and considers wider implications.Keywords: electoral fraud, human rights, sustained protection, social measures, vote rigging
Procedia PDF Downloads 1884628 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 914627 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements
Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal
Abstract:
In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement.Keywords: Kalman filter, innovation, false detection, improvement
Procedia PDF Downloads 6024626 The Effect of Drug Prevention Programme Based On Cognitive-Behavioral Therapy (CBT) and Multidimensional Self Concept Module Towards Resiliency and Aggression Among At-Risk Youth in Malaysia
Authors: Mohammad Aziz Shah Mohamed Arip, Aslina Ahmad, Fauziah Mohd Sa'ad, Samsiah Mohd Jais, Syed Sofian Syed Salim
Abstract:
This experimental study evaluates the effect of using Cognitive-Behavioral Therapy (CBT) and Multidimensional Self-Concept Model (MSCM) in a drug prevention programme to increase resiliency and reduce aggression among at-risk youth in Malaysia. A number of 60 (N=60) university students who were at-risk of taking drugs were involved in this study. Participants were identified with self-rating scales, Adolescent Resilience Attitude Scale (ARAS) and Aggression Questionnaire. Based on the mean score of these instruments, the participants were divided into the treatment group, and the control group. Data were analyzed using t-test. The finding showed that the mean score of resiliency was increased in the treatment group compared to the control group. It also shows that the mean score of aggression was reduced in the treatment group compared to the control group. Drug Prevention Programme was found to help in enhancing resiliency and reducing aggression among participants in the treatment group compared to the controlled group. Implications were given regarding the preventive actions on drug abuse among youth in Malaysia.Keywords: drug prevention programme, cognitive-behavioral therapy (CBT), multidimensional self concept model (MSCM), resiliency, aggression, at-risk youth
Procedia PDF Downloads 7284625 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 4144624 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 1024623 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods
Authors: Abdelghani Chahmi
Abstract:
This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation
Procedia PDF Downloads 1394622 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 4884621 Hazardous Vegetation Detection in Right-Of-Way Power Transmission Lines in Brazil Using Unmanned Aerial Vehicle and Light Detection and Ranging
Authors: Mauricio George Miguel Jardini, Jose Antonio Jardini
Abstract:
Transmission power utilities participate with kilometers of circuits, many with particularities in terms of vegetation growth. To control these rights-of-way, maintenance teams perform ground, and air inspections, and the identification method is subjective (indirect). On a ground inspection, when identifying an irregularity, for example, high vegetation threatening contact with the conductor cable, pruning or suppression is performed immediately. In an aerial inspection, the suppression team is mobilized to the identified point. This work investigates the use of 3D modeling of a transmission line segment using RGB (red, blue, and green) images and LiDAR (Light Detection and Ranging) sensor data. Both sensors are coupled to unmanned aerial vehicle. The goal is the accurate and timely detection of vegetation along the right-of-way that can cause shutdowns.Keywords: 3D modeling, LiDAR, right-of-way, transmission lines, vegetation
Procedia PDF Downloads 1314620 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.
Procedia PDF Downloads 3594619 Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia
Authors: Ali A. Aldosari
Abstract:
Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region.Keywords: spatial analysis, geographical information system, change detection
Procedia PDF Downloads 4024618 Hate Speech Detection in Tunisian Dialect
Authors: Helmi Baazaoui, Mounir Zrigui
Abstract:
This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation
Procedia PDF Downloads 114617 Prevention of Heart Failure Progression in Patients with Post-Infarction Cardiosclerosis After Coronavirus Infection
Authors: Sujayeva V. A., Karpova I. S., Koslataya O. V., Kolyadko M. G., Russkikh I. I., Vankovich E. A.
Abstract:
Objective: The goal of this study is to develop a method for the prevention of the progression of heart failure (HF) in patients with post-infarction cardiosclerosis who have suffered coronavirus infection. Methods: 135 patients with post-infarction cardiosclerosis were divided into 2 groups: Group I - patients who had suffered COVID-19 - 85 people, and Group II - patients who had not suffered COVID-19 - 50 people. Patients of group I, depending on the level of N-terminal fragment of natriuretic peptide (NTproBNP), were divided into 2 subgroups - subgroup A - with HF - 40 people, subgroup B - without HF - 45 people. All patients underwent a clinical examination, echocardiography, electrocardiotopography in 60 leads, computed angiography of the coronary arteries, heart magnetic resonance imaging, NTproBNP. Results: In the post-Covid period, in patients with post-infarction cardiosclerosis, remodeling of the left ventricle and right parts of the heart, deterioration of the systolic-diastolic function of both ventricles, increased pressure in the pulmonary artery, progression of coronary artery atherosclerosis, and an increase in the size of myocardial fibrosis were revealed. The consequence of these changes was the progression of heart failure. The developed method of medical prevention made it possible to improve the clinical course of coronary artery disease and prevent the progression of chronic heart failure in patients with post-infarction cardiosclerosis. Conclusions: In patients with post-infarction cardiosclerosis who initially had HF, after 1 year, according to laboratory and instrumental data, a slight decrease in its severity was revealed. In patients with post-infarction cardiosclerosis who did not have HF before COVID-19, HF developed 1 year after the coronavirus disease, which may be due to the identified process of myocardial fibrosis, which dictates the need to prevent the development of HF in patients with post-infarction cardiosclerosis, even those who did not initially have HF. The proposed method of medical prevention made it possible to improve the clinical course of coronary artery disease in patients with post-infarction cardiosclerosis after COVID-19, both in persons with and without HF, when included in the study. A method of medical prevention in people with post-infarction cardiosclerosis after COVID-19 infection, including spironolactone, loop diuretics, empagliflozin, sacubitril/valsartan, helped prevent the progression of HF.Keywords: elderly, myocardial infarction, COVID-19, prevention
Procedia PDF Downloads 224616 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 1704615 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water
Authors: Temesgen Geremew
Abstract:
The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.
Procedia PDF Downloads 774614 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 1464613 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods
Authors: Bin Liu
Abstract:
Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)
Procedia PDF Downloads 1614612 Implementation of a Method of Crater Detection Using Principal Component Analysis in FPGA
Authors: Izuru Nomura, Tatsuya Takino, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata
Abstract:
We propose a method of crater detection from the image of the lunar surface captured by the small space probe. We use the principal component analysis (PCA) to detect craters. Nevertheless, considering severe environment of the space, it is impossible to use generic computer in practice. Accordingly, we have to implement the method in FPGA. This paper compares FPGA and generic computer by the processing time of a method of crater detection using principal component analysis.Keywords: crater, PCA, eigenvector, strength value, FPGA, processing time
Procedia PDF Downloads 5554611 The Effects of Smoking Prevention Intervention on Smoking Knowledge, Attitudes and Anti-Smoking Self-Efficiency among Adolescent Students
Authors: Yi-Ying Lin, Su-Guo, Chia-Hao, Ming-Szu Hong
Abstract:
Objectives: Smoking is a common addictive behavior in teenagers. Long-term smoking is hazardous to health, causes family and social expenditure, and is an important topic that should not be overlooked by academia or the government. The aims of this study are to examine the effectiveness of these courses in terms of teenagers’ knowledge and attitudes towards the hazards of smoking and the effectiveness of their self-efficacy in rejecting smoking. Methods: This study adopted a pre-test post-test design and selected 7th, 8th, 10th, and 11th graders from two junior high schools. Total of 1073 valid questionnaires were collected. The self-completed questionnaire included background information, smoking status of relatives staying with the subject, attitudes of parents towards child smoking, knowledge and attitudes towards smoking, and anti-smoking self-efficacy. Results and clinical applications: Subjects in the experimental group underwent course interventions, which are 'smoking prevention courses,' in the semester. After course intervention, it was found that the intervention showed significant efficacy in terms of knowledge and self-efficacy in rejecting smoking in senior high school students but no efficacy in junior high school. We recommend that this course can be used in normal senior high schools. With regards to junior high schools, smoking prevention courses should be designed to be gamified, or combined with activities with both anti-smoking messages and entertainment at the same time, so that knowledge, attitudes, and self-efficacy can be subconsciously cultivated.Keywords: adolescent students, smoking knowledge, attitudes, anti-smoking self-efficiency, smoking prevention intervention
Procedia PDF Downloads 124